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after which it slowly recovers towards n! ! 2 [Fig. 3(c)].
For x ¼ 0:775, we find that A # 0:036 "! cm=K2, imply-
ing that the ground state is a heavy Fermi liquid at this
concentration. In order to explore this perspective, we have
calculated the Kadowaki-Woods ratio RKW ¼ A=#2, which
gives the relationship between the coefficient # of the
electronic specific heat and the coefficient A of the T2

contribution to the electrical resistivity, assuming that
the system exhibits heavy FL behavior at low T. If we
consider #ð2:3 KÞ ¼ 140 mJ=mol-K2 (Table I), then
RKW ¼ 1:86& 10'6 "! cmðmol-K=mJÞ2. This value is
intermediate between what is expected for Ce- and Yb-
based heavy fermion compounds [17,18], emphasizing that
strong electronic correlations persist up to x # 0:775. SC
transitions are clearly observed in !ðTÞ for 0 ( x ( 0:65
[Fig. 2(c)], and there is a monotonic suppression of Tc with

increasing Yb concentration [Fig. 3(b)]. In particular, we
note that the Tc vs x curve extrapolates to 0 K near x ¼ 1,
emphasizing that the SC is anomalously robust in the
presence of Yb substituents.
Magnetic susceptibility ($) measurements were carried

out as a function of T by using a Quantum Design SQUID
magnetometer in H ¼ 0:5 T. Figures 4(a) and 4(b) show
$ðTÞ in the normal state forH applied in the ab plane, $ab,
and along the c axis, $c. The ratio of $ab to $c at
T ¼ 2:3 K is !0:5 [inset in Fig. 4(a)]. Surprisingly, $ðTÞ
retains a T dependence that is nearly identical to that of
x ¼ 0 for x ( 0:775; i.e., Curie-Weiss behavior is observed
at high T, after which $ðTÞ saturates below 50 K, consistent
with the onset of Kondo-like demagnetization and the
coherent behavior observed in !ðTÞ. These results are
contrary to what would be expected if the Yb ions were
to enter the lattice in the nonmagnetic divalent state, in
which case $ðTÞ should scale with (1' x). Finally, $ðTÞ
again increases upon cooling below 20 K, contrary to
the behavior of ideal HF compounds which are expected
to remain in a FL state with a nearly T-independent
$ as T approaches 0 K. This upturn appears to be an
intrinsic effect and not due to magnetic impurities, since
we find that MðHÞ curves at low T do not saturate up to
70 kOe [19]. Between 1.8 and !20 K, $c can be fit by the
form $c ¼ $cð0Þ þ a=Tn$ , consistent with the NFL behav-
ior observed in !ðTÞ and CðTÞ. Figure 3(d) shows the
parameters n$.
The specific heat (C) was measured for 0:3 K (

T ( 5 K in a Quantum Design Physical Properties
Measurement System semiadiabatic calorimeter using a
heat-pulse technique. Figure 5 shows C=T vs T for several
values of x. The electronic-specific-heat coefficient
# ¼ C=T, estimated to be the value of C=T near 2.3 K
(Table I), reveals a substantial mass renormalization
(# / m*) that persists up to x ¼ 0:65, after which # is
suppressed. Additionally, C=T tends to increase with
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FIG. 3. (a) Coherence temperature Tcoh, where !ðTÞ exhibits a
maximum (or knee) vs x. The error bars represent the width of the
maximum, defined as the T ! ¼ 0:95!coh. (b) Circles: Tc deter-
mined from !ðTÞ measurements vs x for Ce1'xYbxCoIn5. The
vertical bars correspond to the 90% and 10% values of the
superconducting transitions. Triangles: Tc, determined from
CðTÞ measurements vs x. The solid line shows the suppression
of Tc as reported for other rare earth substitutions [12]. (c) Fit
parameters n!, extracted from power law ! ¼ !0 þ ATn! fits to

the normal-state resistivity vs x. (d) Fit parameters n$, determined

from fits of $c ¼ $cð0Þ þ a=Tn$ to the normal-state $ðTÞ vs x.
The light gray shading represents the region of phase separation.

TABLE I. Superconducting parameters for samples of
Ce1'xYbxCoIn5. The values of Tc have been determined from
specific heat data."C is the jump inCðTÞ atTc, and#ð2:3 KÞ is the
estimated electronic-specific-heat coefficient at 2.3 K.

x Tc "C #ð2:3 KÞ
(K) (mJ=mol K) (mJ=molK2)

0 2.29 3460 357
0.05 2.16 3040 373
0.10 2.09 2240 347
0.125 1.97 1810 332
0.50 1.19 235 330
0.65 283
0.775 140
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FIG. 4 (color online). (a) Magnetic susceptibility along the ab
plane$ab vs temperatureT forCe1'xYbxCoIn5. Inset:Ratio of$ab

to$c at T ¼ 2:3 K. (b)Magnetic susceptibility along the c axis$c

vs T for Ce1'xYbxCoIn5. Data for x ¼ 0 are from Ref. [23].
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concentration. In order to explore this perspective, we have
calculated the Kadowaki-Woods ratio RKW ¼ A=#2, which
gives the relationship between the coefficient # of the
electronic specific heat and the coefficient A of the T2

contribution to the electrical resistivity, assuming that
the system exhibits heavy FL behavior at low T. If we
consider #ð2:3 KÞ ¼ 140 mJ=mol-K2 (Table I), then
RKW ¼ 1:86& 10'6 "! cmðmol-K=mJÞ2. This value is
intermediate between what is expected for Ce- and Yb-
based heavy fermion compounds [17,18], emphasizing that
strong electronic correlations persist up to x # 0:775. SC
transitions are clearly observed in !ðTÞ for 0 ( x ( 0:65
[Fig. 2(c)], and there is a monotonic suppression of Tc with

increasing Yb concentration [Fig. 3(b)]. In particular, we
note that the Tc vs x curve extrapolates to 0 K near x ¼ 1,
emphasizing that the SC is anomalously robust in the
presence of Yb substituents.
Magnetic susceptibility ($) measurements were carried

out as a function of T by using a Quantum Design SQUID
magnetometer in H ¼ 0:5 T. Figures 4(a) and 4(b) show
$ðTÞ in the normal state forH applied in the ab plane, $ab,
and along the c axis, $c. The ratio of $ab to $c at
T ¼ 2:3 K is !0:5 [inset in Fig. 4(a)]. Surprisingly, $ðTÞ
retains a T dependence that is nearly identical to that of
x ¼ 0 for x ( 0:775; i.e., Curie-Weiss behavior is observed
at high T, after which $ðTÞ saturates below 50 K, consistent
with the onset of Kondo-like demagnetization and the
coherent behavior observed in !ðTÞ. These results are
contrary to what would be expected if the Yb ions were
to enter the lattice in the nonmagnetic divalent state, in
which case $ðTÞ should scale with (1' x). Finally, $ðTÞ
again increases upon cooling below 20 K, contrary to
the behavior of ideal HF compounds which are expected
to remain in a FL state with a nearly T-independent
$ as T approaches 0 K. This upturn appears to be an
intrinsic effect and not due to magnetic impurities, since
we find that MðHÞ curves at low T do not saturate up to
70 kOe [19]. Between 1.8 and !20 K, $c can be fit by the
form $c ¼ $cð0Þ þ a=Tn$ , consistent with the NFL behav-
ior observed in !ðTÞ and CðTÞ. Figure 3(d) shows the
parameters n$.
The specific heat (C) was measured for 0:3 K (

T ( 5 K in a Quantum Design Physical Properties
Measurement System semiadiabatic calorimeter using a
heat-pulse technique. Figure 5 shows C=T vs T for several
values of x. The electronic-specific-heat coefficient
# ¼ C=T, estimated to be the value of C=T near 2.3 K
(Table I), reveals a substantial mass renormalization
(# / m*) that persists up to x ¼ 0:65, after which # is
suppressed. Additionally, C=T tends to increase with
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FIG. 3. (a) Coherence temperature Tcoh, where !ðTÞ exhibits a
maximum (or knee) vs x. The error bars represent the width of the
maximum, defined as the T ! ¼ 0:95!coh. (b) Circles: Tc deter-
mined from !ðTÞ measurements vs x for Ce1'xYbxCoIn5. The
vertical bars correspond to the 90% and 10% values of the
superconducting transitions. Triangles: Tc, determined from
CðTÞ measurements vs x. The solid line shows the suppression
of Tc as reported for other rare earth substitutions [12]. (c) Fit
parameters n!, extracted from power law ! ¼ !0 þ ATn! fits to

the normal-state resistivity vs x. (d) Fit parameters n$, determined

from fits of $c ¼ $cð0Þ þ a=Tn$ to the normal-state $ðTÞ vs x.
The light gray shading represents the region of phase separation.

TABLE I. Superconducting parameters for samples of
Ce1'xYbxCoIn5. The values of Tc have been determined from
specific heat data."C is the jump inCðTÞ atTc, and#ð2:3 KÞ is the
estimated electronic-specific-heat coefficient at 2.3 K.

x Tc "C #ð2:3 KÞ
(K) (mJ=mol K) (mJ=molK2)

0 2.29 3460 357
0.05 2.16 3040 373
0.10 2.09 2240 347
0.125 1.97 1810 332
0.50 1.19 235 330
0.65 283
0.775 140
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∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|

[

(

V1

V1,0

)2

|Φ1(x)|2 −

(

∆2

V2,0

)2

|Φ2(x)|2
]

.

(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.

The authors would like to thank S. Burdin, C. Capan,
Z. Fisk, H. Weber, R. Urbano, and particularly M. Dzero
for discussions related to this work. This research was
supported by National Science Foundation Grant DMR-
0907179.
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∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|

[

(

V1

V1,0

)2

|Φ1(x)|2 −

(

∆2

V2,0

)2

|Φ2(x)|2
]

.

(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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onalized analytically. Upon minimizing the free energy,
we obtain four equations for λ, V1,∆2, and ∆H . Solv-
ing these numerically, and searching the full parameter
space of J2/J1, JH/J1 and T to find both first and sec-
ond order phase transitions, we find four distinct phases:
a light Fermi liquid with free local moments when all pa-
rameters are zero, at high temperatures; a heavy Fermi
liquid when either V1 or ∆2 are finite, with symmetry
Γ, below TKΓ; a spin liquid state decoupled from a light
Fermi liquid when ∆H is finite, below TSL; and a tandem
superconducting ground state with V1, ∆2 and ∆H all fi-
nite, below Tc, as shown in Fig. 2. There is no long range
magnetic order due to our fermionic spin representation.
The superconductivity is stable with respect to the mas-
sive 1/N gauge fluctuations, however, it is an interesting
open question whether the resulting quasiparticle renor-
malizations will generate a spin resonance mode.

FIG. 2: (Color online) The superconducting transition tem-
perature as the amounts of magnetic, JH and second chan-
nel, J2 couplings are varied (Φ1 = 1, Φ2 = cos kx − cos ky and
nc = .75). V1, ∆2 and ∆H are all nonzero everywhere below
Tc. A slice at T = TK1 shows the regions of the spin liquid
and Fermi liquids, and the orange ellipse illustrates how ma-
terials could tune the relative coupling strengths (see Fig. 3).
The transition is first order for JH/J1 > 4.

Experimentally, CeM In5 can be continuously tuned
from M = Co to Rh to Ir[3]. While CeRhIn5 is a
canonical example of a magnetically paired superconduc-
tor, where moderate pressure reveals a superconduct-
ing dome as the Néel temperature vanishes[1], further
pressure[27] or Ir doping on the Rh site[3] leads to a sec-
ond dome, where spin fluctuations are weaker[28]. We
assume that the changing chemical pressure varies the
relative strengths of the Kondo and RKKY couplings,
so that doping traces out a path through the phase di-
agram like the one in Fig. 3, chosen for its similarities
to CeM In5. By maintaining the same Fermi liquid sym-
metry throughout (TK1 > TK2), we are restricted to one
(mostly magnetic) or two (magnetic and tandem) domes.

FIG. 3: (Color online) A possible experimental path through
the phase diagram in Fig 2, chosen for its similarity to the Ce
115 doping phase diagram[3], described by the orange ellipse,
“

J2/J1−0.4
0.2

”2

+
“

JH/J1−0.9
0.16

”2

= 1. The transition tempera-

tures for superconductivity, Tc (solid blue), spin liquid, TSL

(dotted red), and Fermi liquids, TK1 (dashed orange) and
TK2, (dot-dashed white) are also plotted. All temperatures
are scaled by TK1. While our ground state is always super-
conducting, due to the fermionic spin representation, real ma-
terials will be antiferromagnetic for TSL ≫ TK1.

A qualitative understanding of this tandem pairing can
be obtained within a simple Landau expansion. For T ∼
Tc ≪ TK1, Φ ≡ ∆2 and Ψ ≡ ∆H will be small, and the
free energy can be expressed as

F = α1(Tc1 − T )Ψ2 + α2(Tc2 − T )Φ2 + 2γΨΦ

+ β1Ψ
4 + β2Φ

4 + 2βiΨ
2Φ2 (12)

α1,2, β1,2,i and γ are all functions of λ and V1 and can be
calculated exactly in the mean field limit. The linear cou-
pling of the two order parameters, γ = ∂2F/∂∆2∂∆H is
always nonzero in the heavy Fermi liquid because the hy-
bridization, V1 converts one to the other, f †f † ∼ V1c†f †.
The linear coupling enhances the transition temperature,

Tc =
Tc1 + Tc2

2
+

√

(

Tc1 − Tc2

2

)2

+
γ2

α1α2

. (13)

For β1β2 > β2
i , the two order parameters are only weakly

repulsive, leading to smooth crossovers from magnetic to
composite pairing under the superconducting dome[29].

While the development of conventional superconduc-
tivity does not change the underlying charge distribu-
tion, tandem pairing is electrostatically active, as com-
posite pairing redistributes charge, leading to an electric
quadrupole moment. The transition temperature of the
115 superconductors is known to increase linearly with
the lattice c/a ratio[30], conventionally attributed to de-
creasing dimensionality. Our theory suggests an alter-
native interpretation: as the condensate quadrupole mo-
ment, Qzz ∝ Ψ2

C couples linearly to the tetragonal strain,
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†
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∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|

[

(

V1

V1,0

)2

|Φ1(x)|2 −

(

∆2

V2,0

)2

|Φ2(x)|2
]

.

(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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onalized analytically. Upon minimizing the free energy,
we obtain four equations for λ, V1,∆2, and ∆H . Solv-
ing these numerically, and searching the full parameter
space of J2/J1, JH/J1 and T to find both first and sec-
ond order phase transitions, we find four distinct phases:
a light Fermi liquid with free local moments when all pa-
rameters are zero, at high temperatures; a heavy Fermi
liquid when either V1 or ∆2 are finite, with symmetry
Γ, below TKΓ; a spin liquid state decoupled from a light
Fermi liquid when ∆H is finite, below TSL; and a tandem
superconducting ground state with V1, ∆2 and ∆H all fi-
nite, below Tc, as shown in Fig. 2. There is no long range
magnetic order due to our fermionic spin representation.
The superconductivity is stable with respect to the mas-
sive 1/N gauge fluctuations, however, it is an interesting
open question whether the resulting quasiparticle renor-
malizations will generate a spin resonance mode.

FIG. 2: (Color online) The superconducting transition tem-
perature as the amounts of magnetic, JH and second chan-
nel, J2 couplings are varied (Φ1 = 1, Φ2 = cos kx − cos ky and
nc = .75). V1, ∆2 and ∆H are all nonzero everywhere below
Tc. A slice at T = TK1 shows the regions of the spin liquid
and Fermi liquids, and the orange ellipse illustrates how ma-
terials could tune the relative coupling strengths (see Fig. 3).
The transition is first order for JH/J1 > 4.

Experimentally, CeM In5 can be continuously tuned
from M = Co to Rh to Ir[3]. While CeRhIn5 is a
canonical example of a magnetically paired superconduc-
tor, where moderate pressure reveals a superconduct-
ing dome as the Néel temperature vanishes[1], further
pressure[27] or Ir doping on the Rh site[3] leads to a sec-
ond dome, where spin fluctuations are weaker[28]. We
assume that the changing chemical pressure varies the
relative strengths of the Kondo and RKKY couplings,
so that doping traces out a path through the phase di-
agram like the one in Fig. 3, chosen for its similarities
to CeM In5. By maintaining the same Fermi liquid sym-
metry throughout (TK1 > TK2), we are restricted to one
(mostly magnetic) or two (magnetic and tandem) domes.

FIG. 3: (Color online) A possible experimental path through
the phase diagram in Fig 2, chosen for its similarity to the Ce
115 doping phase diagram[3], described by the orange ellipse,
“

J2/J1−0.4
0.2

”2

+
“

JH/J1−0.9
0.16

”2

= 1. The transition tempera-

tures for superconductivity, Tc (solid blue), spin liquid, TSL

(dotted red), and Fermi liquids, TK1 (dashed orange) and
TK2, (dot-dashed white) are also plotted. All temperatures
are scaled by TK1. While our ground state is always super-
conducting, due to the fermionic spin representation, real ma-
terials will be antiferromagnetic for TSL ≫ TK1.

A qualitative understanding of this tandem pairing can
be obtained within a simple Landau expansion. For T ∼
Tc ≪ TK1, Φ ≡ ∆2 and Ψ ≡ ∆H will be small, and the
free energy can be expressed as

F = α1(Tc1 − T )Ψ2 + α2(Tc2 − T )Φ2 + 2γΨΦ

+ β1Ψ
4 + β2Φ

4 + 2βiΨ
2Φ2 (12)

α1,2, β1,2,i and γ are all functions of λ and V1 and can be
calculated exactly in the mean field limit. The linear cou-
pling of the two order parameters, γ = ∂2F/∂∆2∂∆H is
always nonzero in the heavy Fermi liquid because the hy-
bridization, V1 converts one to the other, f †f † ∼ V1c†f †.
The linear coupling enhances the transition temperature,

Tc =
Tc1 + Tc2

2
+

√

(

Tc1 − Tc2

2

)2

+
γ2

α1α2

. (13)

For β1β2 > β2
i , the two order parameters are only weakly

repulsive, leading to smooth crossovers from magnetic to
composite pairing under the superconducting dome[29].

While the development of conventional superconduc-
tivity does not change the underlying charge distribu-
tion, tandem pairing is electrostatically active, as com-
posite pairing redistributes charge, leading to an electric
quadrupole moment. The transition temperature of the
115 superconductors is known to increase linearly with
the lattice c/a ratio[30], conventionally attributed to de-
creasing dimensionality. Our theory suggests an alter-
native interpretation: as the condensate quadrupole mo-
ment, Qzz ∝ Ψ2

C couples linearly to the tetragonal strain,

4

∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|

[

(

V1

V1,0

)2

|Φ1(x)|2 −

(

∆2

V2,0

)2

|Φ2(x)|2
]

.

(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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supported by National Science Foundation Grant DMR-
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∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:
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[
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V1,0
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|Φ1(x)|2 −

(
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]
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(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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onalized analytically. Upon minimizing the free energy,
we obtain four equations for λ, V1,∆2, and ∆H . Solv-
ing these numerically, and searching the full parameter
space of J2/J1, JH/J1 and T to find both first and sec-
ond order phase transitions, we find four distinct phases:
a light Fermi liquid with free local moments when all pa-
rameters are zero, at high temperatures; a heavy Fermi
liquid when either V1 or ∆2 are finite, with symmetry
Γ, below TKΓ; a spin liquid state decoupled from a light
Fermi liquid when ∆H is finite, below TSL; and a tandem
superconducting ground state with V1, ∆2 and ∆H all fi-
nite, below Tc, as shown in Fig. 2. There is no long range
magnetic order due to our fermionic spin representation.
The superconductivity is stable with respect to the mas-
sive 1/N gauge fluctuations, however, it is an interesting
open question whether the resulting quasiparticle renor-
malizations will generate a spin resonance mode.

FIG. 2: (Color online) The superconducting transition tem-
perature as the amounts of magnetic, JH and second chan-
nel, J2 couplings are varied (Φ1 = 1, Φ2 = cos kx − cos ky and
nc = .75). V1, ∆2 and ∆H are all nonzero everywhere below
Tc. A slice at T = TK1 shows the regions of the spin liquid
and Fermi liquids, and the orange ellipse illustrates how ma-
terials could tune the relative coupling strengths (see Fig. 3).
The transition is first order for JH/J1 > 4.

Experimentally, CeM In5 can be continuously tuned
from M = Co to Rh to Ir[3]. While CeRhIn5 is a
canonical example of a magnetically paired superconduc-
tor, where moderate pressure reveals a superconduct-
ing dome as the Néel temperature vanishes[1], further
pressure[27] or Ir doping on the Rh site[3] leads to a sec-
ond dome, where spin fluctuations are weaker[28]. We
assume that the changing chemical pressure varies the
relative strengths of the Kondo and RKKY couplings,
so that doping traces out a path through the phase di-
agram like the one in Fig. 3, chosen for its similarities
to CeM In5. By maintaining the same Fermi liquid sym-
metry throughout (TK1 > TK2), we are restricted to one
(mostly magnetic) or two (magnetic and tandem) domes.

FIG. 3: (Color online) A possible experimental path through
the phase diagram in Fig 2, chosen for its similarity to the Ce
115 doping phase diagram[3], described by the orange ellipse,
“

J2/J1−0.4
0.2

”2

+
“

JH/J1−0.9
0.16

”2

= 1. The transition tempera-

tures for superconductivity, Tc (solid blue), spin liquid, TSL

(dotted red), and Fermi liquids, TK1 (dashed orange) and
TK2, (dot-dashed white) are also plotted. All temperatures
are scaled by TK1. While our ground state is always super-
conducting, due to the fermionic spin representation, real ma-
terials will be antiferromagnetic for TSL ≫ TK1.

A qualitative understanding of this tandem pairing can
be obtained within a simple Landau expansion. For T ∼
Tc ≪ TK1, Φ ≡ ∆2 and Ψ ≡ ∆H will be small, and the
free energy can be expressed as

F = α1(Tc1 − T )Ψ2 + α2(Tc2 − T )Φ2 + 2γΨΦ

+ β1Ψ
4 + β2Φ

4 + 2βiΨ
2Φ2 (12)

α1,2, β1,2,i and γ are all functions of λ and V1 and can be
calculated exactly in the mean field limit. The linear cou-
pling of the two order parameters, γ = ∂2F/∂∆2∂∆H is
always nonzero in the heavy Fermi liquid because the hy-
bridization, V1 converts one to the other, f †f † ∼ V1c†f †.
The linear coupling enhances the transition temperature,

Tc =
Tc1 + Tc2

2
+

√

(

Tc1 − Tc2

2

)2

+
γ2

α1α2

. (13)

For β1β2 > β2
i , the two order parameters are only weakly

repulsive, leading to smooth crossovers from magnetic to
composite pairing under the superconducting dome[29].

While the development of conventional superconduc-
tivity does not change the underlying charge distribu-
tion, tandem pairing is electrostatically active, as com-
posite pairing redistributes charge, leading to an electric
quadrupole moment. The transition temperature of the
115 superconductors is known to increase linearly with
the lattice c/a ratio[30], conventionally attributed to de-
creasing dimensionality. Our theory suggests an alter-
native interpretation: as the condensate quadrupole mo-
ment, Qzz ∝ Ψ2

C couples linearly to the tetragonal strain,

4

∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|

[

(

V1

V1,0

)2

|Φ1(x)|2 −

(

∆2

V2,0

)2

|Φ2(x)|2
]

.

(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|
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V1

V1,0

)2

|Φ1(x)|2 −
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∆2

V2,0

)2

|Φ2(x)|2
]
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(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
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tions and ∆EΓ are the charge excitation energies. With
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For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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onalized analytically. Upon minimizing the free energy,
we obtain four equations for λ, V1,∆2, and ∆H . Solv-
ing these numerically, and searching the full parameter
space of J2/J1, JH/J1 and T to find both first and sec-
ond order phase transitions, we find four distinct phases:
a light Fermi liquid with free local moments when all pa-
rameters are zero, at high temperatures; a heavy Fermi
liquid when either V1 or ∆2 are finite, with symmetry
Γ, below TKΓ; a spin liquid state decoupled from a light
Fermi liquid when ∆H is finite, below TSL; and a tandem
superconducting ground state with V1, ∆2 and ∆H all fi-
nite, below Tc, as shown in Fig. 2. There is no long range
magnetic order due to our fermionic spin representation.
The superconductivity is stable with respect to the mas-
sive 1/N gauge fluctuations, however, it is an interesting
open question whether the resulting quasiparticle renor-
malizations will generate a spin resonance mode.

FIG. 2: (Color online) The superconducting transition tem-
perature as the amounts of magnetic, JH and second chan-
nel, J2 couplings are varied (Φ1 = 1, Φ2 = cos kx − cos ky and
nc = .75). V1, ∆2 and ∆H are all nonzero everywhere below
Tc. A slice at T = TK1 shows the regions of the spin liquid
and Fermi liquids, and the orange ellipse illustrates how ma-
terials could tune the relative coupling strengths (see Fig. 3).
The transition is first order for JH/J1 > 4.

Experimentally, CeM In5 can be continuously tuned
from M = Co to Rh to Ir[3]. While CeRhIn5 is a
canonical example of a magnetically paired superconduc-
tor, where moderate pressure reveals a superconduct-
ing dome as the Néel temperature vanishes[1], further
pressure[27] or Ir doping on the Rh site[3] leads to a sec-
ond dome, where spin fluctuations are weaker[28]. We
assume that the changing chemical pressure varies the
relative strengths of the Kondo and RKKY couplings,
so that doping traces out a path through the phase di-
agram like the one in Fig. 3, chosen for its similarities
to CeM In5. By maintaining the same Fermi liquid sym-
metry throughout (TK1 > TK2), we are restricted to one
(mostly magnetic) or two (magnetic and tandem) domes.

FIG. 3: (Color online) A possible experimental path through
the phase diagram in Fig 2, chosen for its similarity to the Ce
115 doping phase diagram[3], described by the orange ellipse,
“

J2/J1−0.4
0.2

”2

+
“

JH/J1−0.9
0.16

”2

= 1. The transition tempera-

tures for superconductivity, Tc (solid blue), spin liquid, TSL

(dotted red), and Fermi liquids, TK1 (dashed orange) and
TK2, (dot-dashed white) are also plotted. All temperatures
are scaled by TK1. While our ground state is always super-
conducting, due to the fermionic spin representation, real ma-
terials will be antiferromagnetic for TSL ≫ TK1.

A qualitative understanding of this tandem pairing can
be obtained within a simple Landau expansion. For T ∼
Tc ≪ TK1, Φ ≡ ∆2 and Ψ ≡ ∆H will be small, and the
free energy can be expressed as

F = α1(Tc1 − T )Ψ2 + α2(Tc2 − T )Φ2 + 2γΨΦ

+ β1Ψ
4 + β2Φ

4 + 2βiΨ
2Φ2 (12)

α1,2, β1,2,i and γ are all functions of λ and V1 and can be
calculated exactly in the mean field limit. The linear cou-
pling of the two order parameters, γ = ∂2F/∂∆2∂∆H is
always nonzero in the heavy Fermi liquid because the hy-
bridization, V1 converts one to the other, f †f † ∼ V1c†f †.
The linear coupling enhances the transition temperature,

Tc =
Tc1 + Tc2

2
+

√

(

Tc1 − Tc2

2

)2

+
γ2

α1α2

. (13)

For β1β2 > β2
i , the two order parameters are only weakly

repulsive, leading to smooth crossovers from magnetic to
composite pairing under the superconducting dome[29].

While the development of conventional superconduc-
tivity does not change the underlying charge distribu-
tion, tandem pairing is electrostatically active, as com-
posite pairing redistributes charge, leading to an electric
quadrupole moment. The transition temperature of the
115 superconductors is known to increase linearly with
the lattice c/a ratio[30], conventionally attributed to de-
creasing dimensionality. Our theory suggests an alter-
native interpretation: as the condensate quadrupole mo-
ment, Qzz ∝ Ψ2

C couples linearly to the tetragonal strain,

4

∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|

[

(

V1

V1,0

)2

|Φ1(x)|2 −

(

∆2

V2,0

)2

|Φ2(x)|2
]

.

(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
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tions and ∆EΓ are the charge excitation energies. With
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For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.

The authors would like to thank S. Burdin, C. Capan,
Z. Fisk, H. Weber, R. Urbano, and particularly M. Dzero
for discussions related to this work. This research was
supported by National Science Foundation Grant DMR-
0907179.

[1] H. Hegger et al, Phys. Rev. Lett. 84, 4986(2000).
[2] C. Petrovic et al., J. Phys.: Condens. Matter 13,

L337(2001).
[3] J.L. Sarrao & J. D. Thompson, J. Phys. Soc. Jap. 76,

051013(2007).
[4] J. L. Sarrao et al., Nature (London) 420, 297-299 (2002).
[5] N. Mathur et al, Nature 394, 39 (1998).
[6] K. Miyake, S. Schmitt-Rink & C. M. Varma, Phys. Rev.

B 34, 6554 (1986).
[7] D. J. Scalapino, E. Loh and J. E. Hirsch,Phys. Rev. B,

34, 8190-8192, (1986).
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4f/5f superconductors
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onalized analytically. Upon minimizing the free energy,
we obtain four equations for λ, V1,∆2, and ∆H . Solv-
ing these numerically, and searching the full parameter
space of J2/J1, JH/J1 and T to find both first and sec-
ond order phase transitions, we find four distinct phases:
a light Fermi liquid with free local moments when all pa-
rameters are zero, at high temperatures; a heavy Fermi
liquid when either V1 or ∆2 are finite, with symmetry
Γ, below TKΓ; a spin liquid state decoupled from a light
Fermi liquid when ∆H is finite, below TSL; and a tandem
superconducting ground state with V1, ∆2 and ∆H all fi-
nite, below Tc, as shown in Fig. 2. There is no long range
magnetic order due to our fermionic spin representation.
The superconductivity is stable with respect to the mas-
sive 1/N gauge fluctuations, however, it is an interesting
open question whether the resulting quasiparticle renor-
malizations will generate a spin resonance mode.

FIG. 2: (Color online) The superconducting transition tem-
perature as the amounts of magnetic, JH and second chan-
nel, J2 couplings are varied (Φ1 = 1, Φ2 = cos kx − cos ky and
nc = .75). V1, ∆2 and ∆H are all nonzero everywhere below
Tc. A slice at T = TK1 shows the regions of the spin liquid
and Fermi liquids, and the orange ellipse illustrates how ma-
terials could tune the relative coupling strengths (see Fig. 3).
The transition is first order for JH/J1 > 4.

Experimentally, CeM In5 can be continuously tuned
from M = Co to Rh to Ir[3]. While CeRhIn5 is a
canonical example of a magnetically paired superconduc-
tor, where moderate pressure reveals a superconduct-
ing dome as the Néel temperature vanishes[1], further
pressure[27] or Ir doping on the Rh site[3] leads to a sec-
ond dome, where spin fluctuations are weaker[28]. We
assume that the changing chemical pressure varies the
relative strengths of the Kondo and RKKY couplings,
so that doping traces out a path through the phase di-
agram like the one in Fig. 3, chosen for its similarities
to CeM In5. By maintaining the same Fermi liquid sym-
metry throughout (TK1 > TK2), we are restricted to one
(mostly magnetic) or two (magnetic and tandem) domes.

FIG. 3: (Color online) A possible experimental path through
the phase diagram in Fig 2, chosen for its similarity to the Ce
115 doping phase diagram[3], described by the orange ellipse,
“

J2/J1−0.4
0.2

”2

+
“

JH/J1−0.9
0.16

”2

= 1. The transition tempera-

tures for superconductivity, Tc (solid blue), spin liquid, TSL

(dotted red), and Fermi liquids, TK1 (dashed orange) and
TK2, (dot-dashed white) are also plotted. All temperatures
are scaled by TK1. While our ground state is always super-
conducting, due to the fermionic spin representation, real ma-
terials will be antiferromagnetic for TSL ≫ TK1.

A qualitative understanding of this tandem pairing can
be obtained within a simple Landau expansion. For T ∼
Tc ≪ TK1, Φ ≡ ∆2 and Ψ ≡ ∆H will be small, and the
free energy can be expressed as

F = α1(Tc1 − T )Ψ2 + α2(Tc2 − T )Φ2 + 2γΨΦ

+ β1Ψ
4 + β2Φ

4 + 2βiΨ
2Φ2 (12)

α1,2, β1,2,i and γ are all functions of λ and V1 and can be
calculated exactly in the mean field limit. The linear cou-
pling of the two order parameters, γ = ∂2F/∂∆2∂∆H is
always nonzero in the heavy Fermi liquid because the hy-
bridization, V1 converts one to the other, f †f † ∼ V1c†f †.
The linear coupling enhances the transition temperature,

Tc =
Tc1 + Tc2

2
+

√

(

Tc1 − Tc2

2

)2

+
γ2

α1α2

. (13)

For β1β2 > β2
i , the two order parameters are only weakly

repulsive, leading to smooth crossovers from magnetic to
composite pairing under the superconducting dome[29].

While the development of conventional superconduc-
tivity does not change the underlying charge distribu-
tion, tandem pairing is electrostatically active, as com-
posite pairing redistributes charge, leading to an electric
quadrupole moment. The transition temperature of the
115 superconductors is known to increase linearly with
the lattice c/a ratio[30], conventionally attributed to de-
creasing dimensionality. Our theory suggests an alter-
native interpretation: as the condensate quadrupole mo-
ment, Qzz ∝ Ψ2

C couples linearly to the tetragonal strain,

4

∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|

[

(

V1

V1,0

)2

|Φ1(x)|2 −

(

∆2

V2,0

)2

|Φ2(x)|2
]

.

(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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resonance (NQR) frequency at the surrounding nuclei.
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effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
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and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).
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trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|

[
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V1,0
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|Φ1(x)|2 −
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(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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onalized analytically. Upon minimizing the free energy,
we obtain four equations for λ, V1,∆2, and ∆H . Solv-
ing these numerically, and searching the full parameter
space of J2/J1, JH/J1 and T to find both first and sec-
ond order phase transitions, we find four distinct phases:
a light Fermi liquid with free local moments when all pa-
rameters are zero, at high temperatures; a heavy Fermi
liquid when either V1 or ∆2 are finite, with symmetry
Γ, below TKΓ; a spin liquid state decoupled from a light
Fermi liquid when ∆H is finite, below TSL; and a tandem
superconducting ground state with V1, ∆2 and ∆H all fi-
nite, below Tc, as shown in Fig. 2. There is no long range
magnetic order due to our fermionic spin representation.
The superconductivity is stable with respect to the mas-
sive 1/N gauge fluctuations, however, it is an interesting
open question whether the resulting quasiparticle renor-
malizations will generate a spin resonance mode.

FIG. 2: (Color online) The superconducting transition tem-
perature as the amounts of magnetic, JH and second chan-
nel, J2 couplings are varied (Φ1 = 1, Φ2 = cos kx − cos ky and
nc = .75). V1, ∆2 and ∆H are all nonzero everywhere below
Tc. A slice at T = TK1 shows the regions of the spin liquid
and Fermi liquids, and the orange ellipse illustrates how ma-
terials could tune the relative coupling strengths (see Fig. 3).
The transition is first order for JH/J1 > 4.

Experimentally, CeM In5 can be continuously tuned
from M = Co to Rh to Ir[3]. While CeRhIn5 is a
canonical example of a magnetically paired superconduc-
tor, where moderate pressure reveals a superconduct-
ing dome as the Néel temperature vanishes[1], further
pressure[27] or Ir doping on the Rh site[3] leads to a sec-
ond dome, where spin fluctuations are weaker[28]. We
assume that the changing chemical pressure varies the
relative strengths of the Kondo and RKKY couplings,
so that doping traces out a path through the phase di-
agram like the one in Fig. 3, chosen for its similarities
to CeM In5. By maintaining the same Fermi liquid sym-
metry throughout (TK1 > TK2), we are restricted to one
(mostly magnetic) or two (magnetic and tandem) domes.

FIG. 3: (Color online) A possible experimental path through
the phase diagram in Fig 2, chosen for its similarity to the Ce
115 doping phase diagram[3], described by the orange ellipse,
“

J2/J1−0.4
0.2

”2

+
“

JH/J1−0.9
0.16

”2

= 1. The transition tempera-

tures for superconductivity, Tc (solid blue), spin liquid, TSL

(dotted red), and Fermi liquids, TK1 (dashed orange) and
TK2, (dot-dashed white) are also plotted. All temperatures
are scaled by TK1. While our ground state is always super-
conducting, due to the fermionic spin representation, real ma-
terials will be antiferromagnetic for TSL ≫ TK1.

A qualitative understanding of this tandem pairing can
be obtained within a simple Landau expansion. For T ∼
Tc ≪ TK1, Φ ≡ ∆2 and Ψ ≡ ∆H will be small, and the
free energy can be expressed as

F = α1(Tc1 − T )Ψ2 + α2(Tc2 − T )Φ2 + 2γΨΦ

+ β1Ψ
4 + β2Φ

4 + 2βiΨ
2Φ2 (12)

α1,2, β1,2,i and γ are all functions of λ and V1 and can be
calculated exactly in the mean field limit. The linear cou-
pling of the two order parameters, γ = ∂2F/∂∆2∂∆H is
always nonzero in the heavy Fermi liquid because the hy-
bridization, V1 converts one to the other, f †f † ∼ V1c†f †.
The linear coupling enhances the transition temperature,

Tc =
Tc1 + Tc2

2
+

√

(

Tc1 − Tc2

2

)2

+
γ2

α1α2

. (13)

For β1β2 > β2
i , the two order parameters are only weakly

repulsive, leading to smooth crossovers from magnetic to
composite pairing under the superconducting dome[29].

While the development of conventional superconduc-
tivity does not change the underlying charge distribu-
tion, tandem pairing is electrostatically active, as com-
posite pairing redistributes charge, leading to an electric
quadrupole moment. The transition temperature of the
115 superconductors is known to increase linearly with
the lattice c/a ratio[30], conventionally attributed to de-
creasing dimensionality. Our theory suggests an alter-
native interpretation: as the condensate quadrupole mo-
ment, Qzz ∝ Ψ2

C couples linearly to the tetragonal strain,

4

∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|

[

(

V1

V1,0

)2

|Φ1(x)|2 −

(

∆2

V2,0

)2

|Φ2(x)|2
]

.

(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.

The authors would like to thank S. Burdin, C. Capan,
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∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1
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(11) with respect to δµ(x), the change in ρ(x) will be:
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For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|

[

(

V1

V1,0

)2

|Φ1(x)|2 −

(

∆2

V2,0

)2

|Φ2(x)|2
]

.

(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
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tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1
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The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-
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For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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onalized analytically. Upon minimizing the free energy,
we obtain four equations for λ, V1,∆2, and ∆H . Solv-
ing these numerically, and searching the full parameter
space of J2/J1, JH/J1 and T to find both first and sec-
ond order phase transitions, we find four distinct phases:
a light Fermi liquid with free local moments when all pa-
rameters are zero, at high temperatures; a heavy Fermi
liquid when either V1 or ∆2 are finite, with symmetry
Γ, below TKΓ; a spin liquid state decoupled from a light
Fermi liquid when ∆H is finite, below TSL; and a tandem
superconducting ground state with V1, ∆2 and ∆H all fi-
nite, below Tc, as shown in Fig. 2. There is no long range
magnetic order due to our fermionic spin representation.
The superconductivity is stable with respect to the mas-
sive 1/N gauge fluctuations, however, it is an interesting
open question whether the resulting quasiparticle renor-
malizations will generate a spin resonance mode.

FIG. 2: (Color online) The superconducting transition tem-
perature as the amounts of magnetic, JH and second chan-
nel, J2 couplings are varied (Φ1 = 1, Φ2 = cos kx − cos ky and
nc = .75). V1, ∆2 and ∆H are all nonzero everywhere below
Tc. A slice at T = TK1 shows the regions of the spin liquid
and Fermi liquids, and the orange ellipse illustrates how ma-
terials could tune the relative coupling strengths (see Fig. 3).
The transition is first order for JH/J1 > 4.

Experimentally, CeM In5 can be continuously tuned
from M = Co to Rh to Ir[3]. While CeRhIn5 is a
canonical example of a magnetically paired superconduc-
tor, where moderate pressure reveals a superconduct-
ing dome as the Néel temperature vanishes[1], further
pressure[27] or Ir doping on the Rh site[3] leads to a sec-
ond dome, where spin fluctuations are weaker[28]. We
assume that the changing chemical pressure varies the
relative strengths of the Kondo and RKKY couplings,
so that doping traces out a path through the phase di-
agram like the one in Fig. 3, chosen for its similarities
to CeM In5. By maintaining the same Fermi liquid sym-
metry throughout (TK1 > TK2), we are restricted to one
(mostly magnetic) or two (magnetic and tandem) domes.

FIG. 3: (Color online) A possible experimental path through
the phase diagram in Fig 2, chosen for its similarity to the Ce
115 doping phase diagram[3], described by the orange ellipse,
“

J2/J1−0.4
0.2

”2

+
“

JH/J1−0.9
0.16

”2

= 1. The transition tempera-

tures for superconductivity, Tc (solid blue), spin liquid, TSL

(dotted red), and Fermi liquids, TK1 (dashed orange) and
TK2, (dot-dashed white) are also plotted. All temperatures
are scaled by TK1. While our ground state is always super-
conducting, due to the fermionic spin representation, real ma-
terials will be antiferromagnetic for TSL ≫ TK1.

A qualitative understanding of this tandem pairing can
be obtained within a simple Landau expansion. For T ∼
Tc ≪ TK1, Φ ≡ ∆2 and Ψ ≡ ∆H will be small, and the
free energy can be expressed as

F = α1(Tc1 − T )Ψ2 + α2(Tc2 − T )Φ2 + 2γΨΦ

+ β1Ψ
4 + β2Φ

4 + 2βiΨ
2Φ2 (12)

α1,2, β1,2,i and γ are all functions of λ and V1 and can be
calculated exactly in the mean field limit. The linear cou-
pling of the two order parameters, γ = ∂2F/∂∆2∂∆H is
always nonzero in the heavy Fermi liquid because the hy-
bridization, V1 converts one to the other, f †f † ∼ V1c†f †.
The linear coupling enhances the transition temperature,

Tc =
Tc1 + Tc2

2
+

√

(

Tc1 − Tc2

2

)2

+
γ2

α1α2

. (13)

For β1β2 > β2
i , the two order parameters are only weakly

repulsive, leading to smooth crossovers from magnetic to
composite pairing under the superconducting dome[29].

While the development of conventional superconduc-
tivity does not change the underlying charge distribu-
tion, tandem pairing is electrostatically active, as com-
posite pairing redistributes charge, leading to an electric
quadrupole moment. The transition temperature of the
115 superconductors is known to increase linearly with
the lattice c/a ratio[30], conventionally attributed to de-
creasing dimensionality. Our theory suggests an alter-
native interpretation: as the condensate quadrupole mo-
ment, Qzz ∝ Ψ2

C couples linearly to the tetragonal strain,
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∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|

[

(

V1

V1,0

)2

|Φ1(x)|2 −

(

∆2

V2,0

)2

|Φ2(x)|2
]

.

(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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onalized analytically. Upon minimizing the free energy,
we obtain four equations for λ, V1,∆2, and ∆H . Solv-
ing these numerically, and searching the full parameter
space of J2/J1, JH/J1 and T to find both first and sec-
ond order phase transitions, we find four distinct phases:
a light Fermi liquid with free local moments when all pa-
rameters are zero, at high temperatures; a heavy Fermi
liquid when either V1 or ∆2 are finite, with symmetry
Γ, below TKΓ; a spin liquid state decoupled from a light
Fermi liquid when ∆H is finite, below TSL; and a tandem
superconducting ground state with V1, ∆2 and ∆H all fi-
nite, below Tc, as shown in Fig. 2. There is no long range
magnetic order due to our fermionic spin representation.
The superconductivity is stable with respect to the mas-
sive 1/N gauge fluctuations, however, it is an interesting
open question whether the resulting quasiparticle renor-
malizations will generate a spin resonance mode.

FIG. 2: (Color online) The superconducting transition tem-
perature as the amounts of magnetic, JH and second chan-
nel, J2 couplings are varied (Φ1 = 1, Φ2 = cos kx − cos ky and
nc = .75). V1, ∆2 and ∆H are all nonzero everywhere below
Tc. A slice at T = TK1 shows the regions of the spin liquid
and Fermi liquids, and the orange ellipse illustrates how ma-
terials could tune the relative coupling strengths (see Fig. 3).
The transition is first order for JH/J1 > 4.

Experimentally, CeM In5 can be continuously tuned
from M = Co to Rh to Ir[3]. While CeRhIn5 is a
canonical example of a magnetically paired superconduc-
tor, where moderate pressure reveals a superconduct-
ing dome as the Néel temperature vanishes[1], further
pressure[27] or Ir doping on the Rh site[3] leads to a sec-
ond dome, where spin fluctuations are weaker[28]. We
assume that the changing chemical pressure varies the
relative strengths of the Kondo and RKKY couplings,
so that doping traces out a path through the phase di-
agram like the one in Fig. 3, chosen for its similarities
to CeM In5. By maintaining the same Fermi liquid sym-
metry throughout (TK1 > TK2), we are restricted to one
(mostly magnetic) or two (magnetic and tandem) domes.

FIG. 3: (Color online) A possible experimental path through
the phase diagram in Fig 2, chosen for its similarity to the Ce
115 doping phase diagram[3], described by the orange ellipse,
“

J2/J1−0.4
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+
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JH/J1−0.9
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= 1. The transition tempera-

tures for superconductivity, Tc (solid blue), spin liquid, TSL

(dotted red), and Fermi liquids, TK1 (dashed orange) and
TK2, (dot-dashed white) are also plotted. All temperatures
are scaled by TK1. While our ground state is always super-
conducting, due to the fermionic spin representation, real ma-
terials will be antiferromagnetic for TSL ≫ TK1.

A qualitative understanding of this tandem pairing can
be obtained within a simple Landau expansion. For T ∼
Tc ≪ TK1, Φ ≡ ∆2 and Ψ ≡ ∆H will be small, and the
free energy can be expressed as

F = α1(Tc1 − T )Ψ2 + α2(Tc2 − T )Φ2 + 2γΨΦ

+ β1Ψ
4 + β2Φ

4 + 2βiΨ
2Φ2 (12)

α1,2, β1,2,i and γ are all functions of λ and V1 and can be
calculated exactly in the mean field limit. The linear cou-
pling of the two order parameters, γ = ∂2F/∂∆2∂∆H is
always nonzero in the heavy Fermi liquid because the hy-
bridization, V1 converts one to the other, f †f † ∼ V1c†f †.
The linear coupling enhances the transition temperature,

Tc =
Tc1 + Tc2

2
+

√
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Tc1 − Tc2

2

)2

+
γ2

α1α2

. (13)

For β1β2 > β2
i , the two order parameters are only weakly

repulsive, leading to smooth crossovers from magnetic to
composite pairing under the superconducting dome[29].

While the development of conventional superconduc-
tivity does not change the underlying charge distribu-
tion, tandem pairing is electrostatically active, as com-
posite pairing redistributes charge, leading to an electric
quadrupole moment. The transition temperature of the
115 superconductors is known to increase linearly with
the lattice c/a ratio[30], conventionally attributed to de-
creasing dimensionality. Our theory suggests an alter-
native interpretation: as the condensate quadrupole mo-
ment, Qzz ∝ Ψ2

C couples linearly to the tetragonal strain,

T/Tc

-Δν
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∆F ∝ −Qzzutet, the second term in the Landau free en-
ergy (12) becomes α2[T − (Tc2 +λutet)]Ψ2

C , naturally ac-
counting for the linear increase in Tc. This effect should
also be detectable as a shift of the nuclear quadrupole
resonance (NQR) frequency at the surrounding nuclei.

The link between f-electron valence and the Kondo
effect is well established[31], but tandem pairing intro-
duces a new element to this relationship. Changes in the
charge distribution around the Kondo ion can be read off
from its coupling to the changes in the chemical poten-
tial, ∆ρ(x) = |e|δH/δµ(x). The sensitivity of the Kondo
couplings to µ is obtained from a Schrieffer-Wolff trans-
formation of a two-channel Anderson model, which gives
J−1

Γ
= ∆EΓ/V 2

Γ,0. Here, VΓ,0 are the bare hybridiza-
tions and ∆EΓ are the charge excitation energies. With
a shift in µ → µ + δµ(x), δJ−1

Γ
= ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0.
The sign is positive for J1 and negative for J2 because
they involve fluctuations to the empty and doubly occu-

pied states, respectively: f0
Γ1

! f1
Γ2

! f2. Differentiating
(11) with respect to δµ(x), the change in ρ(x) will be:

∆ρ(x) = |e|

[

(

V1

V1,0

)2

|Φ1(x)|2 −

(

∆2

V2,0

)2

|Φ2(x)|2
]

.

(14)
For equal channel strengths, the total charge is constant,
and the f-ion will develop equal hole densities in Γ+

7 and
electron densities in Γ6, leading to a positive change in
the electric field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the
in-plane In site that will appear as a shift in the NQR
frequencies growing abruptly below Tc (see Figure 4).

FIG. 4: (Color online) As superconductivity develops, the in-
creasing occupations of the empty and doubly occupied states
cause holes to build up with symmetry Γ+

7 (orange) and elec-
trons with symmetry Γ6 (blue). The resulting electric fields
are shown along the [110] direction (dashed line in inset). The
inset shows the locations of the indiums in-, In(1) and out-
of-plane, In(2). The electric field gradient, ∂Ez/∂z > 0 at
the In(1) site will lead to a sharp positive shift in the NQR
frequency at Tc.

The f-electron valence should also contain a small
superconducting shift, observable with core-level X-ray
spectroscopy, obtained by integrating (14): ∆nf (T ) ∝
Ψ2

C ∝ (Tc − T ), as ΨC ∝ ∆2 when J1 > J2. While the

development of Kondo screening leads to a gradual va-
lence decrease through TK , as it is a crossover scale, the
development of superconductivity is a phase transition,
leading to a sharp mean-field increase. Observation of
sharp shifts at Tc in either the NQR frequency or the va-
lence would constitute an unambiguous confirmation of
the electrostatically active tandem condensate.
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onalized analytically. Upon minimizing the free energy,
we obtain four equations for λ, V1,∆2, and ∆H . Solv-
ing these numerically, and searching the full parameter
space of J2/J1, JH/J1 and T to find both first and sec-
ond order phase transitions, we find four distinct phases:
a light Fermi liquid with free local moments when all pa-
rameters are zero, at high temperatures; a heavy Fermi
liquid when either V1 or ∆2 are finite, with symmetry
Γ, below TKΓ; a spin liquid state decoupled from a light
Fermi liquid when ∆H is finite, below TSL; and a tandem
superconducting ground state with V1, ∆2 and ∆H all fi-
nite, below Tc, as shown in Fig. 2. There is no long range
magnetic order due to our fermionic spin representation.
The superconductivity is stable with respect to the mas-
sive 1/N gauge fluctuations, however, it is an interesting
open question whether the resulting quasiparticle renor-
malizations will generate a spin resonance mode.

FIG. 2: (Color online) The superconducting transition tem-
perature as the amounts of magnetic, JH and second chan-
nel, J2 couplings are varied (Φ1 = 1, Φ2 = cos kx − cos ky and
nc = .75). V1, ∆2 and ∆H are all nonzero everywhere below
Tc. A slice at T = TK1 shows the regions of the spin liquid
and Fermi liquids, and the orange ellipse illustrates how ma-
terials could tune the relative coupling strengths (see Fig. 3).
The transition is first order for JH/J1 > 4.

Experimentally, CeM In5 can be continuously tuned
from M = Co to Rh to Ir[3]. While CeRhIn5 is a
canonical example of a magnetically paired superconduc-
tor, where moderate pressure reveals a superconduct-
ing dome as the Néel temperature vanishes[1], further
pressure[27] or Ir doping on the Rh site[3] leads to a sec-
ond dome, where spin fluctuations are weaker[28]. We
assume that the changing chemical pressure varies the
relative strengths of the Kondo and RKKY couplings,
so that doping traces out a path through the phase di-
agram like the one in Fig. 3, chosen for its similarities
to CeM In5. By maintaining the same Fermi liquid sym-
metry throughout (TK1 > TK2), we are restricted to one
(mostly magnetic) or two (magnetic and tandem) domes.

FIG. 3: (Color online) A possible experimental path through
the phase diagram in Fig 2, chosen for its similarity to the Ce
115 doping phase diagram[3], described by the orange ellipse,
“

J2/J1−0.4
0.2

”2

+
“

JH/J1−0.9
0.16

”2

= 1. The transition tempera-

tures for superconductivity, Tc (solid blue), spin liquid, TSL

(dotted red), and Fermi liquids, TK1 (dashed orange) and
TK2, (dot-dashed white) are also plotted. All temperatures
are scaled by TK1. While our ground state is always super-
conducting, due to the fermionic spin representation, real ma-
terials will be antiferromagnetic for TSL ≫ TK1.

A qualitative understanding of this tandem pairing can
be obtained within a simple Landau expansion. For T ∼
Tc ≪ TK1, Φ ≡ ∆2 and Ψ ≡ ∆H will be small, and the
free energy can be expressed as

F = α1(Tc1 − T )Ψ2 + α2(Tc2 − T )Φ2 + 2γΨΦ

+ β1Ψ
4 + β2Φ

4 + 2βiΨ
2Φ2 (12)

α1,2, β1,2,i and γ are all functions of λ and V1 and can be
calculated exactly in the mean field limit. The linear cou-
pling of the two order parameters, γ = ∂2F/∂∆2∂∆H is
always nonzero in the heavy Fermi liquid because the hy-
bridization, V1 converts one to the other, f †f † ∼ V1c†f †.
The linear coupling enhances the transition temperature,

Tc =
Tc1 + Tc2

2
+

√

(

Tc1 − Tc2

2

)2

+
γ2

α1α2

. (13)

For β1β2 > β2
i , the two order parameters are only weakly

repulsive, leading to smooth crossovers from magnetic to
composite pairing under the superconducting dome[29].

While the development of conventional superconduc-
tivity does not change the underlying charge distribu-
tion, tandem pairing is electrostatically active, as com-
posite pairing redistributes charge, leading to an electric
quadrupole moment. The transition temperature of the
115 superconductors is known to increase linearly with
the lattice c/a ratio[30], conventionally attributed to de-
creasing dimensionality. Our theory suggests an alter-
native interpretation: as the condensate quadrupole mo-
ment, Qzz ∝ Ψ2

C couples linearly to the tetragonal strain,Bauer, G. Koutroulakis Yasuoko,(2014)
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FIG. 3: Temperature-dependent London penetration depth of (a) La and Nd and (b) Yb substituted substituted CeCoIn5,
plotted vs normalized (T/T

c

)2 scale. The dependence in pure material S1 shows clear downturn consistent with n = 1.2 < 2. The
data for La and Nd doped samples for all doping levels follow closely T

2 dependence expected in dirty nodal superconductors.
In Yb-substituted samples a clear crossover from sub-linear to super-linear plot can be noticed, suggesting rapid increase of
exponent n and n > 2 for samples with x=0.1 and 0.2. (c) Floating fitting range analysis of the temperature dependent
London penetration depth in pure and Yb-substituted CeCoIn5 samples. The data were fit using power-law function over the
temperature range from base temperature to a temperature T

up

< T

c

/3, and the resultant exponent n was plotted as a function
of T

up

.

0.6 0.7 0.8 0.9 1.0 1.1
1.0

1.5

2.0

2.5

3.0

3.5

 n
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FIG. 4: The exponent of the power-law dependence of London
penetration depth as a function of superconducting transition
temperature for La substitution (black circles), Nd substitu-
tion (blue triangles) and Yb substitution (red squares).

cant change of the Fermi surface between CeCoIn5 and
YbCoIn5. Recent de Haas-van Alfen studies indeed found
change of the Fermi surface with Yb substitution, with
the major change being disappearance of the intermedi-
ate heavy ↵ sheet of the Fermi surface in the range be-
tween x=0.1 and 0.2. This is exactly the range in which

we observe closing of the nodes in the superconducting
gap.

According to STM studies [18], ↵ sheet of the Fermi
surface plays a key role in superconductivity of CeCoIn5.
Evolution of the superconducting gap structure with the
disappearance of this sheet might be not strange since the
spectrum of magnetic fluctuations may change dramati-
cally. However, two features in our data are very di�cult
to understand in this scenario. First, the superconduct-
ing T

c

changes monotonically during the gap structure
transformation, it is insensitive to Fermi surface topol-
ogy change. Second, the fact that the structure of the
gap can change with Fermi surface topology strongly ar-
gues against symmetry imposed superconducting gap as
in d-wave scenario.

Interestingly enough, these observations have some re-
semblance with the iron - based superconductors. For
example, in hole-doped KFe2As2, the change of the su-
perconducting gap structure with pressure is indicated by
a non-monotonic T

c

(P ) dependence [46]. Similar change,
but with doping, was suggested in Ba1�x

K
x

Fe2As2 [47].
The superconducting gap structure of iron pnictides is
frequently discussed in terms of Fermi surface nesting,
responsible for magnetic fluctuations. Similar ideas were
discussed recently in relation to 115 compounds [30, 31]
and our data may hint in the same direction.

An alternative scenario for the explanation of the nodal
to nodeless evolution was considered by Coleman et al.

�L(T ) = �L(0) + aTn
<latexit sha1_base64="si/uHz3ozwxOZDpmKq1KmpHjFts="></latexit><latexit sha1_base64="si/uHz3ozwxOZDpmKq1KmpHjFts="></latexit>
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YbCoIn5. Recent de Haas-van Alfen studies indeed found
change of the Fermi surface with Yb substitution, with
the major change being disappearance of the intermedi-
ate heavy ↵ sheet of the Fermi surface in the range be-
tween x=0.1 and 0.2. This is exactly the range in which

we observe closing of the nodes in the superconducting
gap.

According to STM studies [18], ↵ sheet of the Fermi
surface plays a key role in superconductivity of CeCoIn5.
Evolution of the superconducting gap structure with the
disappearance of this sheet might be not strange since the
spectrum of magnetic fluctuations may change dramati-
cally. However, two features in our data are very di�cult
to understand in this scenario. First, the superconduct-
ing T

c

changes monotonically during the gap structure
transformation, it is insensitive to Fermi surface topol-
ogy change. Second, the fact that the structure of the
gap can change with Fermi surface topology strongly ar-
gues against symmetry imposed superconducting gap as
in d-wave scenario.

Interestingly enough, these observations have some re-
semblance with the iron - based superconductors. For
example, in hole-doped KFe2As2, the change of the su-
perconducting gap structure with pressure is indicated by
a non-monotonic T

c

(P ) dependence [46]. Similar change,
but with doping, was suggested in Ba1�x

K
x

Fe2As2 [47].
The superconducting gap structure of iron pnictides is
frequently discussed in terms of Fermi surface nesting,
responsible for magnetic fluctuations. Similar ideas were
discussed recently in relation to 115 compounds [30, 31]
and our data may hint in the same direction.

An alternative scenario for the explanation of the nodal
to nodeless evolution was considered by Coleman et al.

�L(T ) = �L(0) + aTn
<latexit sha1_base64="si/uHz3ozwxOZDpmKq1KmpHjFts="></latexit><latexit sha1_base64="si/uHz3ozwxOZDpmKq1KmpHjFts="></latexit>

LETTERS

NATURE PHYSICS DOI: 10.1038/NPHYS2672

0 pm 5 pm

Angle from a-axis (°)

G
(±

V
)/

[G
(+

V
)+

G
(¬

V
)]

∆
/
∆

m
ax

0

1

a

b

Hole-like

Electron-like

4 a0

0.49

0.50

0.51

0 90 180 270 360

¬7 nS

¬
19

5 µ
V

+
19

5 µ
V

+7 nS

a

b

c

d

e

f

g

h

Calculation H = 0 H > Hc2

Low High

Figure 5 |Visualizing impurity-bound quasiparticle excitations. a, Topographic image of an impurity on surface B (V = �6 mV, I = 100 pA). b, Model
calculation for the real space structure (roughly 10 Fermi wavelengths across) of the hole-like part of the impurity bound state in a dx2�y2 superconductor,
reproduced from ref. 32 (Copyright (2000) by the American Physical Society). c, Electron-like state for the same impurity as in b. d–g, Local density of
states obtained on the same field-of-view as a at ±195 µV in the normal (H > Hc2) and superconducting (H = 0) states, as indicated on the figure. Colour
bar in d–g denotes deviation from the mean. h, Radial average of the density of states across the lobes measured in d,e, normalized to their sum, as a
function of angle from the a-axis. Data at negative (positive) energy is shown in blue (red) symbols; the lines are guides to the eye. A dx2�y2 gap is shown
in yellow.

minima (maxima) in the oscillations for hole-like (electron-like)
states identify the nodes of the d-wave order as occurring at 45� to
the atomic axes (Fig. 5h). In fact, these features in STMconductance
maps are identical to those associated with Ni impurities in high-Tc
cuprates28,33. However, in contrast tomeasurements in the cuprates,
we are able to determine the spatial structure that such impurities
induce on the normal state by suppressing pairing at high magnetic
fields. Such measurements allow us to exclude the influences of
the normal state band structure, of the impurity shape, or of
the tunnelling matrix element28 on the spatial symmetries of the
impurity bound state in the superconducting state. Contrasting
such measurements for H >HC2 (in Fig. 5f,g) with measurements
on the same impurity forH =0 (Fig. 5d,e) we directly visualize how

nodal superconductivity in CeCoIn5 breaks the symmetry of the
normal electronic states in the vicinity of a single atomic defect.

The appearance of a pseudogap and the direct evidence for
dx2�y2 superconductivity reported here, together with previous
observations of the competition between antiferromagnetism and
superconductivity, closely ties the phenomenology of the Ce-115
system to that of the high-temperature cuprate superconductors.
An important next step in extending this phenomenology would
be to explore how the competition between antiferromagnetism
and superconductivity manifests itself on the atomic scale in STM
measurements. Similarly, extending our studies of the electronic
structure in magnetic vortices could be used to examine the
competition between different types of ordering in the mixed
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FIG. 2. Angular variation [u ! !q, H"] of k!H , u"#kn at sev-
eral H for CeCoIn5. The solid lines represent the result of the fit-
ting by the function k!H , u" ! C0 1 C2u cos2u 1 C4u cos4u,
where C0, C2u , and C4u are constants. The solid circles rep-
resent k!H , u" at H ! 1 T which are obtained under the field
cooling condition at every angle. For details, see text.

than 2%. It should be noted that this amplitude is more
than 20 times larger than those of the 2D superconductor
Sr2RuO4 with isotropic gap in the planes [12]. Then the
most important subject is “Is the observed fourfold sym-
metry a consequence of the nodes”? We here address the
origin of the fourfold symmetry. There are several pos-
sible origins for this. The first is the in-plane anisotropy of
Hc2. According to Ref. [5], Hc2 has very small but finite
in-plane anisotropy; Hc2 k $100% is approximately 2.7%
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FIG. 3. (a)–(d) The fourfold symmetry k4u#kn at several
temperatures.

larger than Hc2 k $110%. However, this anisotropy is too
small to explain the large amplitude of jC4u j#kn . 2%
at H ø Hc2. Further, and more importantly, if this four-
fold symmetry had come from the fact that Hc2 k $100%
is larger than Hc2 k $110%, the overall sign of this term
should be opposite to the one actually observed in k4u .
The second possibility is the tetragonal band structure in-
herent to the CeCoIn5 crystal. If the in-plane anisotropy of
the Fermi surface is large, then the large anisotropy of k4u

should be observed even above Tc. However, as shown
in Fig. 4, the observed fourfold symmetry above Tc is ex-
tremely small; jC4uj#kn , 0.2%. Thus the anisotropies
arising from Hc2 and the band structure are incompati-
ble with the data. Moreover, the amplitude of the four-
fold symmetry well below Tc becomes more than 10 times
larger than that above Tc. These considerations lead us to
conclude that the fourfold symmetry with large amplitude
well below Tc originates from the QP structure.

We now address the sign of the fourfold symmetry. In
the presence of nodes perpendicular to the layers, the term
k4u appears as a result of two effects. The first is the
DOS oscillation associated with the rotating H within the
ab plane [15]. This effect arises because the DOS depends
sensitively on the angle between H and the direction of the
nodes of the order parameter, because the QPs contribute
to the DOS when their Doppler-shifted energies exceed
the local energy gap. The second effect is the quasipar-
ticle lifetime from the Andreev scattering off the vortex
lattice, which has the same symmetry as the gap function
[10,11,18]. As discussed before, the second effect is
predominant in our temperature and field ranges. In this
case, k attains the maximum value when H is directed to
the nodal directions and becomes minimum when H is
directed along the antinodal directions [10,11,14]. Thus
the sign of the present fourfold symmetry indicates
the superconducting gap with nodes located along the
!6p, 6p" directions, similar to high-Tc cuprates.
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The torque data measured in the mixed state of CeCoIn5,
obtained by subtracting the corresponding normal-state
torque from the measured torque, have both reversible and
irreversible components. The reversible torque !rev is the av-
erage of the torque data measured in clockwise and anti-
clockwise directions, while the irreversible torque !irr is the
average of the antisymmetric components of the torque data
measured in clockwise and anticlockwise directions. Figure
2!a" shows the reversible part of the angular-dependent in-
plane torque data measured in the mixed state at 1.9 K and in
a magnetic field of 3 T. Clearly, there is a fourfold symmetry
present in the torque data, although the data points are some-
what scattered. The solid line is a fit of these mixed-state
data with !rev!H ,T ,""=Am!T ,H"sin 4". The coefficient Am
is positive since the torque displays a maximum at # /8. Fig-
ure 2!b" shows the irreversible part of the mixed-state torque
data !irr!"" measured at T=1.9 K and H=1 T for a single
crystal with a mass of 2.6 mg. The !irr!"" data have sharp
peaks at # /4, 3# /4, 5# /4, and 7# /4, etc.

The nodal positions of CeCoIn5 can be obtained from the
reversible and irreversible mixed-state torque data, as previ-
ously done in the study of YBa2Cu3O7.25 Specifically, theo-
retical calculations predict that the in-plane upper critical
field Hc2

# has a fourfold symmetry for a d-wave
superconductor.30 In the case of dxy wave symmetry, the an-
gular variation of the upper critical field $Hc2

# %−cos 4";
hence, it has maxima at # /4, 3# /4, 5# /4, 7# /4, etc. Figure
3 shows the angular dependence of the reversible and irre-
versible torque obtained by starting from this angular depen-
dence of Hc2, as follows. The lower critical field Hc1

# is out of

phase with Hc2
# !see Fig. 3" since the thermodynamic

critical field Hc
2=Hc1Hc2 is independent of the magnetic-field

orientation. Therefore, the magnetization M, given by
M $−Hc1 ln!Hc2 /H" / ln &, has the same angular dependence
as Hc2 !see Fig. 3". The easy axis of magnetization !maxi-
mum magnetization" should correspond to free energy F
minima. This implies that, for the dxy symmetry, F has
minima at # /4, 3# /4, 5# /4, 7# /4, etc. !see Fig. 3". The
torque is the angular derivative of the free energy F; i.e.,
!=−!F /!". Hence, the reversible torque data for a material
with dxy wave symmetry should display a fourfold symmetry
with maxima at # /8, 5# /8, 9# /8, etc. !see Fig. 3". Also, the
free-energy minima act as intrinsic pinning centers for vorti-
ces, so the irreversible torque data for a material with dxy
wave symmetry should display peaks at the same angles at
which the free energy has minima; i.e., at # /4, 3# /4, 5# /4,
7# /4, etc.

Notice that the " dependence of reversible and irrevers-
ible torque data of CeCoIn5 shown in Figs. 2!a" and 2!b" are
the same as the " dependence of !rev and !irr, respectively,
shown in Fig. 3, obtained from the theoretically predicted
angular dependence of the upper critical fields for a material
with dxy symmetry. We hence conclude that the reversible
along with the irreversible torque data in the mixed state
unambiguously imply that the wave symmetry of CeCoIn5 is
dxy. The fact that the angular dependences of the reversible
and irreversible torques, with the latter not being affected by
the subtraction of the reversible normal-state torque in the
mixed state, give the same angular dependence of the free
energy indicates that there is no error in the subtraction of
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FIG. 3. Plot of the angular " dependence of the upper critical
field Hc2 and lower critical field Hc1 for magnetic field parallel to
the ab plane, magnetization M, free energy F, reversible torque !rev,
and irreversible torque !irr for dxy wave symmetry.
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FIG. 2: Schematic heavy fermion band structure. Ce Kondo
lattice is hole-like whereas Yb Kondo lattice is electron-like.
Thus upon Yb doping, chemical potential increases and heavy
fermion band structure turns from hole-like to electron-like.

discuss its detailed application to Yb doped CeCoIn5 and
the consequences and the predictions of our theory.

Composite pairing: The composite pairing concept was
first introduced in the context of odd-frequency pairing
[11], and later associated with the composite binding
of a Cooper pairs with local moments[8, 12–14]. Vari-
ous other forms of composite pairing have been recently
suggested in the context of cuprate superconductors[15].
Composite pairing naturally emerges within a two-
channel Kondo lattice model where constructive interfer-
ence between two spin-screening channels drives to local
pairing. Composite pairing can be alternatively regarded
as an intra-orbital version of the resonating valence bond
pairing mechanism[16, 17]. The composite pair ampli-
tude is given by

⇤C(j) = h †
1j~�(i�2) 

†
2j · ~Sf (j)i (1)

where  †
�j creates conduction elections in the Wannier

state of channel � 2 (1, 2) and ~Sf (j) describes the
spin operator of the local f-moment at site j. The  ’s
can be decomposed into plane waves using the rela-
tion  �j� =

P
k ��

��0(k)ck�0eik·Rj where the form factor
��

��0(k) is only diagonal in the absence of spin-orbit cou-
pling. Kondo couplings of the two channels, The Kondo
coupling in the two � channels J� are a consequence
of virtual charge fluctuations from the singly occupied
ground state into the excited empty and doubly occu-
pied states.

The symmetry of the composite pair condensate is de-
termined by the product of the two form factors �1k�2k.
In a simple model, �1k and �2k can be taken to have s-
and d-wave symmetries respectively, giving rise to d-wave
symmetry. A more detailed analysis involves �6 and �7

crystal fields in accord with the underlying crystal field
symmetries[14] which also leads to nodal d-wave pairing.
The superfluid sti↵ness

Q = QBCS + QM (2)

has two components[8]: a BCS component

QBCS =
ne2

m⇤ (3)

derived from the paired heavy electron fluid and a com-
posite component

QM '
X

k

⇤2
C(�1kr�2k � �1kr�2k)2

⌃2
N

p
✏2k + 2⌃2

N

⇠ e2

~a2
(kBTc) (4)

resulting from the mobility of the molecular pairs and
derived ultimately from the non-local character (momen-
tum dependence) of the Kondo form factors. Here ⌃N

is proportional to the normal (hybridization) part of the
conduction electron self-energy and ✏k is the conduction
electron dispersion. QM is directly proportional to the
condensation energy, a consequence of “local pair” con-
densation and it does not depend on the presence of a
Fermi surface. In three dimensions, QBCS ⇠ ✏F /a2 is
proportional to the Fermi energy: in conventional super-
conductors the superfluid sti↵ness is much greater than
Tc, but as the Fermi surface shrinks, QBCS vanishes.
Normally, this would drive a superconductor-insulator
transition, but now the superconductivity is sustained
by the sti↵ness of the composite pair condensate.

For example, consider a single channel Kondo lattice
model at half filling, for which the ground state is a
Kondo insulator with a gap to quasiparticle excitations.
The inclusion of a second Kondo channel leads to com-
posite pairing beyond a critical ratio of the coupling con-
stants. (There is no Cooper instability in this case since
there is no Fermi surface.) As a result the Boguilubov
quasiparticle spectrum is fully-gapped even though the
composite order parameter has d-wave symmetry. This
state is an example of a Bose-Einstein condensate of d-
wave molecules.
Connection with Yb doped CeCoIn5: Due to the

tetragonal crystal field, the low lying physics of CeCoIn5

is governed by a low lying �7 Kramers doublet[18]. The
Kondo e↵ect in Ce and Yb heavy fermion compounds
results from high frequency valence fluctuations. In Ce
compounds the dominant valence fluctuations occur be-
tween the 4f1 and 4f0 configuration 4f1 ↵ 4f0 + e�,
giving rise to an average f-occupation below unity (nCe

f ⇠
0.9)[19, 20]. Using the Friedel sum rule, this gives rise to
a scattering phase shift � < ⇡

2 and in the lattice, to hole-
like heavy Fermi surfaces. By contrast, Yb heavy fermion
materials involve valence fluctuations between the 4f13

and 4f14 configurations e� + 4f13 ↵ 4f14, so the aver-
age f-occupation of the active Kramers doublet exceeds
one (nY b

f ⇠ 1.7)[19, 20] [26], the corresponding scattering
phase shift � > ⇡

2 and an electron-like Fermi surface in
the Kondo lattice (Fig. 2). As the Yb doping proceeds,
the typical character of the resonant scattering changes
from Cerium-like to Ytterbium-like and the occupancy
of the lowlying magnetic doublet nf will increase as a

4

FIG. 3: Temperature-dependent London penetration depth of (a) La and Nd and (b) Yb substituted substituted CeCoIn5,
plotted vs normalized (T/T

c

)2 scale. The dependence in pure material S1 shows clear downturn consistent with n = 1.2 < 2. The
data for La and Nd doped samples for all doping levels follow closely T

2 dependence expected in dirty nodal superconductors.
In Yb-substituted samples a clear crossover from sub-linear to super-linear plot can be noticed, suggesting rapid increase of
exponent n and n > 2 for samples with x=0.1 and 0.2. (c) Floating fitting range analysis of the temperature dependent
London penetration depth in pure and Yb-substituted CeCoIn5 samples. The data were fit using power-law function over the
temperature range from base temperature to a temperature T

up

< T

c

/3, and the resultant exponent n was plotted as a function
of T
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.
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FIG. 4: The exponent of the power-law dependence of London
penetration depth as a function of superconducting transition
temperature for La substitution (black circles), Nd substitu-
tion (blue triangles) and Yb substitution (red squares).

cant change of the Fermi surface between CeCoIn5 and
YbCoIn5. Recent de Haas-van Alfen studies indeed found
change of the Fermi surface with Yb substitution, with
the major change being disappearance of the intermedi-
ate heavy ↵ sheet of the Fermi surface in the range be-
tween x=0.1 and 0.2. This is exactly the range in which

we observe closing of the nodes in the superconducting
gap.

According to STM studies [18], ↵ sheet of the Fermi
surface plays a key role in superconductivity of CeCoIn5.
Evolution of the superconducting gap structure with the
disappearance of this sheet might be not strange since the
spectrum of magnetic fluctuations may change dramati-
cally. However, two features in our data are very di�cult
to understand in this scenario. First, the superconduct-
ing T

c

changes monotonically during the gap structure
transformation, it is insensitive to Fermi surface topol-
ogy change. Second, the fact that the structure of the
gap can change with Fermi surface topology strongly ar-
gues against symmetry imposed superconducting gap as
in d-wave scenario.

Interestingly enough, these observations have some re-
semblance with the iron - based superconductors. For
example, in hole-doped KFe2As2, the change of the su-
perconducting gap structure with pressure is indicated by
a non-monotonic T

c

(P ) dependence [46]. Similar change,
but with doping, was suggested in Ba1�x

K
x

Fe2As2 [47].
The superconducting gap structure of iron pnictides is
frequently discussed in terms of Fermi surface nesting,
responsible for magnetic fluctuations. Similar ideas were
discussed recently in relation to 115 compounds [30, 31]
and our data may hint in the same direction.

An alternative scenario for the explanation of the nodal
to nodeless evolution was considered by Coleman et al.

�L(T ) = �L(0) + aTn
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minima (maxima) in the oscillations for hole-like (electron-like)
states identify the nodes of the d-wave order as occurring at 45� to
the atomic axes (Fig. 5h). In fact, these features in STMconductance
maps are identical to those associated with Ni impurities in high-Tc
cuprates28,33. However, in contrast tomeasurements in the cuprates,
we are able to determine the spatial structure that such impurities
induce on the normal state by suppressing pairing at high magnetic
fields. Such measurements allow us to exclude the influences of
the normal state band structure, of the impurity shape, or of
the tunnelling matrix element28 on the spatial symmetries of the
impurity bound state in the superconducting state. Contrasting
such measurements for H >HC2 (in Fig. 5f,g) with measurements
on the same impurity forH =0 (Fig. 5d,e) we directly visualize how

nodal superconductivity in CeCoIn5 breaks the symmetry of the
normal electronic states in the vicinity of a single atomic defect.

The appearance of a pseudogap and the direct evidence for
dx2�y2 superconductivity reported here, together with previous
observations of the competition between antiferromagnetism and
superconductivity, closely ties the phenomenology of the Ce-115
system to that of the high-temperature cuprate superconductors.
An important next step in extending this phenomenology would
be to explore how the competition between antiferromagnetism
and superconductivity manifests itself on the atomic scale in STM
measurements. Similarly, extending our studies of the electronic
structure in magnetic vortices could be used to examine the
competition between different types of ordering in the mixed
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than 2%. It should be noted that this amplitude is more
than 20 times larger than those of the 2D superconductor
Sr2RuO4 with isotropic gap in the planes [12]. Then the
most important subject is “Is the observed fourfold sym-
metry a consequence of the nodes”? We here address the
origin of the fourfold symmetry. There are several pos-
sible origins for this. The first is the in-plane anisotropy of
Hc2. According to Ref. [5], Hc2 has very small but finite
in-plane anisotropy; Hc2 k $100% is approximately 2.7%
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FIG. 3. (a)–(d) The fourfold symmetry k4u#kn at several
temperatures.

larger than Hc2 k $110%. However, this anisotropy is too
small to explain the large amplitude of jC4u j#kn . 2%
at H ø Hc2. Further, and more importantly, if this four-
fold symmetry had come from the fact that Hc2 k $100%
is larger than Hc2 k $110%, the overall sign of this term
should be opposite to the one actually observed in k4u .
The second possibility is the tetragonal band structure in-
herent to the CeCoIn5 crystal. If the in-plane anisotropy of
the Fermi surface is large, then the large anisotropy of k4u

should be observed even above Tc. However, as shown
in Fig. 4, the observed fourfold symmetry above Tc is ex-
tremely small; jC4uj#kn , 0.2%. Thus the anisotropies
arising from Hc2 and the band structure are incompati-
ble with the data. Moreover, the amplitude of the four-
fold symmetry well below Tc becomes more than 10 times
larger than that above Tc. These considerations lead us to
conclude that the fourfold symmetry with large amplitude
well below Tc originates from the QP structure.

We now address the sign of the fourfold symmetry. In
the presence of nodes perpendicular to the layers, the term
k4u appears as a result of two effects. The first is the
DOS oscillation associated with the rotating H within the
ab plane [15]. This effect arises because the DOS depends
sensitively on the angle between H and the direction of the
nodes of the order parameter, because the QPs contribute
to the DOS when their Doppler-shifted energies exceed
the local energy gap. The second effect is the quasipar-
ticle lifetime from the Andreev scattering off the vortex
lattice, which has the same symmetry as the gap function
[10,11,18]. As discussed before, the second effect is
predominant in our temperature and field ranges. In this
case, k attains the maximum value when H is directed to
the nodal directions and becomes minimum when H is
directed along the antinodal directions [10,11,14]. Thus
the sign of the present fourfold symmetry indicates
the superconducting gap with nodes located along the
!6p, 6p" directions, similar to high-Tc cuprates.
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The torque data measured in the mixed state of CeCoIn5,
obtained by subtracting the corresponding normal-state
torque from the measured torque, have both reversible and
irreversible components. The reversible torque !rev is the av-
erage of the torque data measured in clockwise and anti-
clockwise directions, while the irreversible torque !irr is the
average of the antisymmetric components of the torque data
measured in clockwise and anticlockwise directions. Figure
2!a" shows the reversible part of the angular-dependent in-
plane torque data measured in the mixed state at 1.9 K and in
a magnetic field of 3 T. Clearly, there is a fourfold symmetry
present in the torque data, although the data points are some-
what scattered. The solid line is a fit of these mixed-state
data with !rev!H ,T ,""=Am!T ,H"sin 4". The coefficient Am
is positive since the torque displays a maximum at # /8. Fig-
ure 2!b" shows the irreversible part of the mixed-state torque
data !irr!"" measured at T=1.9 K and H=1 T for a single
crystal with a mass of 2.6 mg. The !irr!"" data have sharp
peaks at # /4, 3# /4, 5# /4, and 7# /4, etc.

The nodal positions of CeCoIn5 can be obtained from the
reversible and irreversible mixed-state torque data, as previ-
ously done in the study of YBa2Cu3O7.25 Specifically, theo-
retical calculations predict that the in-plane upper critical
field Hc2

# has a fourfold symmetry for a d-wave
superconductor.30 In the case of dxy wave symmetry, the an-
gular variation of the upper critical field $Hc2

# %−cos 4";
hence, it has maxima at # /4, 3# /4, 5# /4, 7# /4, etc. Figure
3 shows the angular dependence of the reversible and irre-
versible torque obtained by starting from this angular depen-
dence of Hc2, as follows. The lower critical field Hc1

# is out of

phase with Hc2
# !see Fig. 3" since the thermodynamic

critical field Hc
2=Hc1Hc2 is independent of the magnetic-field

orientation. Therefore, the magnetization M, given by
M $−Hc1 ln!Hc2 /H" / ln &, has the same angular dependence
as Hc2 !see Fig. 3". The easy axis of magnetization !maxi-
mum magnetization" should correspond to free energy F
minima. This implies that, for the dxy symmetry, F has
minima at # /4, 3# /4, 5# /4, 7# /4, etc. !see Fig. 3". The
torque is the angular derivative of the free energy F; i.e.,
!=−!F /!". Hence, the reversible torque data for a material
with dxy wave symmetry should display a fourfold symmetry
with maxima at # /8, 5# /8, 9# /8, etc. !see Fig. 3". Also, the
free-energy minima act as intrinsic pinning centers for vorti-
ces, so the irreversible torque data for a material with dxy
wave symmetry should display peaks at the same angles at
which the free energy has minima; i.e., at # /4, 3# /4, 5# /4,
7# /4, etc.

Notice that the " dependence of reversible and irrevers-
ible torque data of CeCoIn5 shown in Figs. 2!a" and 2!b" are
the same as the " dependence of !rev and !irr, respectively,
shown in Fig. 3, obtained from the theoretically predicted
angular dependence of the upper critical fields for a material
with dxy symmetry. We hence conclude that the reversible
along with the irreversible torque data in the mixed state
unambiguously imply that the wave symmetry of CeCoIn5 is
dxy. The fact that the angular dependences of the reversible
and irreversible torques, with the latter not being affected by
the subtraction of the reversible normal-state torque in the
mixed state, give the same angular dependence of the free
energy indicates that there is no error in the subtraction of
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FIG. 3. Plot of the angular " dependence of the upper critical
field Hc2 and lower critical field Hc1 for magnetic field parallel to
the ab plane, magnetization M, free energy F, reversible torque !rev,
and irreversible torque !irr for dxy wave symmetry.
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The recent observation of fully-gapped superconductivity in Yb doped CeCoIn5 poses a paradox,
for the disappearance of nodes suggests that they are accidental, yet d-wave symmetry with protected
nodes is well established by experiment. Here, we show that composite pairing provides a natural
resolution: in this scenario, Yb doping drives a Lifshitz transition of the nodal Fermi surface,
forming a fully-gapped d-wave molecular superfluid of composite pairs. The T

4 dependence of the
penetration depth associated with the sound mode of this condensate is in accord with observation.

Introduction: CeCoIn5 is an archetypal heavy fermion
superconductor with Tc = 2.3K[1]. The Curie-Weiss
susceptibility signaling unquenched local moments, per-
sists down to the superconducting transition [1]. Local
moments, usually harmful to superconductivity actually
participate in the condensate and a significant fraction
of the local moment entropy (0.2 � 0.3 log 2 per spin) is
quenched below Tc.

The behavior of this material upon Yb doping is quite
unusual: the depression of superconductivity with doping
is extremely mild with an unusual linear dependence of
the transition temperature Tc(x) = Tc(0)⇥(1�x), where
x is the Yb doping[2]. Moreover, recent measurements[3]
of the temperature dependent London penetration depth
��(T ) suggest that the nodal d-wave superconductivity
(where ��(T ) ⇠ T �T 2) becomes fully gapped (��(T ) ⇠
Tn, n & 3) beyond a critical Yb doping xc ⇠ 0.2. Nor-
mally the disappearance of nodes would suggest that
they are accidental, as in s± superconductors. However
directional probes of the gap, including scanning tun-
neling spectroscopy (STM)[4, 5], thermal conductivity
measurements in a rotating magnetic field[6] and torque
magnetometry[7] strongly suggest that pure CeCoIn5 is a
d-wave superconductor with symmetry-protected nodes.
How then, can a nodal d-wave superconductor become
fully-gapped upon doping?

Here we provide a possible resolution of this paradox,
presenting a mechanism by which nodal superconductors
can become fully gapped systems without change of sym-
metry, through the formation of composite pairs. A com-
posite d-wave superconductor contains two components:
a d-wave BCS condensate and a molecular superfluid of
d-wave composite pairs[8]. Here we show when the scat-
tering phase shift o↵ the magnetic ions is tuned via dop-
ing, a Lifshitz transition occurs which removes the nodal
heavy Fermi surface to revealing an underlying molecular
superfluid of d-wave composite pairs (see Fig. 1).

In the absence of an underlying Fermi surface, a com-
posite paired superconductor can be regarded as Bose-
Einstein condensate of weakly interacting, charge 2e d-
wave bosons in which the Boguilubov quasiparticle spec-
trum is fully gapped[9], with a residual linear sound mode
with dispersion Eq ⇠ vsq, cut o↵ by the plasma frequency
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FIG. 1: Schematic phase diagram for the Yb
x

Ce1�x

CoIn5.
For x < 0.2 the temperature dependence of London penetra-
tion depth �� ⇠ T �T

2, consistent with nodal d-wave super-
conductivity in clean and dirty limits respectively. However
for x > 0.2, the power law of the �� exceeds 2 and reaches
up to 4[3]. This is incompatible with nodal d-wave supercon-
ductivity and suggests a fully-gapped state. We argue that
in the gapless phase Cooper pairs and composite pairs co-
exist whereas in the fully gapped phase, only the composite
pairs are present. As function of Yb doping, chemical poten-
tial increases and the nodes of the order parameter moves to
the corners of the Brillouin zone and annihilate. We predict
that upon further doping, there is a second quantum phase
transition to a reentrant gapless phase.

!p ⇠ vs/�L at wavevectors below the inverse penetration
depth q << 1/�L. At temperatures above the plasma fre-
quency, the superfluid sti↵ness is governed by Landau’s
two-fluid theory of superfluids, in which the excitation of
the normal superfluid is predicted to give rise to a power
law dependence of the penetration depth ��(T ) ⇠ T 4 in
three dimensions, consistent with experiments[3].

A quantum critical point recently observed for x ⇠ xc

in transverse magnetoresistance measurements [10] ap-
pears to coincide with the disappearance of the super-
conducting nodes. At larger Yb doping, we expect a sec-
ond quantum critical point into a reentrant gapless phase
as shown in Fig. 1 with the redevelopment of a d-wave
paired heavy electron pocket around the � point in the
Yb rich Kondo lattice.

We now expand on the idea of composite pairing and

Erten, Flint  et al, 2014

2

Yb#doping#
hole#like######################################################electron#like######x2≈0.2#

nodal#d2wave#
+#composite#pairs#

nodal#d2wave#
+#composite#pairs#

composite#pairs#
only#

+# +# +# +# +#
2# 2# 2# 2# 2#

x+#

k

E

Yb

Ce

Yb doping: m≠

HaL HbL
Yb#doping#

E#

k#

Yb#

Ce#

+#+#
2#

2#
+#+#

2#

2#
+#+#

2#

2#

Γ"

M"

⇢s = ⇢0 � �T (1�2) ⇢s = ⇢0 � �T (1�2)⇢s = ⇢0 � �T (3�4)

FIG. 2: Schematic heavy fermion band structure. Ce Kondo
lattice is hole-like whereas Yb Kondo lattice is electron-like.
Thus upon Yb doping, chemical potential increases and heavy
fermion band structure turns from hole-like to electron-like.

discuss its detailed application to Yb doped CeCoIn5 and
the consequences and the predictions of our theory.

Composite pairing: The composite pairing concept was
first introduced in the context of odd-frequency pairing
[11], and later associated with the composite binding
of a Cooper pairs with local moments[8, 12–14]. Vari-
ous other forms of composite pairing have been recently
suggested in the context of cuprate superconductors[15].
Composite pairing naturally emerges within a two-
channel Kondo lattice model where constructive interfer-
ence between two spin-screening channels drives to local
pairing. Composite pairing can be alternatively regarded
as an intra-orbital version of the resonating valence bond
pairing mechanism[16, 17]. The composite pair ampli-
tude is given by

⇤C(j) = h †
1j~�(i�2) 

†
2j · ~Sf (j)i (1)

where  †
�j creates conduction elections in the Wannier

state of channel � 2 (1, 2) and ~Sf (j) describes the
spin operator of the local f-moment at site j. The  ’s
can be decomposed into plane waves using the rela-
tion  �j� =

P
k ��

��0(k)ck�0eik·Rj where the form factor
��

��0(k) is only diagonal in the absence of spin-orbit cou-
pling. Kondo couplings of the two channels, The Kondo
coupling in the two � channels J� are a consequence
of virtual charge fluctuations from the singly occupied
ground state into the excited empty and doubly occu-
pied states.

The symmetry of the composite pair condensate is de-
termined by the product of the two form factors �1k�2k.
In a simple model, �1k and �2k can be taken to have s-
and d-wave symmetries respectively, giving rise to d-wave
symmetry. A more detailed analysis involves �6 and �7

crystal fields in accord with the underlying crystal field
symmetries[14] which also leads to nodal d-wave pairing.
The superfluid sti↵ness

Q = QBCS + QM (2)

has two components[8]: a BCS component

QBCS =
ne2

m⇤ (3)

derived from the paired heavy electron fluid and a com-
posite component

QM '
X

k

⇤2
C(�1kr�2k � �1kr�2k)2

⌃2
N

p
✏2k + 2⌃2

N

⇠ e2

~a2
(kBTc) (4)

resulting from the mobility of the molecular pairs and
derived ultimately from the non-local character (momen-
tum dependence) of the Kondo form factors. Here ⌃N

is proportional to the normal (hybridization) part of the
conduction electron self-energy and ✏k is the conduction
electron dispersion. QM is directly proportional to the
condensation energy, a consequence of “local pair” con-
densation and it does not depend on the presence of a
Fermi surface. In three dimensions, QBCS ⇠ ✏F /a2 is
proportional to the Fermi energy: in conventional super-
conductors the superfluid sti↵ness is much greater than
Tc, but as the Fermi surface shrinks, QBCS vanishes.
Normally, this would drive a superconductor-insulator
transition, but now the superconductivity is sustained
by the sti↵ness of the composite pair condensate.

For example, consider a single channel Kondo lattice
model at half filling, for which the ground state is a
Kondo insulator with a gap to quasiparticle excitations.
The inclusion of a second Kondo channel leads to com-
posite pairing beyond a critical ratio of the coupling con-
stants. (There is no Cooper instability in this case since
there is no Fermi surface.) As a result the Boguilubov
quasiparticle spectrum is fully-gapped even though the
composite order parameter has d-wave symmetry. This
state is an example of a Bose-Einstein condensate of d-
wave molecules.
Connection with Yb doped CeCoIn5: Due to the

tetragonal crystal field, the low lying physics of CeCoIn5

is governed by a low lying �7 Kramers doublet[18]. The
Kondo e↵ect in Ce and Yb heavy fermion compounds
results from high frequency valence fluctuations. In Ce
compounds the dominant valence fluctuations occur be-
tween the 4f1 and 4f0 configuration 4f1 ↵ 4f0 + e�,
giving rise to an average f-occupation below unity (nCe

f ⇠
0.9)[19, 20]. Using the Friedel sum rule, this gives rise to
a scattering phase shift � < ⇡

2 and in the lattice, to hole-
like heavy Fermi surfaces. By contrast, Yb heavy fermion
materials involve valence fluctuations between the 4f13

and 4f14 configurations e� + 4f13 ↵ 4f14, so the aver-
age f-occupation of the active Kramers doublet exceeds
one (nY b

f ⇠ 1.7)[19, 20] [26], the corresponding scattering
phase shift � > ⇡

2 and an electron-like Fermi surface in
the Kondo lattice (Fig. 2). As the Yb doping proceeds,
the typical character of the resonant scattering changes
from Cerium-like to Ytterbium-like and the occupancy
of the lowlying magnetic doublet nf will increase as a

4

FIG. 3: Temperature-dependent London penetration depth of (a) La and Nd and (b) Yb substituted substituted CeCoIn5,
plotted vs normalized (T/T

c

)2 scale. The dependence in pure material S1 shows clear downturn consistent with n = 1.2 < 2. The
data for La and Nd doped samples for all doping levels follow closely T

2 dependence expected in dirty nodal superconductors.
In Yb-substituted samples a clear crossover from sub-linear to super-linear plot can be noticed, suggesting rapid increase of
exponent n and n > 2 for samples with x=0.1 and 0.2. (c) Floating fitting range analysis of the temperature dependent
London penetration depth in pure and Yb-substituted CeCoIn5 samples. The data were fit using power-law function over the
temperature range from base temperature to a temperature T

up

< T

c

/3, and the resultant exponent n was plotted as a function
of T

up

.
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FIG. 4: The exponent of the power-law dependence of London
penetration depth as a function of superconducting transition
temperature for La substitution (black circles), Nd substitu-
tion (blue triangles) and Yb substitution (red squares).

cant change of the Fermi surface between CeCoIn5 and
YbCoIn5. Recent de Haas-van Alfen studies indeed found
change of the Fermi surface with Yb substitution, with
the major change being disappearance of the intermedi-
ate heavy ↵ sheet of the Fermi surface in the range be-
tween x=0.1 and 0.2. This is exactly the range in which

we observe closing of the nodes in the superconducting
gap.

According to STM studies [18], ↵ sheet of the Fermi
surface plays a key role in superconductivity of CeCoIn5.
Evolution of the superconducting gap structure with the
disappearance of this sheet might be not strange since the
spectrum of magnetic fluctuations may change dramati-
cally. However, two features in our data are very di�cult
to understand in this scenario. First, the superconduct-
ing T

c

changes monotonically during the gap structure
transformation, it is insensitive to Fermi surface topol-
ogy change. Second, the fact that the structure of the
gap can change with Fermi surface topology strongly ar-
gues against symmetry imposed superconducting gap as
in d-wave scenario.

Interestingly enough, these observations have some re-
semblance with the iron - based superconductors. For
example, in hole-doped KFe2As2, the change of the su-
perconducting gap structure with pressure is indicated by
a non-monotonic T

c

(P ) dependence [46]. Similar change,
but with doping, was suggested in Ba1�x

K
x

Fe2As2 [47].
The superconducting gap structure of iron pnictides is
frequently discussed in terms of Fermi surface nesting,
responsible for magnetic fluctuations. Similar ideas were
discussed recently in relation to 115 compounds [30, 31]
and our data may hint in the same direction.

An alternative scenario for the explanation of the nodal
to nodeless evolution was considered by Coleman et al.

�L(T ) = �L(0) + aTn
<latexit sha1_base64="si/uHz3ozwxOZDpmKq1KmpHjFts="></latexit><latexit sha1_base64="si/uHz3ozwxOZDpmKq1KmpHjFts="></latexit>
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FIG. 1. Panel a) and b) illustrate the Q=(1/2,1/2,1/2) reso-
nance in zero field (T=0.1 K) and 11 T (near Hc2) along the
[110] direction. Panels c− d) are taken with the field applied
along the c axis. The curves are fits to a simple harmonic os-
cillator and a background originating from incoherent elastic
scattering.

constant Q spectra near the commensurate (1/2,1/2,1/2)
position were extracted. Triple-axis measurements with
vertical fields were also performed at SPINS and MACS
(NIST, USA) with Ef=3.7 meV and 3.5 meV respec-
tively. Horizontal field measurements were taken at
FLEX (Helmholtz Zentrum Berlin). The field was within
the (HHL) plane rotated 30◦ from [001] to improve ac-
cess for the incident and scattered beams. For the hori-
zontal field data discussed in this paper, we list the com-
ponent of field projected along the c axis.

The effect of magnetic fields, close to the upper crit-
ical field for superconductivity, on the spin resonance is
summarized in Fig. 1. Panels a) and b) show results for
the fields along [110] where Hc2=12 T. For 0T, we repro-
duce our previous results, while panel b) shows that at
11 T a resonance is no longer observed. Panel c) demon-
strates that we can still observe the resonance peak under
the more constrained condition imposed by the horizon-
tal field configuration on FLEX at 2 K. For modest fields
along [001] near Hc2=5 T (panel d), the resonance is sup-
pressed, presumably replaced by the over damped fluctu-
ations reported at similar fields by NMR. [23] Therefore,
the resonance peak is directly related to superconductiv-
ity and vanishes with the order parameter.

Fig. 2 illustrates the response of the spin resonance
to intermediate fields in the superconducting phase well
below Hc2. The constant-Q scans are formulated by in-
tegrating around H=[0.45,0.55] and L=[0.45,0.55] on the
OSIRIS indirect geometry spectrometer. The scans were
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FIG. 2. a) illustrates a high resolution scan through the spin
resonance at zero applied field. The solid curve centered at
0.6 meV illustrates the resolution function on OSIRIS with a
full width of 0.025 meV. b) demonstrates the splitting of the
resonance into two peaks under an applied field of 3 T. A 10
K background has been subtracted from the scans.

performed at T=0.1 K well below the transition to su-
perconductivity (Tc=2.3 K) and the vertical field was ap-
plied along the [110] axis with the sample aligned in the
(HHL) scattering plane. The resolution at the elastic line
on OSIRIS is 0.025 meV (full-width at half maximum)
and is illustrated by the solid curve in panel a) centered
at 0.63 meV. [24] A background derived from a similar
scan at 10 K has been subtracted. The solid lines are fits
to harmonic oscillators convolved with the measured elas-
tic resolution function. While previous measurements on
SPINS found the resonance peak width to be largely de-
fined by the energy resolution of the spectrometer, panel
a) shows that the zero field resonance does have a finite
lifetime with h̄Γ= 0.069 ± 0.019 meV.

Fig. 2 b) shows the same scan but in an applied ver-
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position were extracted. Triple-axis measurements with
vertical fields were also performed at SPINS and MACS
(NIST, USA) with Ef=3.7 meV and 3.5 meV respec-
tively. Horizontal field measurements were taken at
FLEX (Helmholtz Zentrum Berlin). The field was within
the (HHL) plane rotated 30◦ from [001] to improve ac-
cess for the incident and scattered beams. For the hori-
zontal field data discussed in this paper, we list the com-
ponent of field projected along the c axis.

The effect of magnetic fields, close to the upper crit-
ical field for superconductivity, on the spin resonance is
summarized in Fig. 1. Panels a) and b) show results for
the fields along [110] where Hc2=12 T. For 0T, we repro-
duce our previous results, while panel b) shows that at
11 T a resonance is no longer observed. Panel c) demon-
strates that we can still observe the resonance peak under
the more constrained condition imposed by the horizon-
tal field configuration on FLEX at 2 K. For modest fields
along [001] near Hc2=5 T (panel d), the resonance is sup-
pressed, presumably replaced by the over damped fluctu-
ations reported at similar fields by NMR. [23] Therefore,
the resonance peak is directly related to superconductiv-
ity and vanishes with the order parameter.

Fig. 2 illustrates the response of the spin resonance
to intermediate fields in the superconducting phase well
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tegrating around H=[0.45,0.55] and L=[0.45,0.55] on the
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and is illustrated by the solid curve in panel a) centered
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tic resolution function. While previous measurements on
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FIG. 3. The magnetic field dependence of the resonance peak
at 0.1 K taken on SPINS. The solid lines are fits to two har-
monic oscillators and the dashed lines indicate the individual
fits. An overall background fixed to the 11 T scan has also
been added.

tical field of 3 T along the [110] direction at 0.1 K. The
single peak observed in panel a) at zero field is seen to
be split into two peaks and this demonstrates that the
resonance peak in CeCoIn5 is a doublet. The intensity
ratio between the two peaks is 0.41 ± 0.11 at 3 T. The
width of the two peaks are equal, to within experimental
error, and fitted to be 0.056 ± 0.008 meV.
For measurements over a broader range of fields, we

use the coarser resolution and higher intensity of the
cold neutron triple-axis spectrometer SPINS. Fig. 3 illus-
trates the evolution of the resonance peak as a function of
field at 2 T, 3 T and 4 T. The solid line is a fit to a linear
combination of two damped harmonic oscillators of equal
width. The data at 2 T (panel a) shows a broadening of
the resonance which persists to 3 T and is consistent with
Fig. 2 with the larger resolution width of 0.15 meV. At 4
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FIG. 4. a) The peak position of the magnetic field splitting
of the resonance peak as a function of applied field within
the a − b plane. The solid lines are fits to E± = h̄Ω0 ±
gµBµ0H with g = 0.96±0.05. The dashed line is the theory
described in Ref. 26. b) illustrates the integrated intensity of
the upper split peak in absolute units. The dashed line is 1/2
the integrated intensity of the zero field resonance peak.

T, (panel c) a distinct splitting can be resolved and two
peaks are observed. The intensity ratio at 4 T is 0.39
± 0.1, consistent with the 3T OSIRIS data illustrated in
Fig. 2. These results are consistent with a previous cold
triple-axis study (Ref. 25) which tracked the softening of
the lower peak with field, but did not observe the upper
peak of the doublet shifted to higher energies.

We plot the peak positions (Fig. 4 a)) and intensi-
ties (Fig. 4 b)) as a function of magnetic field applied
along the [110] direction. The solid lines are fits to
E± = h̄Ω0 ± gµBµ0H as expected for a Zeeman split
doublet. The slope g=0.96 ± 0.05 maybe compared with
the Lande factor of 0.83 for a free Ce3+ ion and 0.81
calculated from a crystal field analysis with an in-plane
magnetic field. [27] This comparison illustrates that the
spectral weight in the resonance originates from localized
4f electrons associated with the Ce3+ ions. The dashed
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the integrated intensity of the zero field resonance peak.

T, (panel c) a distinct splitting can be resolved and two
peaks are observed. The intensity ratio at 4 T is 0.39
± 0.1, consistent with the 3T OSIRIS data illustrated in
Fig. 2. These results are consistent with a previous cold
triple-axis study (Ref. 25) which tracked the softening of
the lower peak with field, but did not observe the upper
peak of the doublet shifted to higher energies.

We plot the peak positions (Fig. 4 a)) and intensi-
ties (Fig. 4 b)) as a function of magnetic field applied
along the [110] direction. The solid lines are fits to
E± = h̄Ω0 ± gµBµ0H as expected for a Zeeman split
doublet. The slope g=0.96 ± 0.05 maybe compared with
the Lande factor of 0.83 for a free Ce3+ ion and 0.81
calculated from a crystal field analysis with an in-plane
magnetic field. [27] This comparison illustrates that the
spectral weight in the resonance originates from localized
4f electrons associated with the Ce3+ ions. The dashed

g=0.96   crystal fields give 
g=0.81



Conclusions

• Convergence of magnetism and superconductivity: require 
new concepts over and beyond spin fluctuation theory.


      TREMENDOUS POTENTIAL FOR DISCOVERY.

• 115 heavy fermion superconductors suggest a new kind of 
pairing: composite pairing, robust against disorder on 
magnetic site.

• Could the same phenomenon occur in d-electron materials, at 
much higher temperatures? 
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FIGURE 1. Depicting localized 4 f , 5 f and 3d atomic wavefunctions.

represented by a single, neutral spin operator

�S=
h̄

2
�σ

where �σ denotes the Pauli matrices of the localized electron. Localized moments de-

velop within highly localized atomic wavefunctions. The most severely localized wave-

functions in nature occur inside the partially filled 4 f shell of rare earth compounds

(Fig. 1) such as cerium (Ce) or Ytterbium (Yb). Local moment formation also occurs

in the localized 5 f levels of actinide atoms as uranium and the slightly more delocal-

ized 3d levels of first row transition metals(Fig. 1). Localized moments are the origin

of magnetism in insulators, and in metals their interaction with the mobile charge car-

riers profoundly changes the nature of the metallic state via a mechanism known as the
“Kondo effect”.

In the past decade, the physics of local moment formation has also reappeared in

connection with quantum dots, where it gives rise to the Coulomb blockade phenomenon

and the non-equilibrium Kondo effect.



Kmetko-Smith Phase Diagram

Smith and Kmetko (1983)

Rare Earth

Transition metal

Actinide

4f

3d

5fIncreasing localization

FIGURE 1. Depicting localized 4 f , 5 f and 3d atomic wavefunctions.

represented by a single, neutral spin operator

�S=
h̄

2
�σ

where �σ denotes the Pauli matrices of the localized electron. Localized moments de-

velop within highly localized atomic wavefunctions. The most severely localized wave-

functions in nature occur inside the partially filled 4 f shell of rare earth compounds

(Fig. 1) such as cerium (Ce) or Ytterbium (Yb). Local moment formation also occurs

in the localized 5 f levels of actinide atoms as uranium and the slightly more delocal-

ized 3d levels of first row transition metals(Fig. 1). Localized moments are the origin

of magnetism in insulators, and in metals their interaction with the mobile charge car-

riers profoundly changes the nature of the metallic state via a mechanism known as the
“Kondo effect”.

In the past decade, the physics of local moment formation has also reappeared in

connection with quantum dots, where it gives rise to the Coulomb blockade phenomenon

and the non-equilibrium Kondo effect.

Increasing localization



Kmetko-Smith Phase Diagram

Smith and Kmetko (1983)

Rare Earth

Transition metal

Actinide

4f

3d

5fIncreasing localization

FIGURE 1. Depicting localized 4 f , 5 f and 3d atomic wavefunctions.

represented by a single, neutral spin operator

�S=
h̄

2
�σ

where �σ denotes the Pauli matrices of the localized electron. Localized moments de-

velop within highly localized atomic wavefunctions. The most severely localized wave-

functions in nature occur inside the partially filled 4 f shell of rare earth compounds

(Fig. 1) such as cerium (Ce) or Ytterbium (Yb). Local moment formation also occurs

in the localized 5 f levels of actinide atoms as uranium and the slightly more delocal-

ized 3d levels of first row transition metals(Fig. 1). Localized moments are the origin

of magnetism in insulators, and in metals their interaction with the mobile charge car-

riers profoundly changes the nature of the metallic state via a mechanism known as the
“Kondo effect”.

In the past decade, the physics of local moment formation has also reappeared in

connection with quantum dots, where it gives rise to the Coulomb blockade phenomenon

and the non-equilibrium Kondo effect.

Increasing localization



Kmetko-Smith Phase Diagram

Smith and Kmetko (1983)

Rare Earth

Transition metal

Actinide

4f

3d

5fIncreasing localization

FIGURE 1. Depicting localized 4 f , 5 f and 3d atomic wavefunctions.

represented by a single, neutral spin operator

�S=
h̄

2
�σ

where �σ denotes the Pauli matrices of the localized electron. Localized moments de-

velop within highly localized atomic wavefunctions. The most severely localized wave-

functions in nature occur inside the partially filled 4 f shell of rare earth compounds

(Fig. 1) such as cerium (Ce) or Ytterbium (Yb). Local moment formation also occurs

in the localized 5 f levels of actinide atoms as uranium and the slightly more delocal-

ized 3d levels of first row transition metals(Fig. 1). Localized moments are the origin

of magnetism in insulators, and in metals their interaction with the mobile charge car-

riers profoundly changes the nature of the metallic state via a mechanism known as the
“Kondo effect”.

In the past decade, the physics of local moment formation has also reappeared in

connection with quantum dots, where it gives rise to the Coulomb blockade phenomenon

and the non-equilibrium Kondo effect.
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A lot of action at the brink of localization.
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Fig. 4!, and from 0.52 to 1.10 GPa, where they would be
expected if Tx matched previous studies.21–24 At 0.75 GPa, an
extra anomaly in !!

!T at 15 K is attributable to the loss of
hydrostaticity in a leaking cell just prior to failure. If this
anomaly really reflected the onset of AFM order, it should
also appear at higher P, but it is conspicuously absent.

A P-T phase diagram based on the m"T! and !"T! data is
presented in Fig. 4. Following Refs. 20 and 21, the HO-AFM
phase boundary Tx is defined where 50% of the full moment

is observed, while the error bars indicate where m"T! is 90%
of its full value. Due to the high-T tails in m"T! "Fig. 1! a
10% criterion is not directly associable with the onset of
long-range order and is not shown. This phase boundary has
a linear slope

!Tx

!P =58 K GPa−1, extrapolating to 0.78"5!
GPa. The T0 boundary, with error bars indicating "T0, is also
linear with a slope

!T0

!P =1.3 K GPa−1. The T0 boundary
seems robust between different reports, and in fact our T0
line agrees very well with that of Ref. 23. The T0 and Tx lines
extrapolate to an intersection at "1.1 GPa, 19 K!, but based
on most previous reports, the Tx boundary actually curves
and meets T0 at about 1.5 GPa. This could not be directly
confirmed in the present study because of the 1 GPa limit of
the pressure cell.

A comparison of the Tx boundary determined from our
data to previous reports shows clearly that it occurs at sig-
nificantly higher pressure in He. As shown in Fig. 4, the
other reported transitions occur between 0.5 and 0.7 GPa,
with the obvious exception of the data taken in He by Bour-
darot et al.,19 which show no moment up to 0.5 GPa. These
studies represent a variety of probes of the structural22–24 and
magnetic19–22 lattices. It is important to note that the dissi-
militude between the various reported phase boundaries is
not primarily due to sample dependence or measurement
technique. The HO-AFM transitions determined via thermal
expansion and Larmor diffraction have been shown to match
those defined using neutron-diffraction data.22,33 As already
noted, it has also been demonstrated that for the same
sample, the choice of pressure medium causes a pronounced
variation in the AFM onset.19,21 The higher value of Pc de-
termined in our study is thus attributable inherently to better
hydrostatic conditions.

There are several implications of the redefined phase
boundary. Although it has already been established that the
HO-AFM and PM-HO boundaries meet at a multicritical
point, it has been identified at three different pressures: 0.9
GPa,22 1.09 GPa,24 and 1.3 GPa.23 From our measurements
in He, it is clear that these boundaries actually meet at P
#1.02 GPa. Moreover, given the known reduction in

!Tx

!P at
higher P, an intersection between 1.3 and 1.5 GPa is most
likely. The higher value of Pc also implies that bulk SC
meets the HO-AFM boundary at 0 K. This is illustrated in
Fig. 4 using the SC 10% !"T! transition from Ref. 27 as an
indicator of bulk SC, which tracks well data at lower P from
bulk probes: specific heat23 and magnetic susceptibility.21

The main difference in a hydrostatic environment is that Tc is
suppressed continuously to 0 K and does not intersect the
HO-AFM boundary at finite T, as it does in less hydrostatic
pressure media.21,23 Thus, the reported P-driven discontinu-
ous SC phase transition21,23 is not intrinsic but likely due to
the premature onset of AFM order arising from a nonhydro-
static environment.

Most tantalizingly, the end point of the SC phase bound-
ary extrapolates to Pc, which suggests that the SC pairing
energy scale goes to zero exactly at the onset of long-range
AFM. The abruptness of the low-T onset of m"P! appears to
exclude a scenario where SC arises due to AFM critical fluc-
tuations. However, it is tempting to speculate that the "100!
AFM magnetic fluctuation spectrum, which has been shown
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FIG. 3. "Color online! Pressure dependence of electrical resis-
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the narrow transition width and the lack of any obvious features
associated with the AFM transition at Tx.
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redefined Tx suggests that SC and AFM phases meet at 0 K.
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anomaly really reflected the onset of AFM order, it should
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those defined using neutron-diffraction data.22,33 As already
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variation in the AFM onset.19,21 The higher value of Pc de-
termined in our study is thus attributable inherently to better
hydrostatic conditions.

There are several implications of the redefined phase
boundary. Although it has already been established that the
HO-AFM and PM-HO boundaries meet at a multicritical
point, it has been identified at three different pressures: 0.9
GPa,22 1.09 GPa,24 and 1.3 GPa.23 From our measurements
in He, it is clear that these boundaries actually meet at P
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higher P, an intersection between 1.3 and 1.5 GPa is most
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pressure media.21,23 Thus, the reported P-driven discontinu-
ous SC phase transition21,23 is not intrinsic but likely due to
the premature onset of AFM order arising from a nonhydro-
static environment.

Most tantalizingly, the end point of the SC phase bound-
ary extrapolates to Pc, which suggests that the SC pairing
energy scale goes to zero exactly at the onset of long-range
AFM. The abruptness of the low-T onset of m"P! appears to
exclude a scenario where SC arises due to AFM critical fluc-
tuations. However, it is tempting to speculate that the "100!
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performed in a piston-cylinder cell in a commercial cryostat
using a 1:1 volume mixture of n-pentane/isoamyl alcohol.
The superconducting transition of Sn was used as a manom-
eter.

To characterize the onset of AFM order, the intensity of
the magnetic !100" peak, a forbidden nuclear reflection, was
compared to the intensity of the nuclear !200" peak, which
was constant between 30 and 1.5 K. The magnitude of the
ordered moment was calibrated at 81.8 meV incident energy,
where extinction of the strong !200" peak was negligible.
Rocking scans of the !100" peak at 1.5 K are shown in the
inset of Fig. 1 with intensities normalized to the value at the
highest pressure of 1.02 GPa. The temperature dependence
of the ordered moment m!T" is shown in Fig. 1. At low T and
ambient pressure m=0.011 !B / f.u. comparable to recently
reported values,20,22 and grows by a factor of almost 50 by
1.02 GPa. A fit of the form m#T" to the 1.02 GPa data
yields an exponent "=0.05 that is too small to describe a
conventional continuous transition and is consistent with a
first-order transition. Compared to previous reports,16,19,20,22

these m!T" curves exhibit less curvature in the ordered state
and narrower transitions in T. This sharper discontinuity can
be attributed to more ideal hydrostatic conditions in the He
cell, resulting in less smearing of the transition. No hyster-
esis in T was observed. The moment m=0.52 !B determined
here is modestly larger than the previously reported value of
0.4 !B.20 However, a 0.52 !B static moment is still small
compared to the 1.2 !B transition moment of the !100" spin
excitation at ambient pressure.32

The increase in the ordered moment at T=1.5 K is shown
in Fig. 2. Vertical error bars represent one standard deviation
while the horizontal error bars reflect a 5% uncertainty in
P due to contraction of He at low T. These data illustrate
the sudden zero-T onset of AFM order from the HO

state. Between 0.75 and 0.85 GPa, the slope !m
!P

=3.5 !B f.u.−1 GPa−1 before it starts to saturate above 0.85
GPa. A fit of the form m# P" yields "=0.08, which is simi-
lar to the m!T" exponent and points to a discontinuous AFM
onset at low T. A mean-field fit poorly describes the data and
is clearly inapplicable. The midpoint of the transition is used
to define the zero-temperature critical pressure Pc
=0.80!1" GPa. Similar m!P" data from several recent
neutron-diffraction studies are presented for comparison,
showing that in He, the value of Pc is the highest by a sig-
nificant margin. The discrepancies in Pc between data sets
are attributable to the less hydrostatic media used:
Fluorinert19,20,22 and Daphne oil.21

The paramagnetic !PM"-HO transition temperature T0 was
determined via electrical-resistivity measurements on a small
piece of the URu2Si2 crystal. The P dependence of the #!T"
data is shown in Fig. 3. The anomaly takes the form of a
peak-trough structure with a sharp local minimum, by which
T0 is defined; the magnitude of !#

!T is exhibited in Fig. 3!b".
Applied pressure enhances T0, which has a linear P depen-
dence, and reduces #!T0", although the width $T0 of the
transition, from minimum to maximum, decreases only
slightly. These properties are all consistent with previous
studies. Below 10 K, #!T" is best described by a power law
with exponent approximately 1.7. In some recent studies,
#!T" data have also shown anomalies at the pressure induced
HO-AFM transition at Tx, although their magnitudes, or even
detectable presence, are sample dependent.24 These anoma-
lies are changes in slope most easily identified as secondary
peaks in !#

!T at temperatures less than T0.23,24 In the present
study, the systematic evolution of such features is absent in
two important P ranges: at 0.92 and 1.10 GPa, where they
would be expected based on the neutron-diffraction data !cf.
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Fig. 4!, and from 0.52 to 1.10 GPa, where they would be
expected if Tx matched previous studies.21–24 At 0.75 GPa, an
extra anomaly in !!

!T at 15 K is attributable to the loss of
hydrostaticity in a leaking cell just prior to failure. If this
anomaly really reflected the onset of AFM order, it should
also appear at higher P, but it is conspicuously absent.

A P-T phase diagram based on the m"T! and !"T! data is
presented in Fig. 4. Following Refs. 20 and 21, the HO-AFM
phase boundary Tx is defined where 50% of the full moment

is observed, while the error bars indicate where m"T! is 90%
of its full value. Due to the high-T tails in m"T! "Fig. 1! a
10% criterion is not directly associable with the onset of
long-range order and is not shown. This phase boundary has
a linear slope

!Tx

!P =58 K GPa−1, extrapolating to 0.78"5!
GPa. The T0 boundary, with error bars indicating "T0, is also
linear with a slope

!T0

!P =1.3 K GPa−1. The T0 boundary
seems robust between different reports, and in fact our T0
line agrees very well with that of Ref. 23. The T0 and Tx lines
extrapolate to an intersection at "1.1 GPa, 19 K!, but based
on most previous reports, the Tx boundary actually curves
and meets T0 at about 1.5 GPa. This could not be directly
confirmed in the present study because of the 1 GPa limit of
the pressure cell.

A comparison of the Tx boundary determined from our
data to previous reports shows clearly that it occurs at sig-
nificantly higher pressure in He. As shown in Fig. 4, the
other reported transitions occur between 0.5 and 0.7 GPa,
with the obvious exception of the data taken in He by Bour-
darot et al.,19 which show no moment up to 0.5 GPa. These
studies represent a variety of probes of the structural22–24 and
magnetic19–22 lattices. It is important to note that the dissi-
militude between the various reported phase boundaries is
not primarily due to sample dependence or measurement
technique. The HO-AFM transitions determined via thermal
expansion and Larmor diffraction have been shown to match
those defined using neutron-diffraction data.22,33 As already
noted, it has also been demonstrated that for the same
sample, the choice of pressure medium causes a pronounced
variation in the AFM onset.19,21 The higher value of Pc de-
termined in our study is thus attributable inherently to better
hydrostatic conditions.

There are several implications of the redefined phase
boundary. Although it has already been established that the
HO-AFM and PM-HO boundaries meet at a multicritical
point, it has been identified at three different pressures: 0.9
GPa,22 1.09 GPa,24 and 1.3 GPa.23 From our measurements
in He, it is clear that these boundaries actually meet at P
#1.02 GPa. Moreover, given the known reduction in

!Tx

!P at
higher P, an intersection between 1.3 and 1.5 GPa is most
likely. The higher value of Pc also implies that bulk SC
meets the HO-AFM boundary at 0 K. This is illustrated in
Fig. 4 using the SC 10% !"T! transition from Ref. 27 as an
indicator of bulk SC, which tracks well data at lower P from
bulk probes: specific heat23 and magnetic susceptibility.21

The main difference in a hydrostatic environment is that Tc is
suppressed continuously to 0 K and does not intersect the
HO-AFM boundary at finite T, as it does in less hydrostatic
pressure media.21,23 Thus, the reported P-driven discontinu-
ous SC phase transition21,23 is not intrinsic but likely due to
the premature onset of AFM order arising from a nonhydro-
static environment.

Most tantalizingly, the end point of the SC phase bound-
ary extrapolates to Pc, which suggests that the SC pairing
energy scale goes to zero exactly at the onset of long-range
AFM. The abruptness of the low-T onset of m"P! appears to
exclude a scenario where SC arises due to AFM critical fluc-
tuations. However, it is tempting to speculate that the "100!
AFM magnetic fluctuation spectrum, which has been shown
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performed in a piston-cylinder cell in a commercial cryostat
using a 1:1 volume mixture of n-pentane/isoamyl alcohol.
The superconducting transition of Sn was used as a manom-
eter.

To characterize the onset of AFM order, the intensity of
the magnetic !100" peak, a forbidden nuclear reflection, was
compared to the intensity of the nuclear !200" peak, which
was constant between 30 and 1.5 K. The magnitude of the
ordered moment was calibrated at 81.8 meV incident energy,
where extinction of the strong !200" peak was negligible.
Rocking scans of the !100" peak at 1.5 K are shown in the
inset of Fig. 1 with intensities normalized to the value at the
highest pressure of 1.02 GPa. The temperature dependence
of the ordered moment m!T" is shown in Fig. 1. At low T and
ambient pressure m=0.011 !B / f.u. comparable to recently
reported values,20,22 and grows by a factor of almost 50 by
1.02 GPa. A fit of the form m#T" to the 1.02 GPa data
yields an exponent "=0.05 that is too small to describe a
conventional continuous transition and is consistent with a
first-order transition. Compared to previous reports,16,19,20,22

these m!T" curves exhibit less curvature in the ordered state
and narrower transitions in T. This sharper discontinuity can
be attributed to more ideal hydrostatic conditions in the He
cell, resulting in less smearing of the transition. No hyster-
esis in T was observed. The moment m=0.52 !B determined
here is modestly larger than the previously reported value of
0.4 !B.20 However, a 0.52 !B static moment is still small
compared to the 1.2 !B transition moment of the !100" spin
excitation at ambient pressure.32

The increase in the ordered moment at T=1.5 K is shown
in Fig. 2. Vertical error bars represent one standard deviation
while the horizontal error bars reflect a 5% uncertainty in
P due to contraction of He at low T. These data illustrate
the sudden zero-T onset of AFM order from the HO

state. Between 0.75 and 0.85 GPa, the slope !m
!P

=3.5 !B f.u.−1 GPa−1 before it starts to saturate above 0.85
GPa. A fit of the form m# P" yields "=0.08, which is simi-
lar to the m!T" exponent and points to a discontinuous AFM
onset at low T. A mean-field fit poorly describes the data and
is clearly inapplicable. The midpoint of the transition is used
to define the zero-temperature critical pressure Pc
=0.80!1" GPa. Similar m!P" data from several recent
neutron-diffraction studies are presented for comparison,
showing that in He, the value of Pc is the highest by a sig-
nificant margin. The discrepancies in Pc between data sets
are attributable to the less hydrostatic media used:
Fluorinert19,20,22 and Daphne oil.21

The paramagnetic !PM"-HO transition temperature T0 was
determined via electrical-resistivity measurements on a small
piece of the URu2Si2 crystal. The P dependence of the #!T"
data is shown in Fig. 3. The anomaly takes the form of a
peak-trough structure with a sharp local minimum, by which
T0 is defined; the magnitude of !#

!T is exhibited in Fig. 3!b".
Applied pressure enhances T0, which has a linear P depen-
dence, and reduces #!T0", although the width $T0 of the
transition, from minimum to maximum, decreases only
slightly. These properties are all consistent with previous
studies. Below 10 K, #!T" is best described by a power law
with exponent approximately 1.7. In some recent studies,
#!T" data have also shown anomalies at the pressure induced
HO-AFM transition at Tx, although their magnitudes, or even
detectable presence, are sample dependent.24 These anoma-
lies are changes in slope most easily identified as secondary
peaks in !#

!T at temperatures less than T0.23,24 In the present
study, the systematic evolution of such features is absent in
two important P ranges: at 0.92 and 1.10 GPa, where they
would be expected based on the neutron-diffraction data !cf.
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Fig. 4!, and from 0.52 to 1.10 GPa, where they would be
expected if Tx matched previous studies.21–24 At 0.75 GPa, an
extra anomaly in !!

!T at 15 K is attributable to the loss of
hydrostaticity in a leaking cell just prior to failure. If this
anomaly really reflected the onset of AFM order, it should
also appear at higher P, but it is conspicuously absent.

A P-T phase diagram based on the m"T! and !"T! data is
presented in Fig. 4. Following Refs. 20 and 21, the HO-AFM
phase boundary Tx is defined where 50% of the full moment

is observed, while the error bars indicate where m"T! is 90%
of its full value. Due to the high-T tails in m"T! "Fig. 1! a
10% criterion is not directly associable with the onset of
long-range order and is not shown. This phase boundary has
a linear slope

!Tx

!P =58 K GPa−1, extrapolating to 0.78"5!
GPa. The T0 boundary, with error bars indicating "T0, is also
linear with a slope

!T0

!P =1.3 K GPa−1. The T0 boundary
seems robust between different reports, and in fact our T0
line agrees very well with that of Ref. 23. The T0 and Tx lines
extrapolate to an intersection at "1.1 GPa, 19 K!, but based
on most previous reports, the Tx boundary actually curves
and meets T0 at about 1.5 GPa. This could not be directly
confirmed in the present study because of the 1 GPa limit of
the pressure cell.

A comparison of the Tx boundary determined from our
data to previous reports shows clearly that it occurs at sig-
nificantly higher pressure in He. As shown in Fig. 4, the
other reported transitions occur between 0.5 and 0.7 GPa,
with the obvious exception of the data taken in He by Bour-
darot et al.,19 which show no moment up to 0.5 GPa. These
studies represent a variety of probes of the structural22–24 and
magnetic19–22 lattices. It is important to note that the dissi-
militude between the various reported phase boundaries is
not primarily due to sample dependence or measurement
technique. The HO-AFM transitions determined via thermal
expansion and Larmor diffraction have been shown to match
those defined using neutron-diffraction data.22,33 As already
noted, it has also been demonstrated that for the same
sample, the choice of pressure medium causes a pronounced
variation in the AFM onset.19,21 The higher value of Pc de-
termined in our study is thus attributable inherently to better
hydrostatic conditions.

There are several implications of the redefined phase
boundary. Although it has already been established that the
HO-AFM and PM-HO boundaries meet at a multicritical
point, it has been identified at three different pressures: 0.9
GPa,22 1.09 GPa,24 and 1.3 GPa.23 From our measurements
in He, it is clear that these boundaries actually meet at P
#1.02 GPa. Moreover, given the known reduction in

!Tx

!P at
higher P, an intersection between 1.3 and 1.5 GPa is most
likely. The higher value of Pc also implies that bulk SC
meets the HO-AFM boundary at 0 K. This is illustrated in
Fig. 4 using the SC 10% !"T! transition from Ref. 27 as an
indicator of bulk SC, which tracks well data at lower P from
bulk probes: specific heat23 and magnetic susceptibility.21

The main difference in a hydrostatic environment is that Tc is
suppressed continuously to 0 K and does not intersect the
HO-AFM boundary at finite T, as it does in less hydrostatic
pressure media.21,23 Thus, the reported P-driven discontinu-
ous SC phase transition21,23 is not intrinsic but likely due to
the premature onset of AFM order arising from a nonhydro-
static environment.

Most tantalizingly, the end point of the SC phase bound-
ary extrapolates to Pc, which suggests that the SC pairing
energy scale goes to zero exactly at the onset of long-range
AFM. The abruptness of the low-T onset of m"P! appears to
exclude a scenario where SC arises due to AFM critical fluc-
tuations. However, it is tempting to speculate that the "100!
AFM magnetic fluctuation spectrum, which has been shown
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associated with the AFM transition at Tx.
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stantially higher under hydrostatic conditions "Refs. 19–24!. The
redefined Tx suggests that SC and AFM phases meet at 0 K.
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Fig. 4!, and from 0.52 to 1.10 GPa, where they would be
expected if Tx matched previous studies.21–24 At 0.75 GPa, an
extra anomaly in !!

!T at 15 K is attributable to the loss of
hydrostaticity in a leaking cell just prior to failure. If this
anomaly really reflected the onset of AFM order, it should
also appear at higher P, but it is conspicuously absent.

A P-T phase diagram based on the m"T! and !"T! data is
presented in Fig. 4. Following Refs. 20 and 21, the HO-AFM
phase boundary Tx is defined where 50% of the full moment

is observed, while the error bars indicate where m"T! is 90%
of its full value. Due to the high-T tails in m"T! "Fig. 1! a
10% criterion is not directly associable with the onset of
long-range order and is not shown. This phase boundary has
a linear slope

!Tx

!P =58 K GPa−1, extrapolating to 0.78"5!
GPa. The T0 boundary, with error bars indicating "T0, is also
linear with a slope

!T0

!P =1.3 K GPa−1. The T0 boundary
seems robust between different reports, and in fact our T0
line agrees very well with that of Ref. 23. The T0 and Tx lines
extrapolate to an intersection at "1.1 GPa, 19 K!, but based
on most previous reports, the Tx boundary actually curves
and meets T0 at about 1.5 GPa. This could not be directly
confirmed in the present study because of the 1 GPa limit of
the pressure cell.

A comparison of the Tx boundary determined from our
data to previous reports shows clearly that it occurs at sig-
nificantly higher pressure in He. As shown in Fig. 4, the
other reported transitions occur between 0.5 and 0.7 GPa,
with the obvious exception of the data taken in He by Bour-
darot et al.,19 which show no moment up to 0.5 GPa. These
studies represent a variety of probes of the structural22–24 and
magnetic19–22 lattices. It is important to note that the dissi-
militude between the various reported phase boundaries is
not primarily due to sample dependence or measurement
technique. The HO-AFM transitions determined via thermal
expansion and Larmor diffraction have been shown to match
those defined using neutron-diffraction data.22,33 As already
noted, it has also been demonstrated that for the same
sample, the choice of pressure medium causes a pronounced
variation in the AFM onset.19,21 The higher value of Pc de-
termined in our study is thus attributable inherently to better
hydrostatic conditions.

There are several implications of the redefined phase
boundary. Although it has already been established that the
HO-AFM and PM-HO boundaries meet at a multicritical
point, it has been identified at three different pressures: 0.9
GPa,22 1.09 GPa,24 and 1.3 GPa.23 From our measurements
in He, it is clear that these boundaries actually meet at P
#1.02 GPa. Moreover, given the known reduction in

!Tx

!P at
higher P, an intersection between 1.3 and 1.5 GPa is most
likely. The higher value of Pc also implies that bulk SC
meets the HO-AFM boundary at 0 K. This is illustrated in
Fig. 4 using the SC 10% !"T! transition from Ref. 27 as an
indicator of bulk SC, which tracks well data at lower P from
bulk probes: specific heat23 and magnetic susceptibility.21

The main difference in a hydrostatic environment is that Tc is
suppressed continuously to 0 K and does not intersect the
HO-AFM boundary at finite T, as it does in less hydrostatic
pressure media.21,23 Thus, the reported P-driven discontinu-
ous SC phase transition21,23 is not intrinsic but likely due to
the premature onset of AFM order arising from a nonhydro-
static environment.

Most tantalizingly, the end point of the SC phase bound-
ary extrapolates to Pc, which suggests that the SC pairing
energy scale goes to zero exactly at the onset of long-range
AFM. The abruptness of the low-T onset of m"P! appears to
exclude a scenario where SC arises due to AFM critical fluc-
tuations. However, it is tempting to speculate that the "100!
AFM magnetic fluctuation spectrum, which has been shown
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the narrow transition width and the lack of any obvious features
associated with the AFM transition at Tx.
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data; the error bar represents "T0. Tx is defined where m"T! reaches
half of its full value, the vertical error bar 90%. The horizontal error
bar represents a 5% uncertainty in P. A comparison to published
data shows that the value of the AFM critical pressure Pc is sub-
stantially higher under hydrostatic conditions "Refs. 19–24!. The
redefined Tx suggests that SC and AFM phases meet at 0 K.
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external field is removed. The equilibrium order parameter is then defined as

ψ = lim
h→0

lim
V→∞

ψ(h,V).

To obtain the Landau function, F[ψ], must write G[h] in terms of ψ and then,

F[ψ] = G[h] + Vhψ = G[h] − h
∂G[h]
∂h
.

This expression for F[ψ] is a Legendre transformation of G[h]. Since δG = −Vψδh, δF = δG + Vδ(hψ) =
Vhδψ, so the inverse transformation is h = V−1 ∂F

∂ψ . If h = 0, then

hV =
∂F
∂ψ
= 0

which states the intuitively obvious fact that when h = 0, the equilibrium value of ψ is determined by a
stationary point of F[ψ].

Example 12.1: Consider a cubic nanomagnet of N = L3 Ising spins interacting via a nearest neighbor
ferromagnetic interaction of strength J. Suppose the dynamics can be approximated by Monte Carlo
dynamics, in which each spin is “updated” after a a time τ0. At T = 2J, (the bulk Tc = 4.52J) estimate
the time, in units of τ0 required to form a domain that will cross the entire sample. If τ0 = 1ns, estimate
the minimum size L for the decay time of the total magnetization to become comparable with the time
span of a Ph. D. degree.
Solution: To form a domain wall of area A ∼ L2 costs an free energy ∆F ∼ 2JL2, occuring with
probability p ∼ e−(∆F/T ). The time required for formation may be estimated to be

τ ∼ τ0 p−1 ∼ τ0e2JL2/T .

where the most important aspect of the estimate, is that the exponent grows with L2. Our naive estimate
does not take into account the configurational entropy (the number of ways of arranging a domain wall),
but it will give a rough idea of the required size. Putting τ0 ∼ 10−9 s and τ = 5y ∼ 108s for a typical Ph.
D, this requires τ/τ0 = 1019 ∼ e40, thus L ∼

√
40 ∼ 6. Already by about L3 = 403/2 ∼250 spins the time

for the magnetization to decay is of the order of years. By N ∼ 500, this same timescale has stretched
to the age of the universe.

12.2.2 The Landau Free energy

Landau theory concentrates on the region of small ψ, audaciously expanding the free energy of the many
body system as a simple polynomial:

fL[ψ] =
1
V

F[ψ] =
r
2
ψ2 +

u
4
ψ4. (12.4)

• The Landau free energy describes the leading dependence of the total free energy on ψ. The full free energy
is given by ftot = fn(T ) + f [ψ] + O[ψ4], where fn is the energy of the “normal” state without long range
order.
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!Fig. 12.3 (a) The Landau free energy F(ψ) as a function of temperature for an Ising order
parameter. Curves are displaced vertically for clarity. (b) Order parameter ψ as a
function of temperature for a finite field h > 0 and an infinitesimal field h = 0+.

• For an Ising order parameter, both the Hamiltonian and the free energy are an even function of ψ: H[ψ] =
H[−ψ]. We say that the system possesses a “global Z2 symmetry”, because the Hamiltonian is invariant
under transformations of the Z2 group that takes ψ→ ±ψ.

Provided r and u are greater than zero, the minimum of fL[ψ] lies at ψ = 0. Landau theory assumes that
the phase transition temperuture, r changes sign, so that

r = a(T − Tc)

as illustrated in Fig. 12.3 (a). The minimum of the free energy occurs when

d f
dψ
= 0 = rψ + uψ3 ⇒ ψ =

⎧⎪⎪⎨
⎪⎪⎩

0 (T > Tc)

±
√

a(Tc−T )
u (T < Tc)

(12.5)

so that for T < Tc, there are two minima of the free energy function (Fig. 12.3 (a)). Note that:

• if we cool the system in a tiny external field, the sign of the order parameter reflects the sign of the field
(Fig. 12.3 (b)):

ψ = sgn(h)

√
a(Tc − T )

u
, (T < Tc). (12.6)

This branch-cut along the temperature axis of the phase diagram, is an example of a first-order phase
boundary. The point T = Tc, h = 0 where the line ends is a “critical point”.

• If u < 0 the free energy becomes unbounded below. To cure this problem, the Landau free energy must be
expanded to sixth order in ψ:

f [ψ] =
1
V

F[ψ] =
r
2
ψ2 +

u
4
ψ4 +

u6

6
ψ6

When u < 0 the free energy curve develops three minima and the phase transition becomes first order;
the special point at r = h = u = 0 is a convergence of three critical points called a tri-critical point (see
exercise 12.3).
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ψ
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(b) ψ = ψ1 + iψ2
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ψ1

f(ψ)

f(ψ)
|ψ|

φ

!Fig. 12.5 Dependence of Free energy on order parameter for (a) an Ising order parameter
ψ = ψ1, showing two degenerate minima and (b) complex order parameter
ψ = ψ1 + iψ2 = |ψ|eiφ, where the the Landau free energy forms a “Mexican Hat
Potential” in which the free energy minimum forms a rim of degenerate states with
energy that is independent of the phase φ of the uniform order parameter.

is an essential component of broken continuous symmetry. In superfluids, the emergence of a well-defined
phase associated with the order parameter is intimately related to persistent currents, or superflow. We shall
shortly see that when we “twist” the phase, a superflow develops.

j⃗ ∝ ∇⃗φ.

To describe this rigidity, we need to take the next step, introducing a term into energy functional that keeps
track of the energy cost of a non-uniform order parameter. This leads us onto Landau Ginzburg theory.

12.3 Ginzburg Landau theory I: Ising order

Landau theory describes the energy cost of a uniform order parameter: a more general theory needs to ac-
count for inhomogenious order parameters in which the amplitude varies or the direction of the order param-
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external field is removed. The equilibrium order parameter is then defined as
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for the magnetization to decay is of the order of years. By N ∼ 500, this same timescale has stretched
to the age of the universe.

12.2.2 The Landau Free energy

Landau theory concentrates on the region of small ψ, audaciously expanding the free energy of the many
body system as a simple polynomial:

fL[ψ] =
1
V

F[ψ] =
r
2
ψ2 +

u
4
ψ4. (12.4)

• The Landau free energy describes the leading dependence of the total free energy on ψ. The full free energy
is given by ftot = fn(T ) + f [ψ] + O[ψ4], where fn is the energy of the “normal” state without long range
order.
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!Fig. 12.3 (a) The Landau free energy F(ψ) as a function of temperature for an Ising order
parameter. Curves are displaced vertically for clarity. (b) Order parameter ψ as a
function of temperature for a finite field h > 0 and an infinitesimal field h = 0+.

• For an Ising order parameter, both the Hamiltonian and the free energy are an even function of ψ: H[ψ] =
H[−ψ]. We say that the system possesses a “global Z2 symmetry”, because the Hamiltonian is invariant
under transformations of the Z2 group that takes ψ→ ±ψ.

Provided r and u are greater than zero, the minimum of fL[ψ] lies at ψ = 0. Landau theory assumes that
the phase transition temperuture, r changes sign, so that

r = a(T − Tc)

as illustrated in Fig. 12.3 (a). The minimum of the free energy occurs when

d f
dψ
= 0 = rψ + uψ3 ⇒ ψ =

⎧⎪⎪⎨
⎪⎪⎩

0 (T > Tc)

±
√

a(Tc−T )
u (T < Tc)

(12.5)

so that for T < Tc, there are two minima of the free energy function (Fig. 12.3 (a)). Note that:

• if we cool the system in a tiny external field, the sign of the order parameter reflects the sign of the field
(Fig. 12.3 (b)):

ψ = sgn(h)

√
a(Tc − T )

u
, (T < Tc). (12.6)

This branch-cut along the temperature axis of the phase diagram, is an example of a first-order phase
boundary. The point T = Tc, h = 0 where the line ends is a “critical point”.

• If u < 0 the free energy becomes unbounded below. To cure this problem, the Landau free energy must be
expanded to sixth order in ψ:

f [ψ] =
1
V

F[ψ] =
r
2
ψ2 +

u
4
ψ4 +

u6

6
ψ6

When u < 0 the free energy curve develops three minima and the phase transition becomes first order;
the special point at r = h = u = 0 is a convergence of three critical points called a tri-critical point (see
exercise 12.3).
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!Fig. 12.5 Dependence of Free energy on order parameter for (a) an Ising order parameter
ψ = ψ1, showing two degenerate minima and (b) complex order parameter
ψ = ψ1 + iψ2 = |ψ|eiφ, where the the Landau free energy forms a “Mexican Hat
Potential” in which the free energy minimum forms a rim of degenerate states with
energy that is independent of the phase φ of the uniform order parameter.

is an essential component of broken continuous symmetry. In superfluids, the emergence of a well-defined
phase associated with the order parameter is intimately related to persistent currents, or superflow. We shall
shortly see that when we “twist” the phase, a superflow develops.

j⃗ ∝ ∇⃗φ.

To describe this rigidity, we need to take the next step, introducing a term into energy functional that keeps
track of the energy cost of a non-uniform order parameter. This leads us onto Landau Ginzburg theory.

12.3 Ginzburg Landau theory I: Ising order

Landau theory describes the energy cost of a uniform order parameter: a more general theory needs to ac-
count for inhomogenious order parameters in which the amplitude varies or the direction of the order param-

340

Landau Theory

Broken Symmetry



Can Electron Order Parameters 
carry 1/2 integer Spin?

c⃝2013 Piers Coleman Chapter 12.

external field is removed. The equilibrium order parameter is then defined as

ψ = lim
h→0

lim
V→∞

ψ(h,V).

To obtain the Landau function, F[ψ], must write G[h] in terms of ψ and then,

F[ψ] = G[h] + Vhψ = G[h] − h
∂G[h]
∂h
.

This expression for F[ψ] is a Legendre transformation of G[h]. Since δG = −Vψδh, δF = δG + Vδ(hψ) =
Vhδψ, so the inverse transformation is h = V−1 ∂F

∂ψ . If h = 0, then

hV =
∂F
∂ψ
= 0

which states the intuitively obvious fact that when h = 0, the equilibrium value of ψ is determined by a
stationary point of F[ψ].

Example 12.1: Consider a cubic nanomagnet of N = L3 Ising spins interacting via a nearest neighbor
ferromagnetic interaction of strength J. Suppose the dynamics can be approximated by Monte Carlo
dynamics, in which each spin is “updated” after a a time τ0. At T = 2J, (the bulk Tc = 4.52J) estimate
the time, in units of τ0 required to form a domain that will cross the entire sample. If τ0 = 1ns, estimate
the minimum size L for the decay time of the total magnetization to become comparable with the time
span of a Ph. D. degree.
Solution: To form a domain wall of area A ∼ L2 costs an free energy ∆F ∼ 2JL2, occuring with
probability p ∼ e−(∆F/T ). The time required for formation may be estimated to be

τ ∼ τ0 p−1 ∼ τ0e2JL2/T .

where the most important aspect of the estimate, is that the exponent grows with L2. Our naive estimate
does not take into account the configurational entropy (the number of ways of arranging a domain wall),
but it will give a rough idea of the required size. Putting τ0 ∼ 10−9 s and τ = 5y ∼ 108s for a typical Ph.
D, this requires τ/τ0 = 1019 ∼ e40, thus L ∼

√
40 ∼ 6. Already by about L3 = 403/2 ∼250 spins the time

for the magnetization to decay is of the order of years. By N ∼ 500, this same timescale has stretched
to the age of the universe.

12.2.2 The Landau Free energy

Landau theory concentrates on the region of small ψ, audaciously expanding the free energy of the many
body system as a simple polynomial:

fL[ψ] =
1
V

F[ψ] =
r
2
ψ2 +

u
4
ψ4. (12.4)

• The Landau free energy describes the leading dependence of the total free energy on ψ. The full free energy
is given by ftot = fn(T ) + f [ψ] + O[ψ4], where fn is the energy of the “normal” state without long range
order.

335

Chapter 12. c⃝Piers Coleman 2013

TTc

ψ

h>0

ψ

(a) (b)F(   )ψ
cT>T

T<T

T=T

c

c

!Fig. 12.3 (a) The Landau free energy F(ψ) as a function of temperature for an Ising order
parameter. Curves are displaced vertically for clarity. (b) Order parameter ψ as a
function of temperature for a finite field h > 0 and an infinitesimal field h = 0+.

• For an Ising order parameter, both the Hamiltonian and the free energy are an even function of ψ: H[ψ] =
H[−ψ]. We say that the system possesses a “global Z2 symmetry”, because the Hamiltonian is invariant
under transformations of the Z2 group that takes ψ→ ±ψ.

Provided r and u are greater than zero, the minimum of fL[ψ] lies at ψ = 0. Landau theory assumes that
the phase transition temperuture, r changes sign, so that

r = a(T − Tc)

as illustrated in Fig. 12.3 (a). The minimum of the free energy occurs when

d f
dψ
= 0 = rψ + uψ3 ⇒ ψ =

⎧⎪⎪⎨
⎪⎪⎩

0 (T > Tc)

±
√

a(Tc−T )
u (T < Tc)

(12.5)

so that for T < Tc, there are two minima of the free energy function (Fig. 12.3 (a)). Note that:

• if we cool the system in a tiny external field, the sign of the order parameter reflects the sign of the field
(Fig. 12.3 (b)):

ψ = sgn(h)

√
a(Tc − T )

u
, (T < Tc). (12.6)

This branch-cut along the temperature axis of the phase diagram, is an example of a first-order phase
boundary. The point T = Tc, h = 0 where the line ends is a “critical point”.

• If u < 0 the free energy becomes unbounded below. To cure this problem, the Landau free energy must be
expanded to sixth order in ψ:

f [ψ] =
1
V

F[ψ] =
r
2
ψ2 +

u
4
ψ4 +

u6

6
ψ6

When u < 0 the free energy curve develops three minima and the phase transition becomes first order;
the special point at r = h = u = 0 is a convergence of three critical points called a tri-critical point (see
exercise 12.3).
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!Fig. 12.5 Dependence of Free energy on order parameter for (a) an Ising order parameter
ψ = ψ1, showing two degenerate minima and (b) complex order parameter
ψ = ψ1 + iψ2 = |ψ|eiφ, where the the Landau free energy forms a “Mexican Hat
Potential” in which the free energy minimum forms a rim of degenerate states with
energy that is independent of the phase φ of the uniform order parameter.

is an essential component of broken continuous symmetry. In superfluids, the emergence of a well-defined
phase associated with the order parameter is intimately related to persistent currents, or superflow. We shall
shortly see that when we “twist” the phase, a superflow develops.

j⃗ ∝ ∇⃗φ.

To describe this rigidity, we need to take the next step, introducing a term into energy functional that keeps
track of the energy cost of a non-uniform order parameter. This leads us onto Landau Ginzburg theory.

12.3 Ginzburg Landau theory I: Ising order

Landau theory describes the energy cost of a uniform order parameter: a more general theory needs to ac-
count for inhomogenious order parameters in which the amplitude varies or the direction of the order param-
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external field is removed. The equilibrium order parameter is then defined as

ψ = lim
h→0

lim
V→∞

ψ(h,V).

To obtain the Landau function, F[ψ], must write G[h] in terms of ψ and then,

F[ψ] = G[h] + Vhψ = G[h] − h
∂G[h]
∂h
.

This expression for F[ψ] is a Legendre transformation of G[h]. Since δG = −Vψδh, δF = δG + Vδ(hψ) =
Vhδψ, so the inverse transformation is h = V−1 ∂F

∂ψ . If h = 0, then

hV =
∂F
∂ψ
= 0

which states the intuitively obvious fact that when h = 0, the equilibrium value of ψ is determined by a
stationary point of F[ψ].

Example 12.1: Consider a cubic nanomagnet of N = L3 Ising spins interacting via a nearest neighbor
ferromagnetic interaction of strength J. Suppose the dynamics can be approximated by Monte Carlo
dynamics, in which each spin is “updated” after a a time τ0. At T = 2J, (the bulk Tc = 4.52J) estimate
the time, in units of τ0 required to form a domain that will cross the entire sample. If τ0 = 1ns, estimate
the minimum size L for the decay time of the total magnetization to become comparable with the time
span of a Ph. D. degree.
Solution: To form a domain wall of area A ∼ L2 costs an free energy ∆F ∼ 2JL2, occuring with
probability p ∼ e−(∆F/T ). The time required for formation may be estimated to be

τ ∼ τ0 p−1 ∼ τ0e2JL2/T .

where the most important aspect of the estimate, is that the exponent grows with L2. Our naive estimate
does not take into account the configurational entropy (the number of ways of arranging a domain wall),
but it will give a rough idea of the required size. Putting τ0 ∼ 10−9 s and τ = 5y ∼ 108s for a typical Ph.
D, this requires τ/τ0 = 1019 ∼ e40, thus L ∼

√
40 ∼ 6. Already by about L3 = 403/2 ∼250 spins the time

for the magnetization to decay is of the order of years. By N ∼ 500, this same timescale has stretched
to the age of the universe.

12.2.2 The Landau Free energy

Landau theory concentrates on the region of small ψ, audaciously expanding the free energy of the many
body system as a simple polynomial:

fL[ψ] =
1
V

F[ψ] =
r
2
ψ2 +

u
4
ψ4. (12.4)

• The Landau free energy describes the leading dependence of the total free energy on ψ. The full free energy
is given by ftot = fn(T ) + f [ψ] + O[ψ4], where fn is the energy of the “normal” state without long range
order.
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!Fig. 12.3 (a) The Landau free energy F(ψ) as a function of temperature for an Ising order
parameter. Curves are displaced vertically for clarity. (b) Order parameter ψ as a
function of temperature for a finite field h > 0 and an infinitesimal field h = 0+.

• For an Ising order parameter, both the Hamiltonian and the free energy are an even function of ψ: H[ψ] =
H[−ψ]. We say that the system possesses a “global Z2 symmetry”, because the Hamiltonian is invariant
under transformations of the Z2 group that takes ψ→ ±ψ.

Provided r and u are greater than zero, the minimum of fL[ψ] lies at ψ = 0. Landau theory assumes that
the phase transition temperuture, r changes sign, so that

r = a(T − Tc)

as illustrated in Fig. 12.3 (a). The minimum of the free energy occurs when

d f
dψ
= 0 = rψ + uψ3 ⇒ ψ =

⎧⎪⎪⎨
⎪⎪⎩

0 (T > Tc)

±
√

a(Tc−T )
u (T < Tc)

(12.5)

so that for T < Tc, there are two minima of the free energy function (Fig. 12.3 (a)). Note that:

• if we cool the system in a tiny external field, the sign of the order parameter reflects the sign of the field
(Fig. 12.3 (b)):

ψ = sgn(h)

√
a(Tc − T )

u
, (T < Tc). (12.6)

This branch-cut along the temperature axis of the phase diagram, is an example of a first-order phase
boundary. The point T = Tc, h = 0 where the line ends is a “critical point”.

• If u < 0 the free energy becomes unbounded below. To cure this problem, the Landau free energy must be
expanded to sixth order in ψ:

f [ψ] =
1
V

F[ψ] =
r
2
ψ2 +

u
4
ψ4 +

u6

6
ψ6

When u < 0 the free energy curve develops three minima and the phase transition becomes first order;
the special point at r = h = u = 0 is a convergence of three critical points called a tri-critical point (see
exercise 12.3).
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!Fig. 12.5 Dependence of Free energy on order parameter for (a) an Ising order parameter
ψ = ψ1, showing two degenerate minima and (b) complex order parameter
ψ = ψ1 + iψ2 = |ψ|eiφ, where the the Landau free energy forms a “Mexican Hat
Potential” in which the free energy minimum forms a rim of degenerate states with
energy that is independent of the phase φ of the uniform order parameter.

is an essential component of broken continuous symmetry. In superfluids, the emergence of a well-defined
phase associated with the order parameter is intimately related to persistent currents, or superflow. We shall
shortly see that when we “twist” the phase, a superflow develops.

j⃗ ∝ ∇⃗φ.

To describe this rigidity, we need to take the next step, introducing a term into energy functional that keeps
track of the energy cost of a non-uniform order parameter. This leads us onto Landau Ginzburg theory.

12.3 Ginzburg Landau theory I: Ising order

Landau theory describes the energy cost of a uniform order parameter: a more general theory needs to ac-
count for inhomogenious order parameters in which the amplitude varies or the direction of the order param-
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external field is removed. The equilibrium order parameter is then defined as

ψ = lim
h→0

lim
V→∞

ψ(h,V).

To obtain the Landau function, F[ψ], must write G[h] in terms of ψ and then,

F[ψ] = G[h] + Vhψ = G[h] − h
∂G[h]
∂h
.

This expression for F[ψ] is a Legendre transformation of G[h]. Since δG = −Vψδh, δF = δG + Vδ(hψ) =
Vhδψ, so the inverse transformation is h = V−1 ∂F

∂ψ . If h = 0, then

hV =
∂F
∂ψ
= 0

which states the intuitively obvious fact that when h = 0, the equilibrium value of ψ is determined by a
stationary point of F[ψ].

Example 12.1: Consider a cubic nanomagnet of N = L3 Ising spins interacting via a nearest neighbor
ferromagnetic interaction of strength J. Suppose the dynamics can be approximated by Monte Carlo
dynamics, in which each spin is “updated” after a a time τ0. At T = 2J, (the bulk Tc = 4.52J) estimate
the time, in units of τ0 required to form a domain that will cross the entire sample. If τ0 = 1ns, estimate
the minimum size L for the decay time of the total magnetization to become comparable with the time
span of a Ph. D. degree.
Solution: To form a domain wall of area A ∼ L2 costs an free energy ∆F ∼ 2JL2, occuring with
probability p ∼ e−(∆F/T ). The time required for formation may be estimated to be

τ ∼ τ0 p−1 ∼ τ0e2JL2/T .

where the most important aspect of the estimate, is that the exponent grows with L2. Our naive estimate
does not take into account the configurational entropy (the number of ways of arranging a domain wall),
but it will give a rough idea of the required size. Putting τ0 ∼ 10−9 s and τ = 5y ∼ 108s for a typical Ph.
D, this requires τ/τ0 = 1019 ∼ e40, thus L ∼

√
40 ∼ 6. Already by about L3 = 403/2 ∼250 spins the time

for the magnetization to decay is of the order of years. By N ∼ 500, this same timescale has stretched
to the age of the universe.

12.2.2 The Landau Free energy

Landau theory concentrates on the region of small ψ, audaciously expanding the free energy of the many
body system as a simple polynomial:

fL[ψ] =
1
V

F[ψ] =
r
2
ψ2 +

u
4
ψ4. (12.4)

• The Landau free energy describes the leading dependence of the total free energy on ψ. The full free energy
is given by ftot = fn(T ) + f [ψ] + O[ψ4], where fn is the energy of the “normal” state without long range
order.
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!Fig. 12.3 (a) The Landau free energy F(ψ) as a function of temperature for an Ising order
parameter. Curves are displaced vertically for clarity. (b) Order parameter ψ as a
function of temperature for a finite field h > 0 and an infinitesimal field h = 0+.

• For an Ising order parameter, both the Hamiltonian and the free energy are an even function of ψ: H[ψ] =
H[−ψ]. We say that the system possesses a “global Z2 symmetry”, because the Hamiltonian is invariant
under transformations of the Z2 group that takes ψ→ ±ψ.

Provided r and u are greater than zero, the minimum of fL[ψ] lies at ψ = 0. Landau theory assumes that
the phase transition temperuture, r changes sign, so that

r = a(T − Tc)

as illustrated in Fig. 12.3 (a). The minimum of the free energy occurs when

d f
dψ
= 0 = rψ + uψ3 ⇒ ψ =

⎧⎪⎪⎨
⎪⎪⎩

0 (T > Tc)

±
√

a(Tc−T )
u (T < Tc)

(12.5)

so that for T < Tc, there are two minima of the free energy function (Fig. 12.3 (a)). Note that:

• if we cool the system in a tiny external field, the sign of the order parameter reflects the sign of the field
(Fig. 12.3 (b)):

ψ = sgn(h)

√
a(Tc − T )

u
, (T < Tc). (12.6)

This branch-cut along the temperature axis of the phase diagram, is an example of a first-order phase
boundary. The point T = Tc, h = 0 where the line ends is a “critical point”.

• If u < 0 the free energy becomes unbounded below. To cure this problem, the Landau free energy must be
expanded to sixth order in ψ:

f [ψ] =
1
V

F[ψ] =
r
2
ψ2 +

u
4
ψ4 +

u6

6
ψ6

When u < 0 the free energy curve develops three minima and the phase transition becomes first order;
the special point at r = h = u = 0 is a convergence of three critical points called a tri-critical point (see
exercise 12.3).
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ψ = ψ1

ψ

ψ1

ψ2

(b) ψ = ψ1 + iψ2
(a)

ψ1

f(ψ)

f(ψ)
|ψ|

φ

!Fig. 12.5 Dependence of Free energy on order parameter for (a) an Ising order parameter
ψ = ψ1, showing two degenerate minima and (b) complex order parameter
ψ = ψ1 + iψ2 = |ψ|eiφ, where the the Landau free energy forms a “Mexican Hat
Potential” in which the free energy minimum forms a rim of degenerate states with
energy that is independent of the phase φ of the uniform order parameter.

is an essential component of broken continuous symmetry. In superfluids, the emergence of a well-defined
phase associated with the order parameter is intimately related to persistent currents, or superflow. We shall
shortly see that when we “twist” the phase, a superflow develops.

j⃗ ∝ ∇⃗φ.

To describe this rigidity, we need to take the next step, introducing a term into energy functional that keeps
track of the energy cost of a non-uniform order parameter. This leads us onto Landau Ginzburg theory.

12.3 Ginzburg Landau theory I: Ising order

Landau theory describes the energy cost of a uniform order parameter: a more general theory needs to ac-
count for inhomogenious order parameters in which the amplitude varies or the direction of the order param-
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FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
µ

2
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(g2
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c

sin ✓)H alongH =
H(cos ✓, 0, sin ✓) [where ⇢ is the electronic density-of-
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µBg

⇤
eff
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H defines an e↵ective
g-factor

g⇤
e↵

=
q

g2
c

sin2 ✓ + g2
a

cos2 ✓ (3)

that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c

�a
=

�
gc

ga

�
2

.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a

�b
=

�
gc

ga

�
2

made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu

2

Si
2

. The finding of a large
anisotropic impurity susceptibility ( �c

�a
⇠ 140) in the di-

M. M. Altarawneh, N. Harrison, S. E. Sebastian, et al.,  PRL (2011).  
H. Ohkuni et al., Phil. Mag. B 79, 1045 (1999).

!c =
eB

m⇤

g

2

eB

2me



B

✓

Quantum Oscillations and Spin Zeros

m⇤

me
g(�) = 2n + 1

Spin Zero condition

M / cos


2⇡

Zeeman

cyclotron

�

2

FIG. 1: a. Upper critical field Hc2 of the superconduct-
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ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
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the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.
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pling provides the means by which such an anisotropy
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netic moment), Kondo singlets can be considered the re-
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rity and conduction electron states expanded as partial
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FIG. 3: a, Schematic showing the polarization of a parabolic
band caused by Zeeman splitting 2h resulting in the depopu-
lation of the minority spin component above a characteristic
field Hp defined in Eqn (1), b, Polar plot of the measured
�-dependent e⇥ective g-factor in URu2Si2 [18, 30] (black cir-
cles) together with a fit to g⇤ = gz cos � (black circle), where
gz = 2.6 (assuming the pseudospin convention of 1

2 ), and its
comparison with an isotropic g = 2 (red circle). c, Schematic
of the field-dependent cross-sectional areas of the up and
down-spin components for a Fermi surface consisting of a sin-
gle pocket, together with the ‘back projected’ quantum oscil-
lation frequency before F and after F +�F polarization. d,
The same schematic in which the frequency change �F 0 re-
sulting from polarization is weaker due to additional pockets
acting as a thermal reservoir.

made complicated by the spin dependence of the e⇥ective
mass [31, 32], URu2Si2 proves to be a simple exception.
16 spin zeroes are observed in the angle-dependent am-
plitude on rotating ⌃ [18], enabling the angle-dependence
of g⇤ to be mapped to greater detail than in any other
known material [29]. Each spin zero corresponds to an
odd integer value of the product m⇤g⇤/me (where me

is the free electron mass) at which the contributions of
two spin components destructively interfere. On plot-
ting the ⌃-dependence of g⇤ obtained after dividing this
product by the ⌃-dependent e⇥ective mass, g⇤ can be
seen to be extremely anisotropic compared to that g ⌅ 2
of ordinary free electrons. Such anisotropy implies that
the spin quantum numbers of the local 5f2 moments in
URu2Si2 are incorporated into the Fermi surface [30].
While g⇤ ⌅ 0 when H lies in the planes, reflecting the
vanishing Pauli susceptibility at that orientation, it rises
to a large value g⇤ ⌅ 2.6 when H is aligned along the
c-axis (as in the current experiment) causing spin polar-
ization to become a significant factor. In Fig. 1b we use
g⇤ ⌅ 2.6 to estimate the field

µ0Hp =
2Fme

m⇤g⇤
(1)

at which each pocket is expected to become spin polar-
ized. On comparing these values with the average inverse
applied magnetic field 1/(1/H), the frequency shifts tak-
ing place on entering magnetoresistance regimes IB and
IC can be seen to be correlated with the respective po-
larization of ⇤ and ⇥ (with ⇧ already being polarized for
µ0H ⇧ 11 T). Uncertainty in our estimated Hp values

originates from the experimental error in m⇤ and non-
linarities in the magnetization � the latter becoming rel-
evant above ⇤ 30 T [25, 26]. The observation of spin
zeroes in URu2Si2 [18] implies that the Zeeman splitting
is very linear (i.e. exhibiting spin-independent masses)
for H . 20 T.

To understand the shifts in frequency, we turn to the
schematics in Figs. 3c and d. For H < Hp, the field-
dependent Zeeman split pocket areas (Fig. 3c) yield a
‘back projected’ constant frequency of F = ( ~

2⇡e )A0,
where A0 is the area at H = 0, and a spin damping
factor Rs = cos(⇡m

⇤g⇤

2me
) [29] resulting from the relative

shift in phase between spin-up and -down quantum os-
cillations. Once H > Hp, however, the areas no longer
change with field, giving rise to a ‘back projected’ fre-
quency of F+�F ⌅ 3

⌥
4F that is shifted from its original

value. Here, we assume ellipsoidal pockets whose k-space
volumes for a single spin are double those for two spins.

The combined thermal mass (i.e. the Sommerfeld co-
e⇧cient) of multiple pockets in URu2Si2 will act as a
charge reservoir, causing the frequency shift to be re-
duced. The size of the reduction is approximately given
by the ratio �iP

i �i
of the thermal mass ⇤i ⌃ n

⌥
Fm⇤ of

the pocket undergoing polarization to the total thermal
mass

P
i ⇤i of all pockets (i = �, ⇥, ⇤, ⇧ and ⌅). Hence

�F 0 ⇤ �F ⇥
� �iP

i �i

�
. An inevitable consequence of the

minority spin being depopulated at Hp is that the chem-
ical potential must become field-dependent in order to
maintain charge neutrality, causing a shift in the back-
projected frequency of all pockets [28] � the sign of the
shift being opposite for opposing carrier types (i.e. � and
⇥ shift in opposite directions consistent with band pre-
dictions [11]). If we assume that all pockets occur once
in the Brillouin zone such that n = 1, with the exception
of ⇥ for which n = 4 [11, 24], we obtain �F 0 ⇤ 20 T and
150 T for the polarization of the ⇤ and ⇥ pockets respec-
tively. We can now understand why the second frequency
shift (between IB and IC) involving the ⇥ pocket polar-
ization is larger than the first (between IA and IB) in
Fig. 2� the ⇥ pocket represents a significantly greater
fraction of the total density-of-states.

While the non-linear magnetic susceptibility at fields
above ⌅ 30 T [25, 26] likely invalidates the simple form
assumed in Eqn (1) within that regime, the irregular ap-
pearance of the waveform and significant changes in the
Hall e⇥ect [27] suggest that �, ⌅ or both become polar-
ized in region ID. It is therefore likely that the polar-
ization of the majority of the Fermi surface precedes the
destruction of the HO phase I at ⌅ 35 T [26]. Finally,
in Fig. 4 we turn to the oscillatory structures obtained
within phases V and III on rising and falling magnetic
field � the hysteresis (see Fig. 1a) [4] causing the field
interval within each phase to become dependent on the
field sweep direction. The spacing in 1/H between con-
secutive oscillations corresponds to dominant frequencies
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made complicated by the spin dependence of the e⇥ective
mass [31, 32], URu2Si2 proves to be a simple exception.
16 spin zeroes are observed in the angle-dependent am-
plitude on rotating ⌃ [18], enabling the angle-dependence
of g⇤ to be mapped to greater detail than in any other
known material [29]. Each spin zero corresponds to an
odd integer value of the product m⇤g⇤/me (where me

is the free electron mass) at which the contributions of
two spin components destructively interfere. On plot-
ting the ⌃-dependence of g⇤ obtained after dividing this
product by the ⌃-dependent e⇥ective mass, g⇤ can be
seen to be extremely anisotropic compared to that g ⌅ 2
of ordinary free electrons. Such anisotropy implies that
the spin quantum numbers of the local 5f2 moments in
URu2Si2 are incorporated into the Fermi surface [30].
While g⇤ ⌅ 0 when H lies in the planes, reflecting the
vanishing Pauli susceptibility at that orientation, it rises
to a large value g⇤ ⌅ 2.6 when H is aligned along the
c-axis (as in the current experiment) causing spin polar-
ization to become a significant factor. In Fig. 1b we use
g⇤ ⌅ 2.6 to estimate the field

µ0Hp =
2Fme

m⇤g⇤
(1)

at which each pocket is expected to become spin polar-
ized. On comparing these values with the average inverse
applied magnetic field 1/(1/H), the frequency shifts tak-
ing place on entering magnetoresistance regimes IB and
IC can be seen to be correlated with the respective po-
larization of ⇤ and ⇥ (with ⇧ already being polarized for
µ0H ⇧ 11 T). Uncertainty in our estimated Hp values

originates from the experimental error in m⇤ and non-
linarities in the magnetization � the latter becoming rel-
evant above ⇤ 30 T [25, 26]. The observation of spin
zeroes in URu2Si2 [18] implies that the Zeeman splitting
is very linear (i.e. exhibiting spin-independent masses)
for H . 20 T.

To understand the shifts in frequency, we turn to the
schematics in Figs. 3c and d. For H < Hp, the field-
dependent Zeeman split pocket areas (Fig. 3c) yield a
‘back projected’ constant frequency of F = ( ~

2⇡e )A0,
where A0 is the area at H = 0, and a spin damping
factor Rs = cos(⇡m

⇤g⇤

2me
) [29] resulting from the relative

shift in phase between spin-up and -down quantum os-
cillations. Once H > Hp, however, the areas no longer
change with field, giving rise to a ‘back projected’ fre-
quency of F+�F ⌅ 3

⌥
4F that is shifted from its original

value. Here, we assume ellipsoidal pockets whose k-space
volumes for a single spin are double those for two spins.

The combined thermal mass (i.e. the Sommerfeld co-
e⇧cient) of multiple pockets in URu2Si2 will act as a
charge reservoir, causing the frequency shift to be re-
duced. The size of the reduction is approximately given
by the ratio �iP

i �i
of the thermal mass ⇤i ⌃ n

⌥
Fm⇤ of

the pocket undergoing polarization to the total thermal
mass

P
i ⇤i of all pockets (i = �, ⇥, ⇤, ⇧ and ⌅). Hence

�F 0 ⇤ �F ⇥
� �iP

i �i

�
. An inevitable consequence of the

minority spin being depopulated at Hp is that the chem-
ical potential must become field-dependent in order to
maintain charge neutrality, causing a shift in the back-
projected frequency of all pockets [28] � the sign of the
shift being opposite for opposing carrier types (i.e. � and
⇥ shift in opposite directions consistent with band pre-
dictions [11]). If we assume that all pockets occur once
in the Brillouin zone such that n = 1, with the exception
of ⇥ for which n = 4 [11, 24], we obtain �F 0 ⇤ 20 T and
150 T for the polarization of the ⇤ and ⇥ pockets respec-
tively. We can now understand why the second frequency
shift (between IB and IC) involving the ⇥ pocket polar-
ization is larger than the first (between IA and IB) in
Fig. 2� the ⇥ pocket represents a significantly greater
fraction of the total density-of-states.

While the non-linear magnetic susceptibility at fields
above ⌅ 30 T [25, 26] likely invalidates the simple form
assumed in Eqn (1) within that regime, the irregular ap-
pearance of the waveform and significant changes in the
Hall e⇥ect [27] suggest that �, ⌅ or both become polar-
ized in region ID. It is therefore likely that the polar-
ization of the majority of the Fermi surface precedes the
destruction of the HO phase I at ⌅ 35 T [26]. Finally,
in Fig. 4 we turn to the oscillatory structures obtained
within phases V and III on rising and falling magnetic
field � the hysteresis (see Fig. 1a) [4] causing the field
interval within each phase to become dependent on the
field sweep direction. The spacing in 1/H between con-
secutive oscillations corresponds to dominant frequencies
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FIG. 3: a, Schematic showing the polarization of a parabolic
band caused by Zeeman splitting 2h resulting in the depopu-
lation of the minority spin component above a characteristic
field Hp defined in Eqn (1), b, Polar plot of the measured
�-dependent e⇥ective g-factor in URu2Si2 [18, 30] (black cir-
cles) together with a fit to g⇤ = gz cos � (black circle), where
gz = 2.6 (assuming the pseudospin convention of 1

2 ), and its
comparison with an isotropic g = 2 (red circle). c, Schematic
of the field-dependent cross-sectional areas of the up and
down-spin components for a Fermi surface consisting of a sin-
gle pocket, together with the ‘back projected’ quantum oscil-
lation frequency before F and after F +�F polarization. d,
The same schematic in which the frequency change �F 0 re-
sulting from polarization is weaker due to additional pockets
acting as a thermal reservoir.

made complicated by the spin dependence of the e⇥ective
mass [31, 32], URu2Si2 proves to be a simple exception.
16 spin zeroes are observed in the angle-dependent am-
plitude on rotating ⌃ [18], enabling the angle-dependence
of g⇤ to be mapped to greater detail than in any other
known material [29]. Each spin zero corresponds to an
odd integer value of the product m⇤g⇤/me (where me

is the free electron mass) at which the contributions of
two spin components destructively interfere. On plot-
ting the ⌃-dependence of g⇤ obtained after dividing this
product by the ⌃-dependent e⇥ective mass, g⇤ can be
seen to be extremely anisotropic compared to that g ⌅ 2
of ordinary free electrons. Such anisotropy implies that
the spin quantum numbers of the local 5f2 moments in
URu2Si2 are incorporated into the Fermi surface [30].
While g⇤ ⌅ 0 when H lies in the planes, reflecting the
vanishing Pauli susceptibility at that orientation, it rises
to a large value g⇤ ⌅ 2.6 when H is aligned along the
c-axis (as in the current experiment) causing spin polar-
ization to become a significant factor. In Fig. 1b we use
g⇤ ⌅ 2.6 to estimate the field

µ0Hp =
2Fme

m⇤g⇤
(1)

at which each pocket is expected to become spin polar-
ized. On comparing these values with the average inverse
applied magnetic field 1/(1/H), the frequency shifts tak-
ing place on entering magnetoresistance regimes IB and
IC can be seen to be correlated with the respective po-
larization of ⇤ and ⇥ (with ⇧ already being polarized for
µ0H ⇧ 11 T). Uncertainty in our estimated Hp values

originates from the experimental error in m⇤ and non-
linarities in the magnetization � the latter becoming rel-
evant above ⇤ 30 T [25, 26]. The observation of spin
zeroes in URu2Si2 [18] implies that the Zeeman splitting
is very linear (i.e. exhibiting spin-independent masses)
for H . 20 T.

To understand the shifts in frequency, we turn to the
schematics in Figs. 3c and d. For H < Hp, the field-
dependent Zeeman split pocket areas (Fig. 3c) yield a
‘back projected’ constant frequency of F = ( ~

2⇡e )A0,
where A0 is the area at H = 0, and a spin damping
factor Rs = cos(⇡m
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) [29] resulting from the relative

shift in phase between spin-up and -down quantum os-
cillations. Once H > Hp, however, the areas no longer
change with field, giving rise to a ‘back projected’ fre-
quency of F+�F ⌅ 3

⌥
4F that is shifted from its original

value. Here, we assume ellipsoidal pockets whose k-space
volumes for a single spin are double those for two spins.

The combined thermal mass (i.e. the Sommerfeld co-
e⇧cient) of multiple pockets in URu2Si2 will act as a
charge reservoir, causing the frequency shift to be re-
duced. The size of the reduction is approximately given
by the ratio �iP
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of the thermal mass ⇤i ⌃ n
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i ⇤i of all pockets (i = �, ⇥, ⇤, ⇧ and ⌅). Hence
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. An inevitable consequence of the

minority spin being depopulated at Hp is that the chem-
ical potential must become field-dependent in order to
maintain charge neutrality, causing a shift in the back-
projected frequency of all pockets [28] � the sign of the
shift being opposite for opposing carrier types (i.e. � and
⇥ shift in opposite directions consistent with band pre-
dictions [11]). If we assume that all pockets occur once
in the Brillouin zone such that n = 1, with the exception
of ⇥ for which n = 4 [11, 24], we obtain �F 0 ⇤ 20 T and
150 T for the polarization of the ⇤ and ⇥ pockets respec-
tively. We can now understand why the second frequency
shift (between IB and IC) involving the ⇥ pocket polar-
ization is larger than the first (between IA and IB) in
Fig. 2� the ⇥ pocket represents a significantly greater
fraction of the total density-of-states.

While the non-linear magnetic susceptibility at fields
above ⌅ 30 T [25, 26] likely invalidates the simple form
assumed in Eqn (1) within that regime, the irregular ap-
pearance of the waveform and significant changes in the
Hall e⇥ect [27] suggest that �, ⌅ or both become polar-
ized in region ID. It is therefore likely that the polar-
ization of the majority of the Fermi surface precedes the
destruction of the HO phase I at ⌅ 35 T [26]. Finally,
in Fig. 4 we turn to the oscillatory structures obtained
within phases V and III on rising and falling magnetic
field � the hysteresis (see Fig. 1a) [4] causing the field
interval within each phase to become dependent on the
field sweep direction. The spacing in 1/H between con-
secutive oscillations corresponds to dominant frequencies
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FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
µ

2
B
2

(g2
a

cos ✓, 0, g2
c

sin ✓)H alongH =
H(cos ✓, 0, sin ✓) [where ⇢ is the electronic density-of-

states], setting M · Ĥ = ⇢
µBg

⇤
eff

2

H defines an e↵ective
g-factor

g⇤
e↵

=
q

g2
c

sin2 ✓ + g2
a

cos2 ✓ (3)

that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c

�a
=

�
gc

ga

�
2

.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a

�b
=

�
gc

ga

�
2

made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu

2

Si
2

. The finding of a large
anisotropic impurity susceptibility ( �c

�a
⇠ 140) in the di-
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Superconducting pairs with extreme uniaxial anisotropy in URu2Si2
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We report measurements of the upper critical field on high quality single crystals of URu2Si2 and
find the e↵ective g-factor estimated from the Pauli limit to agree remarkably well with that found in
quantum oscillation experiments, both quantitatively and in the extreme anisotropy (⇡ 103) of the
quasiparticle spin susceptibility implied. These findings not only establish the unexpected integrity
of robust fermion particles subject to pairing in a heavy fermion superconductor, but also indicate
the quasiparticles to originate from a Kondo lattice of non Kramers doublets. The implications for
momentum-space versus local pairing are discussed.

The resolution of distinct fermion particles is a crucial
factor in identifying the mechanisms of pairing in super-
fluids [1, 2] and conventional superconductors [3]. Yet,
such a situation is far from realized in unconventional
superconductors in proximity to magnetism [4–7]. While
experiments establish heavy fermion behavior in numer-
ous materials [8], a clear experimental demonstration of
twofold spin degenerate quasiparticles in keeping with
conventional notions of momentum-space pairing [9–11]
has not been made. Of particular interest are uranium-
based superconductors, where the large orbital degen-
eracy of the magnetic degrees of freedom to which the
conduction electrons are coupled is believed to be split
into low energy singlets or non Kramers doublets in the
crystalline environment [12–18].

Here we probe the origin of the superconducting state
in URu

2

Si
2

by measuring the upper critical field in high
quality single crystals. Rather than fitting directly to a
model [19], we compare the estimated e↵ective g-factor
of the paired quasiparticles determined using the Pauli
limit [20] against that of the unpaired quasiparticles de-
termined from spin zeroes in magnetic quantum oscil-
lation experiments [21, 22]. We find the two to be in
excellent quantitative agreement over a broad range of
angles, establishing URu

2

Si
2

as an ideal example of a
Pauli limited heavy fermion system akin to that in cold
atomic gases [2]. In doing so we uncover a large e↵ective
g-factor with an extreme uniaxial anisotropy, indicating
the internal orbital structure of the paired fermions to be
determined entirely by local 5f moments � in this case
a Kondo lattice of non Kramers doublets. We consider
the possibility of a distinctly local origin for the super-
conductivity in URu

2

Si
2

[11, 13, 23].

Whereas the magnetic response of heavy fermion com-
pounds is typically described in terms of a bulk suscep-
tibility combining several contributions [8], the heavy
fermion state itself is defined in terms of the spin sus-
ceptibility � / g⇤2

e↵

of itinerant quasiparicles. For conve-
nience, we consider these as pseudospin � = ± 1

2

quasi-
particles with an e↵ective g-factor g⇤

e↵

, through which we
make no prior assumption concerning the angular mo-

mentum quantum numbers. Provided these quasipar-
ticles are twofold degenerate and retain their internal
structure on pairing, we can refer to Clogston’s expres-
sion [20]

µ
0

H
p

=
2�p

2 µ
B

g⇤
e↵

(1)

for the Pauli-limited upper critical field, where 2� is the
superconducting gap (⇡ 0.58 meV in URu

2

Si
2

[24]), µ
0

is
the permeability of free space and µ

B

is the Bohr magne-
ton. Figure 1a shows the upper critical field of URu

2

Si
2

measured on samples with a large residual resistivity ra-
tio (RRR ⇡ 400 [21]).
In the case of unpaired quasiparticles in a magnetic

field, the same g⇤
e↵

introduces a phase di↵erence between
magnetic quantum oscillations originating from spin split
Fermi surface sheets. Again, provided the quasiparticles
are twofold degenerate at zero field and have e↵ective
masses m⇤ that are independent of spin, the quantum
oscillation amplitude is modified by a simple interference
term [25]

R
spin

= cos


⇡g⇤

e↵

2

✓
m⇤

m
e

◆�
(2)

where m
e

is the mass of the free electron. An anisotropy
in g⇤

e↵

causes the argument of his term to become mag-
netic field orientation-dependent, causing the amplitude
to oscillate with angle ✓ (a schematic representation of
measured data being shown in Fig. 1b), passing through
a ‘spin zero’ each time g⇤

e↵

(m⇤/m
e

) is an odd integer.
A total of 16 spin zeroes are observed on rotating the
direction of the field from Hk[100] to Hk[001] [22].
We find here that by making these rather simple as-

sumptions [implicit in equations (1) and (2)], the esti-
mates for g⇤

e↵

(shown in Fig. 2) made using two indepen-
dent methods are quantitatively consistent over a broad
angular range. The comparability of these estimates is
essential for establishing the integrity of the quasiparti-
cles and showing that the superconducting critical field
of URu

2

Si
2

corresponds to that of a Pauli limited paired

2

FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
µ

2
B
2

(g2
a

cos ✓, 0, g2
c

sin ✓)H alongH =
H(cos ✓, 0, sin ✓) [where ⇢ is the electronic density-of-

states], setting M · Ĥ = ⇢
µBg

⇤
eff

2

H defines an e↵ective
g-factor
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=
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that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c
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=
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gc

ga
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2

.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a
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=

�
gc

ga
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2

made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu

2

Si
2

. The finding of a large
anisotropic impurity susceptibility ( �c

�a
⇠ 140) in the di-
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We report measurements of the upper critical field on high quality single crystals of URu2Si2 and
find the e↵ective g-factor estimated from the Pauli limit to agree remarkably well with that found in
quantum oscillation experiments, both quantitatively and in the extreme anisotropy (⇡ 103) of the
quasiparticle spin susceptibility implied. These findings not only establish the unexpected integrity
of robust fermion particles subject to pairing in a heavy fermion superconductor, but also indicate
the quasiparticles to originate from a Kondo lattice of non Kramers doublets. The implications for
momentum-space versus local pairing are discussed.

The resolution of distinct fermion particles is a crucial
factor in identifying the mechanisms of pairing in super-
fluids [1, 2] and conventional superconductors [3]. Yet,
such a situation is far from realized in unconventional
superconductors in proximity to magnetism [4–7]. While
experiments establish heavy fermion behavior in numer-
ous materials [8], a clear experimental demonstration of
twofold spin degenerate quasiparticles in keeping with
conventional notions of momentum-space pairing [9–11]
has not been made. Of particular interest are uranium-
based superconductors, where the large orbital degen-
eracy of the magnetic degrees of freedom to which the
conduction electrons are coupled is believed to be split
into low energy singlets or non Kramers doublets in the
crystalline environment [12–18].

Here we probe the origin of the superconducting state
in URu

2

Si
2

by measuring the upper critical field in high
quality single crystals. Rather than fitting directly to a
model [19], we compare the estimated e↵ective g-factor
of the paired quasiparticles determined using the Pauli
limit [20] against that of the unpaired quasiparticles de-
termined from spin zeroes in magnetic quantum oscil-
lation experiments [21, 22]. We find the two to be in
excellent quantitative agreement over a broad range of
angles, establishing URu

2

Si
2

as an ideal example of a
Pauli limited heavy fermion system akin to that in cold
atomic gases [2]. In doing so we uncover a large e↵ective
g-factor with an extreme uniaxial anisotropy, indicating
the internal orbital structure of the paired fermions to be
determined entirely by local 5f moments � in this case
a Kondo lattice of non Kramers doublets. We consider
the possibility of a distinctly local origin for the super-
conductivity in URu

2

Si
2

[11, 13, 23].

Whereas the magnetic response of heavy fermion com-
pounds is typically described in terms of a bulk suscep-
tibility combining several contributions [8], the heavy
fermion state itself is defined in terms of the spin sus-
ceptibility � / g⇤2

e↵

of itinerant quasiparicles. For conve-
nience, we consider these as pseudospin � = ± 1

2

quasi-
particles with an e↵ective g-factor g⇤

e↵

, through which we
make no prior assumption concerning the angular mo-

mentum quantum numbers. Provided these quasipar-
ticles are twofold degenerate and retain their internal
structure on pairing, we can refer to Clogston’s expres-
sion [20]
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for the Pauli-limited upper critical field, where 2� is the
superconducting gap (⇡ 0.58 meV in URu

2

Si
2

[24]), µ
0

is
the permeability of free space and µ

B

is the Bohr magne-
ton. Figure 1a shows the upper critical field of URu

2

Si
2

measured on samples with a large residual resistivity ra-
tio (RRR ⇡ 400 [21]).
In the case of unpaired quasiparticles in a magnetic

field, the same g⇤
e↵

introduces a phase di↵erence between
magnetic quantum oscillations originating from spin split
Fermi surface sheets. Again, provided the quasiparticles
are twofold degenerate at zero field and have e↵ective
masses m⇤ that are independent of spin, the quantum
oscillation amplitude is modified by a simple interference
term [25]
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where m
e

is the mass of the free electron. An anisotropy
in g⇤

e↵

causes the argument of his term to become mag-
netic field orientation-dependent, causing the amplitude
to oscillate with angle ✓ (a schematic representation of
measured data being shown in Fig. 1b), passing through
a ‘spin zero’ each time g⇤

e↵

(m⇤/m
e

) is an odd integer.
A total of 16 spin zeroes are observed on rotating the
direction of the field from Hk[100] to Hk[001] [22].
We find here that by making these rather simple as-

sumptions [implicit in equations (1) and (2)], the esti-
mates for g⇤

e↵

(shown in Fig. 2) made using two indepen-
dent methods are quantitatively consistent over a broad
angular range. The comparability of these estimates is
essential for establishing the integrity of the quasiparti-
cles and showing that the superconducting critical field
of URu

2

Si
2

corresponds to that of a Pauli limited paired

2

FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
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B
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that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c

�a
=

�
gc

ga

�
2

.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a

�b
=

�
gc

ga

�
2

made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu

2

Si
2

. The finding of a large
anisotropic impurity susceptibility ( �c

�a
⇠ 140) in the di-
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We report measurements of the upper critical field on high quality single crystals of URu2Si2 and
find the e↵ective g-factor estimated from the Pauli limit to agree remarkably well with that found in
quantum oscillation experiments, both quantitatively and in the extreme anisotropy (⇡ 103) of the
quasiparticle spin susceptibility implied. These findings not only establish the unexpected integrity
of robust fermion particles subject to pairing in a heavy fermion superconductor, but also indicate
the quasiparticles to originate from a Kondo lattice of non Kramers doublets. The implications for
momentum-space versus local pairing are discussed.

The resolution of distinct fermion particles is a crucial
factor in identifying the mechanisms of pairing in super-
fluids [1, 2] and conventional superconductors [3]. Yet,
such a situation is far from realized in unconventional
superconductors in proximity to magnetism [4–7]. While
experiments establish heavy fermion behavior in numer-
ous materials [8], a clear experimental demonstration of
twofold spin degenerate quasiparticles in keeping with
conventional notions of momentum-space pairing [9–11]
has not been made. Of particular interest are uranium-
based superconductors, where the large orbital degen-
eracy of the magnetic degrees of freedom to which the
conduction electrons are coupled is believed to be split
into low energy singlets or non Kramers doublets in the
crystalline environment [12–18].

Here we probe the origin of the superconducting state
in URu

2

Si
2

by measuring the upper critical field in high
quality single crystals. Rather than fitting directly to a
model [19], we compare the estimated e↵ective g-factor
of the paired quasiparticles determined using the Pauli
limit [20] against that of the unpaired quasiparticles de-
termined from spin zeroes in magnetic quantum oscil-
lation experiments [21, 22]. We find the two to be in
excellent quantitative agreement over a broad range of
angles, establishing URu

2

Si
2

as an ideal example of a
Pauli limited heavy fermion system akin to that in cold
atomic gases [2]. In doing so we uncover a large e↵ective
g-factor with an extreme uniaxial anisotropy, indicating
the internal orbital structure of the paired fermions to be
determined entirely by local 5f moments � in this case
a Kondo lattice of non Kramers doublets. We consider
the possibility of a distinctly local origin for the super-
conductivity in URu

2

Si
2

[11, 13, 23].

Whereas the magnetic response of heavy fermion com-
pounds is typically described in terms of a bulk suscep-
tibility combining several contributions [8], the heavy
fermion state itself is defined in terms of the spin sus-
ceptibility � / g⇤2

e↵

of itinerant quasiparicles. For conve-
nience, we consider these as pseudospin � = ± 1

2

quasi-
particles with an e↵ective g-factor g⇤

e↵

, through which we
make no prior assumption concerning the angular mo-

mentum quantum numbers. Provided these quasipar-
ticles are twofold degenerate and retain their internal
structure on pairing, we can refer to Clogston’s expres-
sion [20]
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for the Pauli-limited upper critical field, where 2� is the
superconducting gap (⇡ 0.58 meV in URu

2

Si
2

[24]), µ
0

is
the permeability of free space and µ

B

is the Bohr magne-
ton. Figure 1a shows the upper critical field of URu

2

Si
2

measured on samples with a large residual resistivity ra-
tio (RRR ⇡ 400 [21]).
In the case of unpaired quasiparticles in a magnetic

field, the same g⇤
e↵

introduces a phase di↵erence between
magnetic quantum oscillations originating from spin split
Fermi surface sheets. Again, provided the quasiparticles
are twofold degenerate at zero field and have e↵ective
masses m⇤ that are independent of spin, the quantum
oscillation amplitude is modified by a simple interference
term [25]
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where m
e

is the mass of the free electron. An anisotropy
in g⇤

e↵

causes the argument of his term to become mag-
netic field orientation-dependent, causing the amplitude
to oscillate with angle ✓ (a schematic representation of
measured data being shown in Fig. 1b), passing through
a ‘spin zero’ each time g⇤

e↵

(m⇤/m
e

) is an odd integer.
A total of 16 spin zeroes are observed on rotating the
direction of the field from Hk[100] to Hk[001] [22].
We find here that by making these rather simple as-

sumptions [implicit in equations (1) and (2)], the esti-
mates for g⇤

e↵

(shown in Fig. 2) made using two indepen-
dent methods are quantitatively consistent over a broad
angular range. The comparability of these estimates is
essential for establishing the integrity of the quasiparti-
cles and showing that the superconducting critical field
of URu

2

Si
2

corresponds to that of a Pauli limited paired

2

FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
µ

2
B
2

(g2
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g-factor
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that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c

�a
=

�
gc

ga

�
2

.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a

�b
=

�
gc

ga

�
2

made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu

2

Si
2

. The finding of a large
anisotropic impurity susceptibility ( �c

�a
⇠ 140) in the di-
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We report measurements of the upper critical field on high quality single crystals of URu2Si2 and
find the e↵ective g-factor estimated from the Pauli limit to agree remarkably well with that found in
quantum oscillation experiments, both quantitatively and in the extreme anisotropy (⇡ 103) of the
quasiparticle spin susceptibility implied. These findings not only establish the unexpected integrity
of robust fermion particles subject to pairing in a heavy fermion superconductor, but also indicate
the quasiparticles to originate from a Kondo lattice of non Kramers doublets. The implications for
momentum-space versus local pairing are discussed.

The resolution of distinct fermion particles is a crucial
factor in identifying the mechanisms of pairing in super-
fluids [1, 2] and conventional superconductors [3]. Yet,
such a situation is far from realized in unconventional
superconductors in proximity to magnetism [4–7]. While
experiments establish heavy fermion behavior in numer-
ous materials [8], a clear experimental demonstration of
twofold spin degenerate quasiparticles in keeping with
conventional notions of momentum-space pairing [9–11]
has not been made. Of particular interest are uranium-
based superconductors, where the large orbital degen-
eracy of the magnetic degrees of freedom to which the
conduction electrons are coupled is believed to be split
into low energy singlets or non Kramers doublets in the
crystalline environment [12–18].

Here we probe the origin of the superconducting state
in URu

2

Si
2

by measuring the upper critical field in high
quality single crystals. Rather than fitting directly to a
model [19], we compare the estimated e↵ective g-factor
of the paired quasiparticles determined using the Pauli
limit [20] against that of the unpaired quasiparticles de-
termined from spin zeroes in magnetic quantum oscil-
lation experiments [21, 22]. We find the two to be in
excellent quantitative agreement over a broad range of
angles, establishing URu

2

Si
2

as an ideal example of a
Pauli limited heavy fermion system akin to that in cold
atomic gases [2]. In doing so we uncover a large e↵ective
g-factor with an extreme uniaxial anisotropy, indicating
the internal orbital structure of the paired fermions to be
determined entirely by local 5f moments � in this case
a Kondo lattice of non Kramers doublets. We consider
the possibility of a distinctly local origin for the super-
conductivity in URu

2

Si
2

[11, 13, 23].

Whereas the magnetic response of heavy fermion com-
pounds is typically described in terms of a bulk suscep-
tibility combining several contributions [8], the heavy
fermion state itself is defined in terms of the spin sus-
ceptibility � / g⇤2

e↵

of itinerant quasiparicles. For conve-
nience, we consider these as pseudospin � = ± 1

2

quasi-
particles with an e↵ective g-factor g⇤

e↵

, through which we
make no prior assumption concerning the angular mo-

mentum quantum numbers. Provided these quasipar-
ticles are twofold degenerate and retain their internal
structure on pairing, we can refer to Clogston’s expres-
sion [20]
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for the Pauli-limited upper critical field, where 2� is the
superconducting gap (⇡ 0.58 meV in URu

2

Si
2

[24]), µ
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is
the permeability of free space and µ

B

is the Bohr magne-
ton. Figure 1a shows the upper critical field of URu

2

Si
2

measured on samples with a large residual resistivity ra-
tio (RRR ⇡ 400 [21]).
In the case of unpaired quasiparticles in a magnetic

field, the same g⇤
e↵

introduces a phase di↵erence between
magnetic quantum oscillations originating from spin split
Fermi surface sheets. Again, provided the quasiparticles
are twofold degenerate at zero field and have e↵ective
masses m⇤ that are independent of spin, the quantum
oscillation amplitude is modified by a simple interference
term [25]
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where m
e

is the mass of the free electron. An anisotropy
in g⇤

e↵

causes the argument of his term to become mag-
netic field orientation-dependent, causing the amplitude
to oscillate with angle ✓ (a schematic representation of
measured data being shown in Fig. 1b), passing through
a ‘spin zero’ each time g⇤

e↵

(m⇤/m
e

) is an odd integer.
A total of 16 spin zeroes are observed on rotating the
direction of the field from Hk[100] to Hk[001] [22].
We find here that by making these rather simple as-

sumptions [implicit in equations (1) and (2)], the esti-
mates for g⇤

e↵

(shown in Fig. 2) made using two indepen-
dent methods are quantitatively consistent over a broad
angular range. The comparability of these estimates is
essential for establishing the integrity of the quasiparti-
cles and showing that the superconducting critical field
of URu

2

Si
2

corresponds to that of a Pauli limited paired

2

FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
µ

2
B
2

(g2
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that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c
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=
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gc

ga
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.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a

�b
=

�
gc

ga

�
2

made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu

2

Si
2

. The finding of a large
anisotropic impurity susceptibility ( �c

�a
⇠ 140) in the di-
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We report measurements of the upper critical field on high quality single crystals of URu2Si2 and
find the e↵ective g-factor estimated from the Pauli limit to agree remarkably well with that found in
quantum oscillation experiments, both quantitatively and in the extreme anisotropy (⇡ 103) of the
quasiparticle spin susceptibility implied. These findings not only establish the unexpected integrity
of robust fermion particles subject to pairing in a heavy fermion superconductor, but also indicate
the quasiparticles to originate from a Kondo lattice of non Kramers doublets. The implications for
momentum-space versus local pairing are discussed.

The resolution of distinct fermion particles is a crucial
factor in identifying the mechanisms of pairing in super-
fluids [1, 2] and conventional superconductors [3]. Yet,
such a situation is far from realized in unconventional
superconductors in proximity to magnetism [4–7]. While
experiments establish heavy fermion behavior in numer-
ous materials [8], a clear experimental demonstration of
twofold spin degenerate quasiparticles in keeping with
conventional notions of momentum-space pairing [9–11]
has not been made. Of particular interest are uranium-
based superconductors, where the large orbital degen-
eracy of the magnetic degrees of freedom to which the
conduction electrons are coupled is believed to be split
into low energy singlets or non Kramers doublets in the
crystalline environment [12–18].

Here we probe the origin of the superconducting state
in URu

2

Si
2

by measuring the upper critical field in high
quality single crystals. Rather than fitting directly to a
model [19], we compare the estimated e↵ective g-factor
of the paired quasiparticles determined using the Pauli
limit [20] against that of the unpaired quasiparticles de-
termined from spin zeroes in magnetic quantum oscil-
lation experiments [21, 22]. We find the two to be in
excellent quantitative agreement over a broad range of
angles, establishing URu

2

Si
2

as an ideal example of a
Pauli limited heavy fermion system akin to that in cold
atomic gases [2]. In doing so we uncover a large e↵ective
g-factor with an extreme uniaxial anisotropy, indicating
the internal orbital structure of the paired fermions to be
determined entirely by local 5f moments � in this case
a Kondo lattice of non Kramers doublets. We consider
the possibility of a distinctly local origin for the super-
conductivity in URu

2

Si
2

[11, 13, 23].

Whereas the magnetic response of heavy fermion com-
pounds is typically described in terms of a bulk suscep-
tibility combining several contributions [8], the heavy
fermion state itself is defined in terms of the spin sus-
ceptibility � / g⇤2

e↵

of itinerant quasiparicles. For conve-
nience, we consider these as pseudospin � = ± 1

2

quasi-
particles with an e↵ective g-factor g⇤

e↵

, through which we
make no prior assumption concerning the angular mo-

mentum quantum numbers. Provided these quasipar-
ticles are twofold degenerate and retain their internal
structure on pairing, we can refer to Clogston’s expres-
sion [20]
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for the Pauli-limited upper critical field, where 2� is the
superconducting gap (⇡ 0.58 meV in URu

2

Si
2

[24]), µ
0

is
the permeability of free space and µ

B

is the Bohr magne-
ton. Figure 1a shows the upper critical field of URu

2

Si
2

measured on samples with a large residual resistivity ra-
tio (RRR ⇡ 400 [21]).
In the case of unpaired quasiparticles in a magnetic

field, the same g⇤
e↵

introduces a phase di↵erence between
magnetic quantum oscillations originating from spin split
Fermi surface sheets. Again, provided the quasiparticles
are twofold degenerate at zero field and have e↵ective
masses m⇤ that are independent of spin, the quantum
oscillation amplitude is modified by a simple interference
term [25]
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where m
e

is the mass of the free electron. An anisotropy
in g⇤

e↵

causes the argument of his term to become mag-
netic field orientation-dependent, causing the amplitude
to oscillate with angle ✓ (a schematic representation of
measured data being shown in Fig. 1b), passing through
a ‘spin zero’ each time g⇤

e↵

(m⇤/m
e

) is an odd integer.
A total of 16 spin zeroes are observed on rotating the
direction of the field from Hk[100] to Hk[001] [22].
We find here that by making these rather simple as-

sumptions [implicit in equations (1) and (2)], the esti-
mates for g⇤

e↵

(shown in Fig. 2) made using two indepen-
dent methods are quantitatively consistent over a broad
angular range. The comparability of these estimates is
essential for establishing the integrity of the quasiparti-
cles and showing that the superconducting critical field
of URu

2

Si
2

corresponds to that of a Pauli limited paired

2

FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
µ

2
B
2

(g2
a
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sin ✓)H alongH =
H(cos ✓, 0, sin ✓) [where ⇢ is the electronic density-of-

states], setting M · Ĥ = ⇢
µBg

⇤
eff
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H defines an e↵ective
g-factor
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that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c

�a
=

�
gc

ga

�
2

.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a

�b
=

�
gc

ga

�
2

made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu

2

Si
2

. The finding of a large
anisotropic impurity susceptibility ( �c

�a
⇠ 140) in the di-
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kEf

E(k)

unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic

4
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unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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M 6= 2(n � n0) ± 1
2 . Since n and n0 are integers, M must be an integer. For any half-

integer M , corresponding to a Kramers doublet, the selection rule is absent and the ion will

develop a generic basal plane moment. The fine-tuned case will produce an Ising Kramers

doublet, but corresponds to the complete absence of tetragonal mixing, highly unlikely in a

tetragonal environment. However, for integer M , corresponding to a non-Kramers doublet,

the selection rule hM � 4n± |J±|��M + 4n0i = 0 causes every term in the above sum (2)

to vanish so the transverse moment is necessarily zero, yielding perfect Ising symmetry.

By contrast, in a hexagonal system like CeAl3, the crystal field Hamiltonian contains

terms of the form J6
±. Such terms again mix a pure doublet | ± Mi with terms | ± M 0i,

where M 0 = M � 6n, integer n. However, for J < 7/2, there are no choices of M and

M 0 that di↵er by 6, and thus there will be two Ising doublets for the Ce, J = 5/2 case:

�8 = | ± 5/2 and �9 = | ± 3/2i. Either of these Kramers doublets could undergo a single

channel Ising Kondo e↵ect[9, 17], which will di↵er substantially from the two-channel Kondo

physics associated with a non-Kramers doublet.

II. ESTIMATE OF TK FOR URu2Si2

In our mean field theory, all Kondo behavior develops at the hidden order transition.

Incorporating Gaussian fluctuations should suppress the hidden order phase transition, THO,

while allowing many of the signatures of heavy fermion physics, including the quenching of

the spin entropy and the heavy mass to develop at a higher crossover scale, TK . While the

coherence temperature estimated from the resitivity, T ⇤ ⇡ 70K is much larger than the

hidden order temperature, THO = 17.5K, an entropic estimate of the Kondo temperature,

S(TK) =
1
2R log 2 gives an e↵ective Kondo temperature not much larger than THO. There

is considerable uncertainty in the entropy associated with the development of hidden order,

S(THO), due to di�culties subtracting the phonon and other non-electronic contributions,

leading to estimates ranging from .15R log 2[8] to .3R log 2[7]. If we take a conservative

estimate of S(THO) = .2R log 2, and the normal state � = 180mJ/molK2[7], S(TK) =

.2R log 2+
R TK

THO
�dT = 1

2R log 2 yields TK = 27K, much lower than the coherence temperature

seen in the resistivity.
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H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve
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σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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integer M , corresponding to a Kramers doublet, the selection rule is absent and the ion will

develop a generic basal plane moment. The fine-tuned case will produce an Ising Kramers

doublet, but corresponds to the complete absence of tetragonal mixing, highly unlikely in a

tetragonal environment. However, for integer M , corresponding to a non-Kramers doublet,

the selection rule hM � 4n± |J±|��M + 4n0i = 0 causes every term in the above sum (2)

to vanish so the transverse moment is necessarily zero, yielding perfect Ising symmetry.
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�8 = | ± 5/2 and �9 = | ± 3/2i. Either of these Kramers doublets could undergo a single
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physics associated with a non-Kramers doublet.

II. ESTIMATE OF TK FOR URu2Si2

In our mean field theory, all Kondo behavior develops at the hidden order transition.

Incorporating Gaussian fluctuations should suppress the hidden order phase transition, THO,

while allowing many of the signatures of heavy fermion physics, including the quenching of

the spin entropy and the heavy mass to develop at a higher crossover scale, TK . While the

coherence temperature estimated from the resitivity, T ⇤ ⇡ 70K is much larger than the

hidden order temperature, THO = 17.5K, an entropic estimate of the Kondo temperature,

S(TK) =
1
2R log 2 gives an e↵ective Kondo temperature not much larger than THO. There

is considerable uncertainty in the entropy associated with the development of hidden order,

S(THO), due to di�culties subtracting the phonon and other non-electronic contributions,

leading to estimates ranging from .15R log 2[8] to .3R log 2[7]. If we take a conservative

estimate of S(THO) = .2R log 2, and the normal state � = 180mJ/molK2[7], S(TK) =

.2R log 2+
R TK

THO
�dT = 1

2R log 2 yields TK = 27K, much lower than the coherence temperature

seen in the resistivity.
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channel Ising Kondo e↵ect[9, 17], which will di↵er substantially from the two-channel Kondo
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In our mean field theory, all Kondo behavior develops at the hidden order transition.

Incorporating Gaussian fluctuations should suppress the hidden order phase transition, THO,

while allowing many of the signatures of heavy fermion physics, including the quenching of

the spin entropy and the heavy mass to develop at a higher crossover scale, TK . While the

coherence temperature estimated from the resitivity, T ⇤ ⇡ 70K is much larger than the

hidden order temperature, THO = 17.5K, an entropic estimate of the Kondo temperature,

S(TK) =
1
2R log 2 gives an e↵ective Kondo temperature not much larger than THO. There

is considerable uncertainty in the entropy associated with the development of hidden order,

S(THO), due to di�culties subtracting the phonon and other non-electronic contributions,

leading to estimates ranging from .15R log 2[8] to .3R log 2[7]. If we take a conservative

estimate of S(THO) = .2R log 2, and the normal state � = 180mJ/molK2[7], S(TK) =
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2R log 2 yields TK = 27K, much lower than the coherence temperature
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index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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M 6= 2(n � n0) ± 1
2 . Since n and n0 are integers, M must be an integer. For any half-

integer M , corresponding to a Kramers doublet, the selection rule is absent and the ion will

develop a generic basal plane moment. The fine-tuned case will produce an Ising Kramers

doublet, but corresponds to the complete absence of tetragonal mixing, highly unlikely in a

tetragonal environment. However, for integer M , corresponding to a non-Kramers doublet,

the selection rule hM � 4n± |J±|��M + 4n0i = 0 causes every term in the above sum (2)

to vanish so the transverse moment is necessarily zero, yielding perfect Ising symmetry.

By contrast, in a hexagonal system like CeAl3, the crystal field Hamiltonian contains

terms of the form J6
±. Such terms again mix a pure doublet | ± Mi with terms | ± M 0i,

where M 0 = M � 6n, integer n. However, for J < 7/2, there are no choices of M and

M 0 that di↵er by 6, and thus there will be two Ising doublets for the Ce, J = 5/2 case:

�8 = | ± 5/2 and �9 = | ± 3/2i. Either of these Kramers doublets could undergo a single

channel Ising Kondo e↵ect[9, 17], which will di↵er substantially from the two-channel Kondo

physics associated with a non-Kramers doublet.

II. ESTIMATE OF TK FOR URu2Si2

In our mean field theory, all Kondo behavior develops at the hidden order transition.

Incorporating Gaussian fluctuations should suppress the hidden order phase transition, THO,

while allowing many of the signatures of heavy fermion physics, including the quenching of

the spin entropy and the heavy mass to develop at a higher crossover scale, TK . While the

coherence temperature estimated from the resitivity, T ⇤ ⇡ 70K is much larger than the

hidden order temperature, THO = 17.5K, an entropic estimate of the Kondo temperature,

S(TK) =
1
2R log 2 gives an e↵ective Kondo temperature not much larger than THO. There

is considerable uncertainty in the entropy associated with the development of hidden order,

S(THO), due to di�culties subtracting the phonon and other non-electronic contributions,

leading to estimates ranging from .15R log 2[8] to .3R log 2[7]. If we take a conservative

estimate of S(THO) = .2R log 2, and the normal state � = 180mJ/molK2[7], S(TK) =

.2R log 2+
R TK

THO
�dT = 1

2R log 2 yields TK = 27K, much lower than the coherence temperature

seen in the resistivity.
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�8 = | ± 5/2 and �9 = | ± 3/2i. Either of these Kramers doublets could undergo a single

channel Ising Kondo e↵ect[9, 17], which will di↵er substantially from the two-channel Kondo

physics associated with a non-Kramers doublet.

II. ESTIMATE OF TK FOR URu2Si2

In our mean field theory, all Kondo behavior develops at the hidden order transition.

Incorporating Gaussian fluctuations should suppress the hidden order phase transition, THO,

while allowing many of the signatures of heavy fermion physics, including the quenching of

the spin entropy and the heavy mass to develop at a higher crossover scale, TK . While the

coherence temperature estimated from the resitivity, T ⇤ ⇡ 70K is much larger than the

hidden order temperature, THO = 17.5K, an entropic estimate of the Kondo temperature,

S(TK) =
1
2R log 2 gives an e↵ective Kondo temperature not much larger than THO. There

is considerable uncertainty in the entropy associated with the development of hidden order,

S(THO), due to di�culties subtracting the phonon and other non-electronic contributions,

leading to estimates ranging from .15R log 2[8] to .3R log 2[7]. If we take a conservative

estimate of S(THO) = .2R log 2, and the normal state � = 180mJ/molK2[7], S(TK) =

.2R log 2+
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THO
�dT = 1

2R log 2 yields TK = 27K, much lower than the coherence temperature
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unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
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role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form
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integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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are Ising in nature (1, 23). While Ising anisotropy is automatic in integer spin doublets, in the

tetragonal crystalline environment of URu2Si2 the mixing of states differing by four quanta of

angular momenta (±4h̄) means that the Ising selection rule is absent for half-integer spins so

Ising anisotropy can not occur without extreme fine tuning (4). Thus an Ising anisotropy of the

itinerant quasiparticles requires an integer spin 5f 2 configuration for the U ion; moreover the

observation of paired Ising quasiparticles in a superconductor with Tc ∼ 1.5K indicates that

this 5f 2 configuration is degenerate to within an energy resolution of gµBHc ∼ 3K. The giant

anisotropy observed in the quantum oscillations thus indicates that the Ising anisotropy of this

integer spin doublet is transferred to the mobile quasiparticles through hybridization (24).

The conjectured hybridization of conduction electrons with an integer spin doublet in URu2Si2

has profound implications for the relationship of hidden order to time-reversal symmetry. Time-

reversal, denoted by Θ, is distinct from other discrete quantum symmetry operations as a anti-

unitary transformation ; consequently there is no conserved quantum number associated with

time-reversal (25). However double-reversal Θ2, is equivalent to a 2π rotation, forming a unitary

operator with an associated quantum number, the “Kramers index” K (25). The Kramers index,

K = (−1)2J of a quantum state of total angular momentum J defines the phase factor acquired

by its wavefunction after two successive time-reversals,Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An integer spin

state |m⟩ is unchanged by a 2π rotation, so |m2π⟩ = +|m⟩ and K = 1. However, conduction

electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin component,

change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (V |kσ⟩⟨m| + H.c) that does not conserve the Kramers index. After two successive time-
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unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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are Ising in nature (1, 23). While Ising anisotropy is automatic in integer spin doublets, in the

tetragonal crystalline environment of URu2Si2 the mixing of states differing by four quanta of

angular momenta (±4h̄) means that the Ising selection rule is absent for half-integer spins so

Ising anisotropy can not occur without extreme fine tuning (4). Thus an Ising anisotropy of the

itinerant quasiparticles requires an integer spin 5f 2 configuration for the U ion; moreover the

observation of paired Ising quasiparticles in a superconductor with Tc ∼ 1.5K indicates that

this 5f 2 configuration is degenerate to within an energy resolution of gµBHc ∼ 3K. The giant

anisotropy observed in the quantum oscillations thus indicates that the Ising anisotropy of this

integer spin doublet is transferred to the mobile quasiparticles through hybridization (24).

The conjectured hybridization of conduction electrons with an integer spin doublet in URu2Si2

has profound implications for the relationship of hidden order to time-reversal symmetry. Time-

reversal, denoted by Θ, is distinct from other discrete quantum symmetry operations as a anti-

unitary transformation ; consequently there is no conserved quantum number associated with

time-reversal (25). However double-reversal Θ2, is equivalent to a 2π rotation, forming a unitary

operator with an associated quantum number, the “Kramers index” K (25). The Kramers index,

K = (−1)2J of a quantum state of total angular momentum J defines the phase factor acquired

by its wavefunction after two successive time-reversals,Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An integer spin

state |m⟩ is unchanged by a 2π rotation, so |m2π⟩ = +|m⟩ and K = 1. However, conduction

electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin component,

change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (V |kσ⟩⟨m| + H.c) that does not conserve the Kramers index. After two successive time-
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unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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are Ising in nature (1, 23). While Ising anisotropy is automatic in integer spin doublets, in the

tetragonal crystalline environment of URu2Si2 the mixing of states differing by four quanta of

angular momenta (±4h̄) means that the Ising selection rule is absent for half-integer spins so

Ising anisotropy can not occur without extreme fine tuning (4). Thus an Ising anisotropy of the

itinerant quasiparticles requires an integer spin 5f 2 configuration for the U ion; moreover the

observation of paired Ising quasiparticles in a superconductor with Tc ∼ 1.5K indicates that

this 5f 2 configuration is degenerate to within an energy resolution of gµBHc ∼ 3K. The giant

anisotropy observed in the quantum oscillations thus indicates that the Ising anisotropy of this

integer spin doublet is transferred to the mobile quasiparticles through hybridization (24).
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|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic
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has profound implications for the relationship of hidden order to time-reversal symmetry. Time-

reversal, denoted by Θ, is distinct from other discrete quantum symmetry operations as a anti-

unitary transformation ; consequently there is no conserved quantum number associated with

time-reversal (25). However double-reversal Θ2, is equivalent to a 2π rotation, forming a unitary

operator with an associated quantum number, the “Kramers index” K (25). The Kramers index,

K = (−1)2J of a quantum state of total angular momentum J defines the phase factor acquired

by its wavefunction after two successive time-reversals,Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An integer spin

state |m⟩ is unchanged by a 2π rotation, so |m2π⟩ = +|m⟩ and K = 1. However, conduction

electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin component,

change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (V |kσ⟩⟨m| + H.c) that does not conserve the Kramers index. After two successive time-
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reversals

V |kσ⟩⟨m| → V 2π|kσ2π⟩⟨m2π| = −V 2π|kσ⟩⟨m|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that V = −V 2π; the hy-

bridization thus breaks time-reversal symmetry in a fundamentally new way, playing the role of

an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic (Latin:

spear) order”, is a state of matter that breaks both single and double time-reversal symmetry and

is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (18). As noted elsewhere (12),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic

state (12), under the special condition that d(−k) = −d∗(k) to avoid time-reversal symmetry

breaking. However, if the scattering process involves resonant hybridization in the f-channel,

then d(k) is associated with resonant scattering off the f-state, a process with a real, even parity

scattering amplitude, d(k) = d(−k). In this case, the observed t-matrix is necessarily odd under

time-reversal in the hidden order phase.

This reasoning also explains a puzzling aspect of neutron scattering experiments. Under

pressure, URu2Si2 undergoes a first-order phase transition from the hidden order (HO) state to

an antiferromagnet (AFM) (26). These two states are remarkably close in energy and share

many key features (19, 27, 28) including common Fermi surface pockets; this motivated the re-

cent proposal that despite the first order transition separating the two phases, they are linked by

“adiabatic continuity,” (27) corresponding to a notional rotation of the HO in internal parameter
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Spectroscopy:
H-gap in STM/Optics

the resonant feature appears belowTo (Fig. 3b). In Fig. 4g–lwe show the
six g(q,E) Fourier transforms of each g(r,E) image from Fig. 4a–f
(Supplementary Fig. 5). Four significant advances are already apparent
in these unprocessed data. First, the wavevectors of the hidden-order
g(r,E) modulations are dispersing very rapidly (within the narrow
energy range of DOS(E) modifications in Fig. 3b); this is directly indi-
cative of heavy fermions in the hidden-order state. Second, the mag-
nitude of their characteristicq vectors,which are diminishing towards a
small value as they pass through the Fermi energy from below (see
Fig. 4i), suddenly jumps to a large value at a fewmillielectronvolts above
EF (see Fig. 4k). It therefore appears that the band supporting QPI is
widely split in k-space at this energy centred a few millielectronvolts
above EF. Third, the QPI oscillations are highly anisotropic in q-space
(Fig. 4g–l). Finally, the most intense modulations rotate by 45u when
they pass the energy (compare Fig. 4h and l), indicating a distinct
k-space electronic structure for the filled and empty gap-edge states.
As we show further in Fig. 5, all of these effects are characteristics of the
hidden-order state.

Evolutionofk-spacestructurefromFanolatticetohidden-orderstate

To determine the k-space electronic structure evolution into the
hidden-order state, we measure the temperature dependence of
QPI data equivalent to those in Fig. 4 from just above To down to
1.7 K. In Supplementary Fig. 6 we show the complete temperature
dependence of the dispersions of the most intense QPI modulations.
The key results are shown in Fig. 5a–d (related g(q, E) movies are
shown in the Supplementary Information) with the relevant q-space
directions indicated by the blue and red lines on Fig. 4g. With falling
temperature below To, we observe the rapid splitting of a light band

(crossing EF near (0,60.3)p/a0; (60.3,0)p/a0) into two far heavier
bands which become well separated in k-space and with quite differ-
ent anisotropies. The hybridization energy range as estimated from
the observed gap at the avoided crossing (see Fig. 1c) is shown by
horizontal arrows in Fig. 5 and appears anisotropic in k-space by a
factor of about two (Fig. 5c, d). This k-space structure can also be
modelled using equation (2) (Supplementary Fig. 7). Finally, the
DOS(E) changes detected in r-space (Fig. 3) occur within the same
narrow energy range and, moreover, are consistent with the gaps
deduced from thermodynamics and other spectroscopies (Sup-
plementary section VIII).

Absence of conventional density-wave states

Indications of a conventional density wave would include an energy
gap that spansEF,modulations at fixedQ* in topographic images, and
modulations at fixed Q* that are the same for empty and filled gap-
edge states in g(r, E). Searches for all these phenomena, which must
occur if the hidden-order state is a conventional density wave with
static wavevector Q* (ref. 35), were carried out. First, high-precision
topographic images of both Si-terminated andU-terminated surfaces
are acquired and analysed over the same range of temperatures as in
Fig. 3 searching for any additional, bias-independent, modulation
wavevectors Q* appearing below To in the Fourier transform of the
topograph. Second,we analyse all the g(r, E), in search ofmodulations
at fixed Q* which are the same for empty and filled gap-edge states.
Third, we consider the energy gap structure in k-space revealed by
Fig. 5c and d. Because these signatures are not observed at any tem-
perature belowTo for any topographs or g(r, E)maps (Supplementary
Fig. 2), and because the observed k-space alterations do not result in a
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Figure 5 | Emergence of the two new heavy bands below the hidden-order
transition. a, Dispersion of the primaryQPIwavevector forT.To along the
(0, 1) direction (see Fig. 4g). A single light hole-like band crosses EF.
b, Dispersion of the primary QPI wavevector for T.To along the (1, 1)
direction (see Fig. 4g). A single light hole-like band crosses EF. c, Dispersion
of the primary QPI wavevector for T< 5.9 K along the (0, 1) direction (see

Fig. 4g). Two heavy bands have evolved from the light band and becomewell
segregated in k-space within the hybridization gap. d, Dispersion of the
primaryQPI wavevector for T< 5.9 K along the (1, 1) direction (see Fig. 4g).
Two heavy bands have evolved from the light band and are again segregated
in k-space within the hybridization gap.
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the precise determination of the onset temperature difficult.
Regardless, we find the temperature dependence of ΔHOðTÞ to
follow a mean-field behavior with an onset temperature of
THO ∼ 16 K (Fig. 4C). Broken symmetry at the surface is likely
to influence the HO state and may account for the slightly
reduced observed onset temperature relative to that of bulk mea-
surements. An important aspect of the ΔHO is the fact that it de-
velops asymmetrically relative to the Fermi energy and it shifts
continuously to lower energies upon lowering of the temperature
(Fig. 2 C andD). We quantify the changes to ΔHO and its offset by
fitting the data to a BCS function form with an offset energy re-
lative to EF (Fig. 2 CandD and Fig. 4D; see the caption of Fig. 4).

The low temperature extrapolation, ΔHOð0Þ ¼ 4.1$ 0.2 meV,
yields 2ΔHOð0Þ∕kBTHO ¼ 5.8$ 0.3, which together with the value
of the specific heat coefficient γc ¼ C∕T for T > THO (8) within
the BCS formalism results in a specific heat jump at the transition
ofΔC ¼ 6.0$ 1.3 JK−1 mol−1, consistent with previous measure-
ments (7, 8, 12). The partial gapping of the Fermi surface ob-
served in our spectra also corroborates the recently observed
gapping of the incommensurate spin excitations by inelastic neu-
tron scattering experiments (12). Finally, the spectrum develops
additional, sharper features within ΔHO at the lowest tempera-
tures (Fig. 4B). Such lower energy features may be related to
the gapping of the commensurate spin excitations at the antifer-
romagnetic wave vector below THO also seen in inelastic neutron
scattering at an energy transfer of about 2 meV (11–13).

The spatial variation of the STM spectra provides additional
information about the nature of redistribution of the electronic
states that gives rise to ΔHO. In Fig. 5, we show energy-resolved
spectroscopic maps measured above and below THO, all of which
show modulation on the atomic scale. The measurements above
THO show no changes in their atomic contrast within the energy
range where the ΔHO is developed. In fact, the modulations in
these maps (Fig. 5 B–E) are because of the surface atomic struc-

ture but occur with a contrast that is opposite to that of the STM
topographies of the same region (Fig. 5A). However, observation
of reverse contrast in STM conductance maps is expected as a
consequence of the constant current condition. Similar measure-
ments below THO are also influenced by the constant current
condition, as shown in Fig. 5 G–J; nonetheless, these maps show
clear indication of the suppression of contrast associated with
ΔHO at low energies (within the gap; see Fig. 5F) and the conse-
quent enhancement at high energies (just outside the gap).

To isolate the spatial structure associated with ΔHO and to
overcome any artifacts associated with the measurement settings,
we divide the local conductance measured below THO by that
above for the same atomic region, as shown in Fig. 5 L–O. Such
maps for jV j < ΔHO illustrate that the suppression of the spectral
weight principally occurs in between the surface U atoms. These
maps are essentially the spatial variation of the conductance
ratios, shown in Fig. 4A. Therefore, consistent with the BCS-like
redistribution of spectral weight, we find that conductance map
ratios at energies just above ΔHO illustrate an enhancement be-
tween the surface U atoms. Quantifying these spatial variations
further, we also plot the correlation between the conductance
map ratios and the atomic locations above and below THO
(Fig. 5K) to show that ΔHO is strongest in between the surface
U atoms—i.e., at the same sites where tunneling to the Kondo
resonance is enhanced (Fig. 3E). Our observation that the
modulation in the tunneling amplitude into the Kondo resonance
correlates with the spatial structure of the HO gap shows that the
two phenomena involve the same electronic states.

Our finding of an asymmetric mean-field-like energy gap
would naively suggest the formation of a periodic redistribution
of charge and/or spin at the onset of the HO because of Fermi
surface nesting. However, consistent with previous scattering ex-
periments (8, 11–13), we find no evidence for any conventional
density wave in our experiments. Recently, it has been suggested

Fig. 4. Temperature dependence of the HO gap. (A and B) The experimental data below THO divided by the 18-K data. The data are fit to the form
DðVÞ ¼ ðV − V0 − iγÞ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV − V0 − iγÞ2 − Δ2

p
, which resembles an asymmetric BCS-like DOS with an offset from EF . V0, γ, and Δ are the gap position (offset from

the Fermi energy), the inverse quasi-particle lifetime, and the gap magnitude, respectively. A quasi-particle lifetime broadening of γ ∼ 1.5 mV was extracted
from the fits. (C) Temperature dependence of the gap extracted from the fits in A (Black Squares) and from a direct fit to the raw data of Fig. 2C (Blue Circles).
Both results are comparable within the error bars. The transition temperature THO ¼ 16.0$ 0.4 K is slightly lower than the bulk transition temperature
presumably as a consequence of the measurement being performed on the surface. (D) Temperature dependence of the gap position Vo extracted from
the fits. The line is a guide to the eye.
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the resonant feature appears belowTo (Fig. 3b). In Fig. 4g–lwe show the
six g(q,E) Fourier transforms of each g(r,E) image from Fig. 4a–f
(Supplementary Fig. 5). Four significant advances are already apparent
in these unprocessed data. First, the wavevectors of the hidden-order
g(r,E) modulations are dispersing very rapidly (within the narrow
energy range of DOS(E) modifications in Fig. 3b); this is directly indi-
cative of heavy fermions in the hidden-order state. Second, the mag-
nitude of their characteristicq vectors,which are diminishing towards a
small value as they pass through the Fermi energy from below (see
Fig. 4i), suddenly jumps to a large value at a fewmillielectronvolts above
EF (see Fig. 4k). It therefore appears that the band supporting QPI is
widely split in k-space at this energy centred a few millielectronvolts
above EF. Third, the QPI oscillations are highly anisotropic in q-space
(Fig. 4g–l). Finally, the most intense modulations rotate by 45u when
they pass the energy (compare Fig. 4h and l), indicating a distinct
k-space electronic structure for the filled and empty gap-edge states.
As we show further in Fig. 5, all of these effects are characteristics of the
hidden-order state.

Evolutionofk-spacestructurefromFanolatticetohidden-orderstate

To determine the k-space electronic structure evolution into the
hidden-order state, we measure the temperature dependence of
QPI data equivalent to those in Fig. 4 from just above To down to
1.7 K. In Supplementary Fig. 6 we show the complete temperature
dependence of the dispersions of the most intense QPI modulations.
The key results are shown in Fig. 5a–d (related g(q, E) movies are
shown in the Supplementary Information) with the relevant q-space
directions indicated by the blue and red lines on Fig. 4g. With falling
temperature below To, we observe the rapid splitting of a light band

(crossing EF near (0,60.3)p/a0; (60.3,0)p/a0) into two far heavier
bands which become well separated in k-space and with quite differ-
ent anisotropies. The hybridization energy range as estimated from
the observed gap at the avoided crossing (see Fig. 1c) is shown by
horizontal arrows in Fig. 5 and appears anisotropic in k-space by a
factor of about two (Fig. 5c, d). This k-space structure can also be
modelled using equation (2) (Supplementary Fig. 7). Finally, the
DOS(E) changes detected in r-space (Fig. 3) occur within the same
narrow energy range and, moreover, are consistent with the gaps
deduced from thermodynamics and other spectroscopies (Sup-
plementary section VIII).

Absence of conventional density-wave states

Indications of a conventional density wave would include an energy
gap that spansEF,modulations at fixedQ* in topographic images, and
modulations at fixed Q* that are the same for empty and filled gap-
edge states in g(r, E). Searches for all these phenomena, which must
occur if the hidden-order state is a conventional density wave with
static wavevector Q* (ref. 35), were carried out. First, high-precision
topographic images of both Si-terminated andU-terminated surfaces
are acquired and analysed over the same range of temperatures as in
Fig. 3 searching for any additional, bias-independent, modulation
wavevectors Q* appearing below To in the Fourier transform of the
topograph. Second,we analyse all the g(r, E), in search ofmodulations
at fixed Q* which are the same for empty and filled gap-edge states.
Third, we consider the energy gap structure in k-space revealed by
Fig. 5c and d. Because these signatures are not observed at any tem-
perature belowTo for any topographs or g(r, E)maps (Supplementary
Fig. 2), and because the observed k-space alterations do not result in a
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Figure 5 | Emergence of the two new heavy bands below the hidden-order
transition. a, Dispersion of the primaryQPIwavevector forT.To along the
(0, 1) direction (see Fig. 4g). A single light hole-like band crosses EF.
b, Dispersion of the primary QPI wavevector for T.To along the (1, 1)
direction (see Fig. 4g). A single light hole-like band crosses EF. c, Dispersion
of the primary QPI wavevector for T< 5.9 K along the (0, 1) direction (see

Fig. 4g). Two heavy bands have evolved from the light band and becomewell
segregated in k-space within the hybridization gap. d, Dispersion of the
primaryQPI wavevector for T< 5.9 K along the (1, 1) direction (see Fig. 4g).
Two heavy bands have evolved from the light band and are again segregated
in k-space within the hybridization gap.
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the precise determination of the onset temperature difficult.
Regardless, we find the temperature dependence of ΔHOðTÞ to
follow a mean-field behavior with an onset temperature of
THO ∼ 16 K (Fig. 4C). Broken symmetry at the surface is likely
to influence the HO state and may account for the slightly
reduced observed onset temperature relative to that of bulk mea-
surements. An important aspect of the ΔHO is the fact that it de-
velops asymmetrically relative to the Fermi energy and it shifts
continuously to lower energies upon lowering of the temperature
(Fig. 2 C andD). We quantify the changes to ΔHO and its offset by
fitting the data to a BCS function form with an offset energy re-
lative to EF (Fig. 2 CandD and Fig. 4D; see the caption of Fig. 4).

The low temperature extrapolation, ΔHOð0Þ ¼ 4.1$ 0.2 meV,
yields 2ΔHOð0Þ∕kBTHO ¼ 5.8$ 0.3, which together with the value
of the specific heat coefficient γc ¼ C∕T for T > THO (8) within
the BCS formalism results in a specific heat jump at the transition
ofΔC ¼ 6.0$ 1.3 JK−1 mol−1, consistent with previous measure-
ments (7, 8, 12). The partial gapping of the Fermi surface ob-
served in our spectra also corroborates the recently observed
gapping of the incommensurate spin excitations by inelastic neu-
tron scattering experiments (12). Finally, the spectrum develops
additional, sharper features within ΔHO at the lowest tempera-
tures (Fig. 4B). Such lower energy features may be related to
the gapping of the commensurate spin excitations at the antifer-
romagnetic wave vector below THO also seen in inelastic neutron
scattering at an energy transfer of about 2 meV (11–13).

The spatial variation of the STM spectra provides additional
information about the nature of redistribution of the electronic
states that gives rise to ΔHO. In Fig. 5, we show energy-resolved
spectroscopic maps measured above and below THO, all of which
show modulation on the atomic scale. The measurements above
THO show no changes in their atomic contrast within the energy
range where the ΔHO is developed. In fact, the modulations in
these maps (Fig. 5 B–E) are because of the surface atomic struc-

ture but occur with a contrast that is opposite to that of the STM
topographies of the same region (Fig. 5A). However, observation
of reverse contrast in STM conductance maps is expected as a
consequence of the constant current condition. Similar measure-
ments below THO are also influenced by the constant current
condition, as shown in Fig. 5 G–J; nonetheless, these maps show
clear indication of the suppression of contrast associated with
ΔHO at low energies (within the gap; see Fig. 5F) and the conse-
quent enhancement at high energies (just outside the gap).

To isolate the spatial structure associated with ΔHO and to
overcome any artifacts associated with the measurement settings,
we divide the local conductance measured below THO by that
above for the same atomic region, as shown in Fig. 5 L–O. Such
maps for jV j < ΔHO illustrate that the suppression of the spectral
weight principally occurs in between the surface U atoms. These
maps are essentially the spatial variation of the conductance
ratios, shown in Fig. 4A. Therefore, consistent with the BCS-like
redistribution of spectral weight, we find that conductance map
ratios at energies just above ΔHO illustrate an enhancement be-
tween the surface U atoms. Quantifying these spatial variations
further, we also plot the correlation between the conductance
map ratios and the atomic locations above and below THO
(Fig. 5K) to show that ΔHO is strongest in between the surface
U atoms—i.e., at the same sites where tunneling to the Kondo
resonance is enhanced (Fig. 3E). Our observation that the
modulation in the tunneling amplitude into the Kondo resonance
correlates with the spatial structure of the HO gap shows that the
two phenomena involve the same electronic states.

Our finding of an asymmetric mean-field-like energy gap
would naively suggest the formation of a periodic redistribution
of charge and/or spin at the onset of the HO because of Fermi
surface nesting. However, consistent with previous scattering ex-
periments (8, 11–13), we find no evidence for any conventional
density wave in our experiments. Recently, it has been suggested

Fig. 4. Temperature dependence of the HO gap. (A and B) The experimental data below THO divided by the 18-K data. The data are fit to the form
DðVÞ ¼ ðV − V0 − iγÞ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV − V0 − iγÞ2 − Δ2

p
, which resembles an asymmetric BCS-like DOS with an offset from EF . V0, γ, and Δ are the gap position (offset from

the Fermi energy), the inverse quasi-particle lifetime, and the gap magnitude, respectively. A quasi-particle lifetime broadening of γ ∼ 1.5 mV was extracted
from the fits. (C) Temperature dependence of the gap extracted from the fits in A (Black Squares) and from a direct fit to the raw data of Fig. 2C (Blue Circles).
Both results are comparable within the error bars. The transition temperature THO ¼ 16.0$ 0.4 K is slightly lower than the bulk transition temperature
presumably as a consequence of the measurement being performed on the surface. (D) Temperature dependence of the gap position Vo extracted from
the fits. The line is a guide to the eye.
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the resonant feature appears belowTo (Fig. 3b). In Fig. 4g–lwe show the
six g(q,E) Fourier transforms of each g(r,E) image from Fig. 4a–f
(Supplementary Fig. 5). Four significant advances are already apparent
in these unprocessed data. First, the wavevectors of the hidden-order
g(r,E) modulations are dispersing very rapidly (within the narrow
energy range of DOS(E) modifications in Fig. 3b); this is directly indi-
cative of heavy fermions in the hidden-order state. Second, the mag-
nitude of their characteristicq vectors,which are diminishing towards a
small value as they pass through the Fermi energy from below (see
Fig. 4i), suddenly jumps to a large value at a fewmillielectronvolts above
EF (see Fig. 4k). It therefore appears that the band supporting QPI is
widely split in k-space at this energy centred a few millielectronvolts
above EF. Third, the QPI oscillations are highly anisotropic in q-space
(Fig. 4g–l). Finally, the most intense modulations rotate by 45u when
they pass the energy (compare Fig. 4h and l), indicating a distinct
k-space electronic structure for the filled and empty gap-edge states.
As we show further in Fig. 5, all of these effects are characteristics of the
hidden-order state.

Evolutionofk-spacestructurefromFanolatticetohidden-orderstate

To determine the k-space electronic structure evolution into the
hidden-order state, we measure the temperature dependence of
QPI data equivalent to those in Fig. 4 from just above To down to
1.7 K. In Supplementary Fig. 6 we show the complete temperature
dependence of the dispersions of the most intense QPI modulations.
The key results are shown in Fig. 5a–d (related g(q, E) movies are
shown in the Supplementary Information) with the relevant q-space
directions indicated by the blue and red lines on Fig. 4g. With falling
temperature below To, we observe the rapid splitting of a light band

(crossing EF near (0,60.3)p/a0; (60.3,0)p/a0) into two far heavier
bands which become well separated in k-space and with quite differ-
ent anisotropies. The hybridization energy range as estimated from
the observed gap at the avoided crossing (see Fig. 1c) is shown by
horizontal arrows in Fig. 5 and appears anisotropic in k-space by a
factor of about two (Fig. 5c, d). This k-space structure can also be
modelled using equation (2) (Supplementary Fig. 7). Finally, the
DOS(E) changes detected in r-space (Fig. 3) occur within the same
narrow energy range and, moreover, are consistent with the gaps
deduced from thermodynamics and other spectroscopies (Sup-
plementary section VIII).

Absence of conventional density-wave states

Indications of a conventional density wave would include an energy
gap that spansEF,modulations at fixedQ* in topographic images, and
modulations at fixed Q* that are the same for empty and filled gap-
edge states in g(r, E). Searches for all these phenomena, which must
occur if the hidden-order state is a conventional density wave with
static wavevector Q* (ref. 35), were carried out. First, high-precision
topographic images of both Si-terminated andU-terminated surfaces
are acquired and analysed over the same range of temperatures as in
Fig. 3 searching for any additional, bias-independent, modulation
wavevectors Q* appearing below To in the Fourier transform of the
topograph. Second,we analyse all the g(r, E), in search ofmodulations
at fixed Q* which are the same for empty and filled gap-edge states.
Third, we consider the energy gap structure in k-space revealed by
Fig. 5c and d. Because these signatures are not observed at any tem-
perature belowTo for any topographs or g(r, E)maps (Supplementary
Fig. 2), and because the observed k-space alterations do not result in a
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Figure 5 | Emergence of the two new heavy bands below the hidden-order
transition. a, Dispersion of the primaryQPIwavevector forT.To along the
(0, 1) direction (see Fig. 4g). A single light hole-like band crosses EF.
b, Dispersion of the primary QPI wavevector for T.To along the (1, 1)
direction (see Fig. 4g). A single light hole-like band crosses EF. c, Dispersion
of the primary QPI wavevector for T< 5.9 K along the (0, 1) direction (see

Fig. 4g). Two heavy bands have evolved from the light band and becomewell
segregated in k-space within the hybridization gap. d, Dispersion of the
primaryQPI wavevector for T< 5.9 K along the (1, 1) direction (see Fig. 4g).
Two heavy bands have evolved from the light band and are again segregated
in k-space within the hybridization gap.
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the precise determination of the onset temperature difficult.
Regardless, we find the temperature dependence of ΔHOðTÞ to
follow a mean-field behavior with an onset temperature of
THO ∼ 16 K (Fig. 4C). Broken symmetry at the surface is likely
to influence the HO state and may account for the slightly
reduced observed onset temperature relative to that of bulk mea-
surements. An important aspect of the ΔHO is the fact that it de-
velops asymmetrically relative to the Fermi energy and it shifts
continuously to lower energies upon lowering of the temperature
(Fig. 2 C andD). We quantify the changes to ΔHO and its offset by
fitting the data to a BCS function form with an offset energy re-
lative to EF (Fig. 2 CandD and Fig. 4D; see the caption of Fig. 4).

The low temperature extrapolation, ΔHOð0Þ ¼ 4.1$ 0.2 meV,
yields 2ΔHOð0Þ∕kBTHO ¼ 5.8$ 0.3, which together with the value
of the specific heat coefficient γc ¼ C∕T for T > THO (8) within
the BCS formalism results in a specific heat jump at the transition
ofΔC ¼ 6.0$ 1.3 JK−1 mol−1, consistent with previous measure-
ments (7, 8, 12). The partial gapping of the Fermi surface ob-
served in our spectra also corroborates the recently observed
gapping of the incommensurate spin excitations by inelastic neu-
tron scattering experiments (12). Finally, the spectrum develops
additional, sharper features within ΔHO at the lowest tempera-
tures (Fig. 4B). Such lower energy features may be related to
the gapping of the commensurate spin excitations at the antifer-
romagnetic wave vector below THO also seen in inelastic neutron
scattering at an energy transfer of about 2 meV (11–13).

The spatial variation of the STM spectra provides additional
information about the nature of redistribution of the electronic
states that gives rise to ΔHO. In Fig. 5, we show energy-resolved
spectroscopic maps measured above and below THO, all of which
show modulation on the atomic scale. The measurements above
THO show no changes in their atomic contrast within the energy
range where the ΔHO is developed. In fact, the modulations in
these maps (Fig. 5 B–E) are because of the surface atomic struc-

ture but occur with a contrast that is opposite to that of the STM
topographies of the same region (Fig. 5A). However, observation
of reverse contrast in STM conductance maps is expected as a
consequence of the constant current condition. Similar measure-
ments below THO are also influenced by the constant current
condition, as shown in Fig. 5 G–J; nonetheless, these maps show
clear indication of the suppression of contrast associated with
ΔHO at low energies (within the gap; see Fig. 5F) and the conse-
quent enhancement at high energies (just outside the gap).

To isolate the spatial structure associated with ΔHO and to
overcome any artifacts associated with the measurement settings,
we divide the local conductance measured below THO by that
above for the same atomic region, as shown in Fig. 5 L–O. Such
maps for jV j < ΔHO illustrate that the suppression of the spectral
weight principally occurs in between the surface U atoms. These
maps are essentially the spatial variation of the conductance
ratios, shown in Fig. 4A. Therefore, consistent with the BCS-like
redistribution of spectral weight, we find that conductance map
ratios at energies just above ΔHO illustrate an enhancement be-
tween the surface U atoms. Quantifying these spatial variations
further, we also plot the correlation between the conductance
map ratios and the atomic locations above and below THO
(Fig. 5K) to show that ΔHO is strongest in between the surface
U atoms—i.e., at the same sites where tunneling to the Kondo
resonance is enhanced (Fig. 3E). Our observation that the
modulation in the tunneling amplitude into the Kondo resonance
correlates with the spatial structure of the HO gap shows that the
two phenomena involve the same electronic states.

Our finding of an asymmetric mean-field-like energy gap
would naively suggest the formation of a periodic redistribution
of charge and/or spin at the onset of the HO because of Fermi
surface nesting. However, consistent with previous scattering ex-
periments (8, 11–13), we find no evidence for any conventional
density wave in our experiments. Recently, it has been suggested

Fig. 4. Temperature dependence of the HO gap. (A and B) The experimental data below THO divided by the 18-K data. The data are fit to the form
DðVÞ ¼ ðV − V0 − iγÞ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV − V0 − iγÞ2 − Δ2

p
, which resembles an asymmetric BCS-like DOS with an offset from EF . V0, γ, and Δ are the gap position (offset from

the Fermi energy), the inverse quasi-particle lifetime, and the gap magnitude, respectively. A quasi-particle lifetime broadening of γ ∼ 1.5 mV was extracted
from the fits. (C) Temperature dependence of the gap extracted from the fits in A (Black Squares) and from a direct fit to the raw data of Fig. 2C (Blue Circles).
Both results are comparable within the error bars. The transition temperature THO ¼ 16.0$ 0.4 K is slightly lower than the bulk transition temperature
presumably as a consequence of the measurement being performed on the surface. (D) Temperature dependence of the gap position Vo extracted from
the fits. The line is a guide to the eye.
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the resonant feature appears belowTo (Fig. 3b). In Fig. 4g–lwe show the
six g(q,E) Fourier transforms of each g(r,E) image from Fig. 4a–f
(Supplementary Fig. 5). Four significant advances are already apparent
in these unprocessed data. First, the wavevectors of the hidden-order
g(r,E) modulations are dispersing very rapidly (within the narrow
energy range of DOS(E) modifications in Fig. 3b); this is directly indi-
cative of heavy fermions in the hidden-order state. Second, the mag-
nitude of their characteristicq vectors,which are diminishing towards a
small value as they pass through the Fermi energy from below (see
Fig. 4i), suddenly jumps to a large value at a fewmillielectronvolts above
EF (see Fig. 4k). It therefore appears that the band supporting QPI is
widely split in k-space at this energy centred a few millielectronvolts
above EF. Third, the QPI oscillations are highly anisotropic in q-space
(Fig. 4g–l). Finally, the most intense modulations rotate by 45u when
they pass the energy (compare Fig. 4h and l), indicating a distinct
k-space electronic structure for the filled and empty gap-edge states.
As we show further in Fig. 5, all of these effects are characteristics of the
hidden-order state.

Evolutionofk-spacestructurefromFanolatticetohidden-orderstate

To determine the k-space electronic structure evolution into the
hidden-order state, we measure the temperature dependence of
QPI data equivalent to those in Fig. 4 from just above To down to
1.7 K. In Supplementary Fig. 6 we show the complete temperature
dependence of the dispersions of the most intense QPI modulations.
The key results are shown in Fig. 5a–d (related g(q, E) movies are
shown in the Supplementary Information) with the relevant q-space
directions indicated by the blue and red lines on Fig. 4g. With falling
temperature below To, we observe the rapid splitting of a light band

(crossing EF near (0,60.3)p/a0; (60.3,0)p/a0) into two far heavier
bands which become well separated in k-space and with quite differ-
ent anisotropies. The hybridization energy range as estimated from
the observed gap at the avoided crossing (see Fig. 1c) is shown by
horizontal arrows in Fig. 5 and appears anisotropic in k-space by a
factor of about two (Fig. 5c, d). This k-space structure can also be
modelled using equation (2) (Supplementary Fig. 7). Finally, the
DOS(E) changes detected in r-space (Fig. 3) occur within the same
narrow energy range and, moreover, are consistent with the gaps
deduced from thermodynamics and other spectroscopies (Sup-
plementary section VIII).

Absence of conventional density-wave states

Indications of a conventional density wave would include an energy
gap that spansEF,modulations at fixedQ* in topographic images, and
modulations at fixed Q* that are the same for empty and filled gap-
edge states in g(r, E). Searches for all these phenomena, which must
occur if the hidden-order state is a conventional density wave with
static wavevector Q* (ref. 35), were carried out. First, high-precision
topographic images of both Si-terminated andU-terminated surfaces
are acquired and analysed over the same range of temperatures as in
Fig. 3 searching for any additional, bias-independent, modulation
wavevectors Q* appearing below To in the Fourier transform of the
topograph. Second,we analyse all the g(r, E), in search ofmodulations
at fixed Q* which are the same for empty and filled gap-edge states.
Third, we consider the energy gap structure in k-space revealed by
Fig. 5c and d. Because these signatures are not observed at any tem-
perature belowTo for any topographs or g(r, E)maps (Supplementary
Fig. 2), and because the observed k-space alterations do not result in a
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Figure 5 | Emergence of the two new heavy bands below the hidden-order
transition. a, Dispersion of the primaryQPIwavevector forT.To along the
(0, 1) direction (see Fig. 4g). A single light hole-like band crosses EF.
b, Dispersion of the primary QPI wavevector for T.To along the (1, 1)
direction (see Fig. 4g). A single light hole-like band crosses EF. c, Dispersion
of the primary QPI wavevector for T< 5.9 K along the (0, 1) direction (see

Fig. 4g). Two heavy bands have evolved from the light band and becomewell
segregated in k-space within the hybridization gap. d, Dispersion of the
primaryQPI wavevector for T< 5.9 K along the (1, 1) direction (see Fig. 4g).
Two heavy bands have evolved from the light band and are again segregated
in k-space within the hybridization gap.
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the precise determination of the onset temperature difficult.
Regardless, we find the temperature dependence of ΔHOðTÞ to
follow a mean-field behavior with an onset temperature of
THO ∼ 16 K (Fig. 4C). Broken symmetry at the surface is likely
to influence the HO state and may account for the slightly
reduced observed onset temperature relative to that of bulk mea-
surements. An important aspect of the ΔHO is the fact that it de-
velops asymmetrically relative to the Fermi energy and it shifts
continuously to lower energies upon lowering of the temperature
(Fig. 2 C andD). We quantify the changes to ΔHO and its offset by
fitting the data to a BCS function form with an offset energy re-
lative to EF (Fig. 2 CandD and Fig. 4D; see the caption of Fig. 4).

The low temperature extrapolation, ΔHOð0Þ ¼ 4.1$ 0.2 meV,
yields 2ΔHOð0Þ∕kBTHO ¼ 5.8$ 0.3, which together with the value
of the specific heat coefficient γc ¼ C∕T for T > THO (8) within
the BCS formalism results in a specific heat jump at the transition
ofΔC ¼ 6.0$ 1.3 JK−1 mol−1, consistent with previous measure-
ments (7, 8, 12). The partial gapping of the Fermi surface ob-
served in our spectra also corroborates the recently observed
gapping of the incommensurate spin excitations by inelastic neu-
tron scattering experiments (12). Finally, the spectrum develops
additional, sharper features within ΔHO at the lowest tempera-
tures (Fig. 4B). Such lower energy features may be related to
the gapping of the commensurate spin excitations at the antifer-
romagnetic wave vector below THO also seen in inelastic neutron
scattering at an energy transfer of about 2 meV (11–13).

The spatial variation of the STM spectra provides additional
information about the nature of redistribution of the electronic
states that gives rise to ΔHO. In Fig. 5, we show energy-resolved
spectroscopic maps measured above and below THO, all of which
show modulation on the atomic scale. The measurements above
THO show no changes in their atomic contrast within the energy
range where the ΔHO is developed. In fact, the modulations in
these maps (Fig. 5 B–E) are because of the surface atomic struc-

ture but occur with a contrast that is opposite to that of the STM
topographies of the same region (Fig. 5A). However, observation
of reverse contrast in STM conductance maps is expected as a
consequence of the constant current condition. Similar measure-
ments below THO are also influenced by the constant current
condition, as shown in Fig. 5 G–J; nonetheless, these maps show
clear indication of the suppression of contrast associated with
ΔHO at low energies (within the gap; see Fig. 5F) and the conse-
quent enhancement at high energies (just outside the gap).

To isolate the spatial structure associated with ΔHO and to
overcome any artifacts associated with the measurement settings,
we divide the local conductance measured below THO by that
above for the same atomic region, as shown in Fig. 5 L–O. Such
maps for jV j < ΔHO illustrate that the suppression of the spectral
weight principally occurs in between the surface U atoms. These
maps are essentially the spatial variation of the conductance
ratios, shown in Fig. 4A. Therefore, consistent with the BCS-like
redistribution of spectral weight, we find that conductance map
ratios at energies just above ΔHO illustrate an enhancement be-
tween the surface U atoms. Quantifying these spatial variations
further, we also plot the correlation between the conductance
map ratios and the atomic locations above and below THO
(Fig. 5K) to show that ΔHO is strongest in between the surface
U atoms—i.e., at the same sites where tunneling to the Kondo
resonance is enhanced (Fig. 3E). Our observation that the
modulation in the tunneling amplitude into the Kondo resonance
correlates with the spatial structure of the HO gap shows that the
two phenomena involve the same electronic states.

Our finding of an asymmetric mean-field-like energy gap
would naively suggest the formation of a periodic redistribution
of charge and/or spin at the onset of the HO because of Fermi
surface nesting. However, consistent with previous scattering ex-
periments (8, 11–13), we find no evidence for any conventional
density wave in our experiments. Recently, it has been suggested

Fig. 4. Temperature dependence of the HO gap. (A and B) The experimental data below THO divided by the 18-K data. The data are fit to the form
DðVÞ ¼ ðV − V0 − iγÞ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV − V0 − iγÞ2 − Δ2

p
, which resembles an asymmetric BCS-like DOS with an offset from EF . V0, γ, and Δ are the gap position (offset from

the Fermi energy), the inverse quasi-particle lifetime, and the gap magnitude, respectively. A quasi-particle lifetime broadening of γ ∼ 1.5 mV was extracted
from the fits. (C) Temperature dependence of the gap extracted from the fits in A (Black Squares) and from a direct fit to the raw data of Fig. 2C (Blue Circles).
Both results are comparable within the error bars. The transition temperature THO ¼ 16.0$ 0.4 K is slightly lower than the bulk transition temperature
presumably as a consequence of the measurement being performed on the surface. (D) Temperature dependence of the gap position Vo extracted from
the fits. The line is a guide to the eye.
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the resonant feature appears belowTo (Fig. 3b). In Fig. 4g–lwe show the
six g(q,E) Fourier transforms of each g(r,E) image from Fig. 4a–f
(Supplementary Fig. 5). Four significant advances are already apparent
in these unprocessed data. First, the wavevectors of the hidden-order
g(r,E) modulations are dispersing very rapidly (within the narrow
energy range of DOS(E) modifications in Fig. 3b); this is directly indi-
cative of heavy fermions in the hidden-order state. Second, the mag-
nitude of their characteristicq vectors,which are diminishing towards a
small value as they pass through the Fermi energy from below (see
Fig. 4i), suddenly jumps to a large value at a fewmillielectronvolts above
EF (see Fig. 4k). It therefore appears that the band supporting QPI is
widely split in k-space at this energy centred a few millielectronvolts
above EF. Third, the QPI oscillations are highly anisotropic in q-space
(Fig. 4g–l). Finally, the most intense modulations rotate by 45u when
they pass the energy (compare Fig. 4h and l), indicating a distinct
k-space electronic structure for the filled and empty gap-edge states.
As we show further in Fig. 5, all of these effects are characteristics of the
hidden-order state.

Evolutionofk-spacestructurefromFanolatticetohidden-orderstate

To determine the k-space electronic structure evolution into the
hidden-order state, we measure the temperature dependence of
QPI data equivalent to those in Fig. 4 from just above To down to
1.7 K. In Supplementary Fig. 6 we show the complete temperature
dependence of the dispersions of the most intense QPI modulations.
The key results are shown in Fig. 5a–d (related g(q, E) movies are
shown in the Supplementary Information) with the relevant q-space
directions indicated by the blue and red lines on Fig. 4g. With falling
temperature below To, we observe the rapid splitting of a light band

(crossing EF near (0,60.3)p/a0; (60.3,0)p/a0) into two far heavier
bands which become well separated in k-space and with quite differ-
ent anisotropies. The hybridization energy range as estimated from
the observed gap at the avoided crossing (see Fig. 1c) is shown by
horizontal arrows in Fig. 5 and appears anisotropic in k-space by a
factor of about two (Fig. 5c, d). This k-space structure can also be
modelled using equation (2) (Supplementary Fig. 7). Finally, the
DOS(E) changes detected in r-space (Fig. 3) occur within the same
narrow energy range and, moreover, are consistent with the gaps
deduced from thermodynamics and other spectroscopies (Sup-
plementary section VIII).

Absence of conventional density-wave states

Indications of a conventional density wave would include an energy
gap that spansEF,modulations at fixedQ* in topographic images, and
modulations at fixed Q* that are the same for empty and filled gap-
edge states in g(r, E). Searches for all these phenomena, which must
occur if the hidden-order state is a conventional density wave with
static wavevector Q* (ref. 35), were carried out. First, high-precision
topographic images of both Si-terminated andU-terminated surfaces
are acquired and analysed over the same range of temperatures as in
Fig. 3 searching for any additional, bias-independent, modulation
wavevectors Q* appearing below To in the Fourier transform of the
topograph. Second,we analyse all the g(r, E), in search ofmodulations
at fixed Q* which are the same for empty and filled gap-edge states.
Third, we consider the energy gap structure in k-space revealed by
Fig. 5c and d. Because these signatures are not observed at any tem-
perature belowTo for any topographs or g(r, E)maps (Supplementary
Fig. 2), and because the observed k-space alterations do not result in a
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Figure 5 | Emergence of the two new heavy bands below the hidden-order
transition. a, Dispersion of the primaryQPIwavevector forT.To along the
(0, 1) direction (see Fig. 4g). A single light hole-like band crosses EF.
b, Dispersion of the primary QPI wavevector for T.To along the (1, 1)
direction (see Fig. 4g). A single light hole-like band crosses EF. c, Dispersion
of the primary QPI wavevector for T< 5.9 K along the (0, 1) direction (see

Fig. 4g). Two heavy bands have evolved from the light band and becomewell
segregated in k-space within the hybridization gap. d, Dispersion of the
primaryQPI wavevector for T< 5.9 K along the (1, 1) direction (see Fig. 4g).
Two heavy bands have evolved from the light band and are again segregated
in k-space within the hybridization gap.
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the precise determination of the onset temperature difficult.
Regardless, we find the temperature dependence of ΔHOðTÞ to
follow a mean-field behavior with an onset temperature of
THO ∼ 16 K (Fig. 4C). Broken symmetry at the surface is likely
to influence the HO state and may account for the slightly
reduced observed onset temperature relative to that of bulk mea-
surements. An important aspect of the ΔHO is the fact that it de-
velops asymmetrically relative to the Fermi energy and it shifts
continuously to lower energies upon lowering of the temperature
(Fig. 2 C andD). We quantify the changes to ΔHO and its offset by
fitting the data to a BCS function form with an offset energy re-
lative to EF (Fig. 2 CandD and Fig. 4D; see the caption of Fig. 4).

The low temperature extrapolation, ΔHOð0Þ ¼ 4.1$ 0.2 meV,
yields 2ΔHOð0Þ∕kBTHO ¼ 5.8$ 0.3, which together with the value
of the specific heat coefficient γc ¼ C∕T for T > THO (8) within
the BCS formalism results in a specific heat jump at the transition
ofΔC ¼ 6.0$ 1.3 JK−1 mol−1, consistent with previous measure-
ments (7, 8, 12). The partial gapping of the Fermi surface ob-
served in our spectra also corroborates the recently observed
gapping of the incommensurate spin excitations by inelastic neu-
tron scattering experiments (12). Finally, the spectrum develops
additional, sharper features within ΔHO at the lowest tempera-
tures (Fig. 4B). Such lower energy features may be related to
the gapping of the commensurate spin excitations at the antifer-
romagnetic wave vector below THO also seen in inelastic neutron
scattering at an energy transfer of about 2 meV (11–13).

The spatial variation of the STM spectra provides additional
information about the nature of redistribution of the electronic
states that gives rise to ΔHO. In Fig. 5, we show energy-resolved
spectroscopic maps measured above and below THO, all of which
show modulation on the atomic scale. The measurements above
THO show no changes in their atomic contrast within the energy
range where the ΔHO is developed. In fact, the modulations in
these maps (Fig. 5 B–E) are because of the surface atomic struc-

ture but occur with a contrast that is opposite to that of the STM
topographies of the same region (Fig. 5A). However, observation
of reverse contrast in STM conductance maps is expected as a
consequence of the constant current condition. Similar measure-
ments below THO are also influenced by the constant current
condition, as shown in Fig. 5 G–J; nonetheless, these maps show
clear indication of the suppression of contrast associated with
ΔHO at low energies (within the gap; see Fig. 5F) and the conse-
quent enhancement at high energies (just outside the gap).

To isolate the spatial structure associated with ΔHO and to
overcome any artifacts associated with the measurement settings,
we divide the local conductance measured below THO by that
above for the same atomic region, as shown in Fig. 5 L–O. Such
maps for jV j < ΔHO illustrate that the suppression of the spectral
weight principally occurs in between the surface U atoms. These
maps are essentially the spatial variation of the conductance
ratios, shown in Fig. 4A. Therefore, consistent with the BCS-like
redistribution of spectral weight, we find that conductance map
ratios at energies just above ΔHO illustrate an enhancement be-
tween the surface U atoms. Quantifying these spatial variations
further, we also plot the correlation between the conductance
map ratios and the atomic locations above and below THO
(Fig. 5K) to show that ΔHO is strongest in between the surface
U atoms—i.e., at the same sites where tunneling to the Kondo
resonance is enhanced (Fig. 3E). Our observation that the
modulation in the tunneling amplitude into the Kondo resonance
correlates with the spatial structure of the HO gap shows that the
two phenomena involve the same electronic states.

Our finding of an asymmetric mean-field-like energy gap
would naively suggest the formation of a periodic redistribution
of charge and/or spin at the onset of the HO because of Fermi
surface nesting. However, consistent with previous scattering ex-
periments (8, 11–13), we find no evidence for any conventional
density wave in our experiments. Recently, it has been suggested

Fig. 4. Temperature dependence of the HO gap. (A and B) The experimental data below THO divided by the 18-K data. The data are fit to the form
DðVÞ ¼ ðV − V0 − iγÞ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV − V0 − iγÞ2 − Δ2

p
, which resembles an asymmetric BCS-like DOS with an offset from EF . V0, γ, and Δ are the gap position (offset from

the Fermi energy), the inverse quasi-particle lifetime, and the gap magnitude, respectively. A quasi-particle lifetime broadening of γ ∼ 1.5 mV was extracted
from the fits. (C) Temperature dependence of the gap extracted from the fits in A (Black Squares) and from a direct fit to the raw data of Fig. 2C (Blue Circles).
Both results are comparable within the error bars. The transition temperature THO ¼ 16.0$ 0.4 K is slightly lower than the bulk transition temperature
presumably as a consequence of the measurement being performed on the surface. (D) Temperature dependence of the gap position Vo extracted from
the fits. The line is a guide to the eye.
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FIG. 5. The gap value as a function of temperature for the
a-axis (top panel) and the larger c-axis gap (bottom panel).
Solid lines are guides to the eye to show the trend of the gap
values. Insets show the behaviour expected from a mean-field
BCS model, from which the data deviates at temperatures
close to the transition; at lower temperatures the behaviour
is closer to mean-field theory. The smaller c-axis gap is nearly
constant to within our sensitivity and is not shown. Error bars
are determined from the largest change of gap value that can
be made to agree with the data if the other parameters in the
model are varied.

IV. DISCUSSION

Figure 5 shows the evolution of the three gaps with
temperature, as determined by fitting our model. Nei-
ther of the observed gaps whose onset we can detect
follow the behaviour expected from a mean field BCS
model in the region near the transition, but the fit be-
comes closer at lower temperatures. It can be noted here
that good agreement with BCS theory can be achieved if
the transition is assumed to happen at 16 K rather than
at 17.5 K, a feature also observed in Aynajian et al.23,
however transport measurements rule this out and the
bulk transition certainly happens at 17.5 K.

Neutron scattering work24 shows that a series of incom-
mensurate spin excitations corresponding to the wavevec-
tors (1±4,0,0) become gapped at the transition, and this
must account for a significant amount of the entropy lost.
The neutron scattering data reveals that charge and spin
degrees of freedom are very strongly coupled, and the
Fermi surface reconstruction at THO has a correspond-
ing e↵ect on the spin excitation spectrum. The energy
of the a-axis gap seen in optics (3.2 meV at 4 K) is in
good agreement with the gap seen in neutron scattering24

(⇠3.5 meV at 1.5 K). This close correspondence suggests
that the spin- and charge-degrees of freedom are strongly
correlated, and that the same gap exists in the charge ex-
citation spectrum as in the spin excitation spectrum.
The neutron scattering results also show commensu-

rate excitations corresponding to the antiferromagnetic
zone centre that become gapped at the HO transition.
This gap has a value of 2 meV at 1.5 K, very close to
the observed value of the smaller gap in the c-axis opti-
cal data (1.8 meV at 4 K). The oscillator strength in our
model associated with the opening of this gap is much
smaller than for the a-axis gap; this is also in agreement
with INS which sees the commensurate mode as consid-
erably weaker than the incommensurate modes. This is
further good evidence that the gap seen in the optical
data is related to the gap in the spin excitation spectrum
seen in the neutron scattering.
Recent ARPES22 measurements and STM6,23 studies

show the behaviour of the band structure at the transi-
tion near the Fermi level. ARPES shows a heavy quasi-
particle band that crosses the Fermi level from above at
the hidden order transition and hybridizes with a light
hole band. Measurements of the di↵erential conductance
using STM see a similar e↵ect; a light band breaks into
two heavy bands at the transition, forming a gap at the
Fermi level. The STM data suggests an e↵ective mass of
5 me in the coherence region (in agreement with optical
results7) increasing to ⇠ 25 me in the HO state, while
ARPES sees an e↵ective mass of 22 me in the HO state.
The STM6,23 show a heavy band splitting at the tran-

sition into two heavy bands with a gap of ⇠4 meV at
the Fermi level. However, when the band splits there are
additional empty states that appear above the Fermi en-
ergy with a gap of approximately 2 meV (see Schmidt
et al.6 Figure 5c, and Aynajian et al. Figure 4c). This
band of empty states is available for transitions from the
filled band at the Fermi level, and the gap between these
two bands shows close agreement with the smaller gap
seen in the optical conductivity measured along the c-
axis. We therefore suggest that this band accounts for
not only the corresponding optically-observed gap, but
the commensurate spin excitation gap as well.
The origin of the larger gap seen in the c-axis is less

clear: its value at 4 K (2.7 meV) does not correspond
well with any gap seen in neutron scattering. APRES
measurements22 see a heavy quasiparticle band dispers-
ing 4 meV below EF . STM measurements, likewise,
do not see any gaps corresponding to 3 meV between
filled states and empty states (though arguably there is
a gap between two empty bands of about this magni-
tude). Both ARPES and STM, however, are limited to
measuring a cleaved surface, while we observe this e↵ect
only in the c-direction. We suggest that this gap has
not been previously observed using the other available
probes. The fact that it does not correspond to a gap in
the spin excitation spectrum suggests that for the charge
carriers involved, spin and charge degrees of freedom are
decoupled.



the resonant feature appears belowTo (Fig. 3b). In Fig. 4g–lwe show the
six g(q,E) Fourier transforms of each g(r,E) image from Fig. 4a–f
(Supplementary Fig. 5). Four significant advances are already apparent
in these unprocessed data. First, the wavevectors of the hidden-order
g(r,E) modulations are dispersing very rapidly (within the narrow
energy range of DOS(E) modifications in Fig. 3b); this is directly indi-
cative of heavy fermions in the hidden-order state. Second, the mag-
nitude of their characteristicq vectors,which are diminishing towards a
small value as they pass through the Fermi energy from below (see
Fig. 4i), suddenly jumps to a large value at a fewmillielectronvolts above
EF (see Fig. 4k). It therefore appears that the band supporting QPI is
widely split in k-space at this energy centred a few millielectronvolts
above EF. Third, the QPI oscillations are highly anisotropic in q-space
(Fig. 4g–l). Finally, the most intense modulations rotate by 45u when
they pass the energy (compare Fig. 4h and l), indicating a distinct
k-space electronic structure for the filled and empty gap-edge states.
As we show further in Fig. 5, all of these effects are characteristics of the
hidden-order state.

Evolutionofk-spacestructurefromFanolatticetohidden-orderstate

To determine the k-space electronic structure evolution into the
hidden-order state, we measure the temperature dependence of
QPI data equivalent to those in Fig. 4 from just above To down to
1.7 K. In Supplementary Fig. 6 we show the complete temperature
dependence of the dispersions of the most intense QPI modulations.
The key results are shown in Fig. 5a–d (related g(q, E) movies are
shown in the Supplementary Information) with the relevant q-space
directions indicated by the blue and red lines on Fig. 4g. With falling
temperature below To, we observe the rapid splitting of a light band

(crossing EF near (0,60.3)p/a0; (60.3,0)p/a0) into two far heavier
bands which become well separated in k-space and with quite differ-
ent anisotropies. The hybridization energy range as estimated from
the observed gap at the avoided crossing (see Fig. 1c) is shown by
horizontal arrows in Fig. 5 and appears anisotropic in k-space by a
factor of about two (Fig. 5c, d). This k-space structure can also be
modelled using equation (2) (Supplementary Fig. 7). Finally, the
DOS(E) changes detected in r-space (Fig. 3) occur within the same
narrow energy range and, moreover, are consistent with the gaps
deduced from thermodynamics and other spectroscopies (Sup-
plementary section VIII).

Absence of conventional density-wave states

Indications of a conventional density wave would include an energy
gap that spansEF,modulations at fixedQ* in topographic images, and
modulations at fixed Q* that are the same for empty and filled gap-
edge states in g(r, E). Searches for all these phenomena, which must
occur if the hidden-order state is a conventional density wave with
static wavevector Q* (ref. 35), were carried out. First, high-precision
topographic images of both Si-terminated andU-terminated surfaces
are acquired and analysed over the same range of temperatures as in
Fig. 3 searching for any additional, bias-independent, modulation
wavevectors Q* appearing below To in the Fourier transform of the
topograph. Second,we analyse all the g(r, E), in search ofmodulations
at fixed Q* which are the same for empty and filled gap-edge states.
Third, we consider the energy gap structure in k-space revealed by
Fig. 5c and d. Because these signatures are not observed at any tem-
perature belowTo for any topographs or g(r, E)maps (Supplementary
Fig. 2), and because the observed k-space alterations do not result in a
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Figure 5 | Emergence of the two new heavy bands below the hidden-order
transition. a, Dispersion of the primaryQPIwavevector forT.To along the
(0, 1) direction (see Fig. 4g). A single light hole-like band crosses EF.
b, Dispersion of the primary QPI wavevector for T.To along the (1, 1)
direction (see Fig. 4g). A single light hole-like band crosses EF. c, Dispersion
of the primary QPI wavevector for T< 5.9 K along the (0, 1) direction (see

Fig. 4g). Two heavy bands have evolved from the light band and becomewell
segregated in k-space within the hybridization gap. d, Dispersion of the
primaryQPI wavevector for T< 5.9 K along the (1, 1) direction (see Fig. 4g).
Two heavy bands have evolved from the light band and are again segregated
in k-space within the hybridization gap.
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the precise determination of the onset temperature difficult.
Regardless, we find the temperature dependence of ΔHOðTÞ to
follow a mean-field behavior with an onset temperature of
THO ∼ 16 K (Fig. 4C). Broken symmetry at the surface is likely
to influence the HO state and may account for the slightly
reduced observed onset temperature relative to that of bulk mea-
surements. An important aspect of the ΔHO is the fact that it de-
velops asymmetrically relative to the Fermi energy and it shifts
continuously to lower energies upon lowering of the temperature
(Fig. 2 C andD). We quantify the changes to ΔHO and its offset by
fitting the data to a BCS function form with an offset energy re-
lative to EF (Fig. 2 CandD and Fig. 4D; see the caption of Fig. 4).

The low temperature extrapolation, ΔHOð0Þ ¼ 4.1$ 0.2 meV,
yields 2ΔHOð0Þ∕kBTHO ¼ 5.8$ 0.3, which together with the value
of the specific heat coefficient γc ¼ C∕T for T > THO (8) within
the BCS formalism results in a specific heat jump at the transition
ofΔC ¼ 6.0$ 1.3 JK−1 mol−1, consistent with previous measure-
ments (7, 8, 12). The partial gapping of the Fermi surface ob-
served in our spectra also corroborates the recently observed
gapping of the incommensurate spin excitations by inelastic neu-
tron scattering experiments (12). Finally, the spectrum develops
additional, sharper features within ΔHO at the lowest tempera-
tures (Fig. 4B). Such lower energy features may be related to
the gapping of the commensurate spin excitations at the antifer-
romagnetic wave vector below THO also seen in inelastic neutron
scattering at an energy transfer of about 2 meV (11–13).

The spatial variation of the STM spectra provides additional
information about the nature of redistribution of the electronic
states that gives rise to ΔHO. In Fig. 5, we show energy-resolved
spectroscopic maps measured above and below THO, all of which
show modulation on the atomic scale. The measurements above
THO show no changes in their atomic contrast within the energy
range where the ΔHO is developed. In fact, the modulations in
these maps (Fig. 5 B–E) are because of the surface atomic struc-

ture but occur with a contrast that is opposite to that of the STM
topographies of the same region (Fig. 5A). However, observation
of reverse contrast in STM conductance maps is expected as a
consequence of the constant current condition. Similar measure-
ments below THO are also influenced by the constant current
condition, as shown in Fig. 5 G–J; nonetheless, these maps show
clear indication of the suppression of contrast associated with
ΔHO at low energies (within the gap; see Fig. 5F) and the conse-
quent enhancement at high energies (just outside the gap).

To isolate the spatial structure associated with ΔHO and to
overcome any artifacts associated with the measurement settings,
we divide the local conductance measured below THO by that
above for the same atomic region, as shown in Fig. 5 L–O. Such
maps for jV j < ΔHO illustrate that the suppression of the spectral
weight principally occurs in between the surface U atoms. These
maps are essentially the spatial variation of the conductance
ratios, shown in Fig. 4A. Therefore, consistent with the BCS-like
redistribution of spectral weight, we find that conductance map
ratios at energies just above ΔHO illustrate an enhancement be-
tween the surface U atoms. Quantifying these spatial variations
further, we also plot the correlation between the conductance
map ratios and the atomic locations above and below THO
(Fig. 5K) to show that ΔHO is strongest in between the surface
U atoms—i.e., at the same sites where tunneling to the Kondo
resonance is enhanced (Fig. 3E). Our observation that the
modulation in the tunneling amplitude into the Kondo resonance
correlates with the spatial structure of the HO gap shows that the
two phenomena involve the same electronic states.

Our finding of an asymmetric mean-field-like energy gap
would naively suggest the formation of a periodic redistribution
of charge and/or spin at the onset of the HO because of Fermi
surface nesting. However, consistent with previous scattering ex-
periments (8, 11–13), we find no evidence for any conventional
density wave in our experiments. Recently, it has been suggested

Fig. 4. Temperature dependence of the HO gap. (A and B) The experimental data below THO divided by the 18-K data. The data are fit to the form
DðVÞ ¼ ðV − V0 − iγÞ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV − V0 − iγÞ2 − Δ2

p
, which resembles an asymmetric BCS-like DOS with an offset from EF . V0, γ, and Δ are the gap position (offset from

the Fermi energy), the inverse quasi-particle lifetime, and the gap magnitude, respectively. A quasi-particle lifetime broadening of γ ∼ 1.5 mV was extracted
from the fits. (C) Temperature dependence of the gap extracted from the fits in A (Black Squares) and from a direct fit to the raw data of Fig. 2C (Blue Circles).
Both results are comparable within the error bars. The transition temperature THO ¼ 16.0$ 0.4 K is slightly lower than the bulk transition temperature
presumably as a consequence of the measurement being performed on the surface. (D) Temperature dependence of the gap position Vo extracted from
the fits. The line is a guide to the eye.
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FIG. 5. The gap value as a function of temperature for the
a-axis (top panel) and the larger c-axis gap (bottom panel).
Solid lines are guides to the eye to show the trend of the gap
values. Insets show the behaviour expected from a mean-field
BCS model, from which the data deviates at temperatures
close to the transition; at lower temperatures the behaviour
is closer to mean-field theory. The smaller c-axis gap is nearly
constant to within our sensitivity and is not shown. Error bars
are determined from the largest change of gap value that can
be made to agree with the data if the other parameters in the
model are varied.

IV. DISCUSSION

Figure 5 shows the evolution of the three gaps with
temperature, as determined by fitting our model. Nei-
ther of the observed gaps whose onset we can detect
follow the behaviour expected from a mean field BCS
model in the region near the transition, but the fit be-
comes closer at lower temperatures. It can be noted here
that good agreement with BCS theory can be achieved if
the transition is assumed to happen at 16 K rather than
at 17.5 K, a feature also observed in Aynajian et al.23,
however transport measurements rule this out and the
bulk transition certainly happens at 17.5 K.

Neutron scattering work24 shows that a series of incom-
mensurate spin excitations corresponding to the wavevec-
tors (1±4,0,0) become gapped at the transition, and this
must account for a significant amount of the entropy lost.
The neutron scattering data reveals that charge and spin
degrees of freedom are very strongly coupled, and the
Fermi surface reconstruction at THO has a correspond-
ing e↵ect on the spin excitation spectrum. The energy
of the a-axis gap seen in optics (3.2 meV at 4 K) is in
good agreement with the gap seen in neutron scattering24

(⇠3.5 meV at 1.5 K). This close correspondence suggests
that the spin- and charge-degrees of freedom are strongly
correlated, and that the same gap exists in the charge ex-
citation spectrum as in the spin excitation spectrum.
The neutron scattering results also show commensu-

rate excitations corresponding to the antiferromagnetic
zone centre that become gapped at the HO transition.
This gap has a value of 2 meV at 1.5 K, very close to
the observed value of the smaller gap in the c-axis opti-
cal data (1.8 meV at 4 K). The oscillator strength in our
model associated with the opening of this gap is much
smaller than for the a-axis gap; this is also in agreement
with INS which sees the commensurate mode as consid-
erably weaker than the incommensurate modes. This is
further good evidence that the gap seen in the optical
data is related to the gap in the spin excitation spectrum
seen in the neutron scattering.
Recent ARPES22 measurements and STM6,23 studies

show the behaviour of the band structure at the transi-
tion near the Fermi level. ARPES shows a heavy quasi-
particle band that crosses the Fermi level from above at
the hidden order transition and hybridizes with a light
hole band. Measurements of the di↵erential conductance
using STM see a similar e↵ect; a light band breaks into
two heavy bands at the transition, forming a gap at the
Fermi level. The STM data suggests an e↵ective mass of
5 me in the coherence region (in agreement with optical
results7) increasing to ⇠ 25 me in the HO state, while
ARPES sees an e↵ective mass of 22 me in the HO state.
The STM6,23 show a heavy band splitting at the tran-

sition into two heavy bands with a gap of ⇠4 meV at
the Fermi level. However, when the band splits there are
additional empty states that appear above the Fermi en-
ergy with a gap of approximately 2 meV (see Schmidt
et al.6 Figure 5c, and Aynajian et al. Figure 4c). This
band of empty states is available for transitions from the
filled band at the Fermi level, and the gap between these
two bands shows close agreement with the smaller gap
seen in the optical conductivity measured along the c-
axis. We therefore suggest that this band accounts for
not only the corresponding optically-observed gap, but
the commensurate spin excitation gap as well.
The origin of the larger gap seen in the c-axis is less

clear: its value at 4 K (2.7 meV) does not correspond
well with any gap seen in neutron scattering. APRES
measurements22 see a heavy quasiparticle band dispers-
ing 4 meV below EF . STM measurements, likewise,
do not see any gaps corresponding to 3 meV between
filled states and empty states (though arguably there is
a gap between two empty bands of about this magni-
tude). Both ARPES and STM, however, are limited to
measuring a cleaved surface, while we observe this e↵ect
only in the c-direction. We suggest that this gap has
not been previously observed using the other available
probes. The fact that it does not correspond to a gap in
the spin excitation spectrum suggests that for the charge
carriers involved, spin and charge degrees of freedom are
decoupled.



the resonant feature appears belowTo (Fig. 3b). In Fig. 4g–lwe show the
six g(q,E) Fourier transforms of each g(r,E) image from Fig. 4a–f
(Supplementary Fig. 5). Four significant advances are already apparent
in these unprocessed data. First, the wavevectors of the hidden-order
g(r,E) modulations are dispersing very rapidly (within the narrow
energy range of DOS(E) modifications in Fig. 3b); this is directly indi-
cative of heavy fermions in the hidden-order state. Second, the mag-
nitude of their characteristicq vectors,which are diminishing towards a
small value as they pass through the Fermi energy from below (see
Fig. 4i), suddenly jumps to a large value at a fewmillielectronvolts above
EF (see Fig. 4k). It therefore appears that the band supporting QPI is
widely split in k-space at this energy centred a few millielectronvolts
above EF. Third, the QPI oscillations are highly anisotropic in q-space
(Fig. 4g–l). Finally, the most intense modulations rotate by 45u when
they pass the energy (compare Fig. 4h and l), indicating a distinct
k-space electronic structure for the filled and empty gap-edge states.
As we show further in Fig. 5, all of these effects are characteristics of the
hidden-order state.

Evolutionofk-spacestructurefromFanolatticetohidden-orderstate

To determine the k-space electronic structure evolution into the
hidden-order state, we measure the temperature dependence of
QPI data equivalent to those in Fig. 4 from just above To down to
1.7 K. In Supplementary Fig. 6 we show the complete temperature
dependence of the dispersions of the most intense QPI modulations.
The key results are shown in Fig. 5a–d (related g(q, E) movies are
shown in the Supplementary Information) with the relevant q-space
directions indicated by the blue and red lines on Fig. 4g. With falling
temperature below To, we observe the rapid splitting of a light band

(crossing EF near (0,60.3)p/a0; (60.3,0)p/a0) into two far heavier
bands which become well separated in k-space and with quite differ-
ent anisotropies. The hybridization energy range as estimated from
the observed gap at the avoided crossing (see Fig. 1c) is shown by
horizontal arrows in Fig. 5 and appears anisotropic in k-space by a
factor of about two (Fig. 5c, d). This k-space structure can also be
modelled using equation (2) (Supplementary Fig. 7). Finally, the
DOS(E) changes detected in r-space (Fig. 3) occur within the same
narrow energy range and, moreover, are consistent with the gaps
deduced from thermodynamics and other spectroscopies (Sup-
plementary section VIII).

Absence of conventional density-wave states

Indications of a conventional density wave would include an energy
gap that spansEF,modulations at fixedQ* in topographic images, and
modulations at fixed Q* that are the same for empty and filled gap-
edge states in g(r, E). Searches for all these phenomena, which must
occur if the hidden-order state is a conventional density wave with
static wavevector Q* (ref. 35), were carried out. First, high-precision
topographic images of both Si-terminated andU-terminated surfaces
are acquired and analysed over the same range of temperatures as in
Fig. 3 searching for any additional, bias-independent, modulation
wavevectors Q* appearing below To in the Fourier transform of the
topograph. Second,we analyse all the g(r, E), in search ofmodulations
at fixed Q* which are the same for empty and filled gap-edge states.
Third, we consider the energy gap structure in k-space revealed by
Fig. 5c and d. Because these signatures are not observed at any tem-
perature belowTo for any topographs or g(r, E)maps (Supplementary
Fig. 2), and because the observed k-space alterations do not result in a

10

5

0

−5
0.450.300.15

a b

18.6 K

5.9 K

B
ia

s 
(m

V)

10

5

0

−5
0.450.300.15

c

0.450.300.150.450.300.15

d

B
ia

s 
(m

V)

B
ia

s 
(m

V)
B

ia
s 

(m
V)

10

5

0

−5

10

5

0

−5

q (2π/a0) q (2π/a0)

q (2π/a0) q (2π/a0)

Figure 5 | Emergence of the two new heavy bands below the hidden-order
transition. a, Dispersion of the primaryQPIwavevector forT.To along the
(0, 1) direction (see Fig. 4g). A single light hole-like band crosses EF.
b, Dispersion of the primary QPI wavevector for T.To along the (1, 1)
direction (see Fig. 4g). A single light hole-like band crosses EF. c, Dispersion
of the primary QPI wavevector for T< 5.9 K along the (0, 1) direction (see

Fig. 4g). Two heavy bands have evolved from the light band and becomewell
segregated in k-space within the hybridization gap. d, Dispersion of the
primaryQPI wavevector for T< 5.9 K along the (1, 1) direction (see Fig. 4g).
Two heavy bands have evolved from the light band and are again segregated
in k-space within the hybridization gap.
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the precise determination of the onset temperature difficult.
Regardless, we find the temperature dependence of ΔHOðTÞ to
follow a mean-field behavior with an onset temperature of
THO ∼ 16 K (Fig. 4C). Broken symmetry at the surface is likely
to influence the HO state and may account for the slightly
reduced observed onset temperature relative to that of bulk mea-
surements. An important aspect of the ΔHO is the fact that it de-
velops asymmetrically relative to the Fermi energy and it shifts
continuously to lower energies upon lowering of the temperature
(Fig. 2 C andD). We quantify the changes to ΔHO and its offset by
fitting the data to a BCS function form with an offset energy re-
lative to EF (Fig. 2 CandD and Fig. 4D; see the caption of Fig. 4).

The low temperature extrapolation, ΔHOð0Þ ¼ 4.1$ 0.2 meV,
yields 2ΔHOð0Þ∕kBTHO ¼ 5.8$ 0.3, which together with the value
of the specific heat coefficient γc ¼ C∕T for T > THO (8) within
the BCS formalism results in a specific heat jump at the transition
ofΔC ¼ 6.0$ 1.3 JK−1 mol−1, consistent with previous measure-
ments (7, 8, 12). The partial gapping of the Fermi surface ob-
served in our spectra also corroborates the recently observed
gapping of the incommensurate spin excitations by inelastic neu-
tron scattering experiments (12). Finally, the spectrum develops
additional, sharper features within ΔHO at the lowest tempera-
tures (Fig. 4B). Such lower energy features may be related to
the gapping of the commensurate spin excitations at the antifer-
romagnetic wave vector below THO also seen in inelastic neutron
scattering at an energy transfer of about 2 meV (11–13).

The spatial variation of the STM spectra provides additional
information about the nature of redistribution of the electronic
states that gives rise to ΔHO. In Fig. 5, we show energy-resolved
spectroscopic maps measured above and below THO, all of which
show modulation on the atomic scale. The measurements above
THO show no changes in their atomic contrast within the energy
range where the ΔHO is developed. In fact, the modulations in
these maps (Fig. 5 B–E) are because of the surface atomic struc-

ture but occur with a contrast that is opposite to that of the STM
topographies of the same region (Fig. 5A). However, observation
of reverse contrast in STM conductance maps is expected as a
consequence of the constant current condition. Similar measure-
ments below THO are also influenced by the constant current
condition, as shown in Fig. 5 G–J; nonetheless, these maps show
clear indication of the suppression of contrast associated with
ΔHO at low energies (within the gap; see Fig. 5F) and the conse-
quent enhancement at high energies (just outside the gap).

To isolate the spatial structure associated with ΔHO and to
overcome any artifacts associated with the measurement settings,
we divide the local conductance measured below THO by that
above for the same atomic region, as shown in Fig. 5 L–O. Such
maps for jV j < ΔHO illustrate that the suppression of the spectral
weight principally occurs in between the surface U atoms. These
maps are essentially the spatial variation of the conductance
ratios, shown in Fig. 4A. Therefore, consistent with the BCS-like
redistribution of spectral weight, we find that conductance map
ratios at energies just above ΔHO illustrate an enhancement be-
tween the surface U atoms. Quantifying these spatial variations
further, we also plot the correlation between the conductance
map ratios and the atomic locations above and below THO
(Fig. 5K) to show that ΔHO is strongest in between the surface
U atoms—i.e., at the same sites where tunneling to the Kondo
resonance is enhanced (Fig. 3E). Our observation that the
modulation in the tunneling amplitude into the Kondo resonance
correlates with the spatial structure of the HO gap shows that the
two phenomena involve the same electronic states.

Our finding of an asymmetric mean-field-like energy gap
would naively suggest the formation of a periodic redistribution
of charge and/or spin at the onset of the HO because of Fermi
surface nesting. However, consistent with previous scattering ex-
periments (8, 11–13), we find no evidence for any conventional
density wave in our experiments. Recently, it has been suggested

Fig. 4. Temperature dependence of the HO gap. (A and B) The experimental data below THO divided by the 18-K data. The data are fit to the form
DðVÞ ¼ ðV − V0 − iγÞ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV − V0 − iγÞ2 − Δ2

p
, which resembles an asymmetric BCS-like DOS with an offset from EF . V0, γ, and Δ are the gap position (offset from

the Fermi energy), the inverse quasi-particle lifetime, and the gap magnitude, respectively. A quasi-particle lifetime broadening of γ ∼ 1.5 mV was extracted
from the fits. (C) Temperature dependence of the gap extracted from the fits in A (Black Squares) and from a direct fit to the raw data of Fig. 2C (Blue Circles).
Both results are comparable within the error bars. The transition temperature THO ¼ 16.0$ 0.4 K is slightly lower than the bulk transition temperature
presumably as a consequence of the measurement being performed on the surface. (D) Temperature dependence of the gap position Vo extracted from
the fits. The line is a guide to the eye.
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FIG. 5. The gap value as a function of temperature for the
a-axis (top panel) and the larger c-axis gap (bottom panel).
Solid lines are guides to the eye to show the trend of the gap
values. Insets show the behaviour expected from a mean-field
BCS model, from which the data deviates at temperatures
close to the transition; at lower temperatures the behaviour
is closer to mean-field theory. The smaller c-axis gap is nearly
constant to within our sensitivity and is not shown. Error bars
are determined from the largest change of gap value that can
be made to agree with the data if the other parameters in the
model are varied.

IV. DISCUSSION

Figure 5 shows the evolution of the three gaps with
temperature, as determined by fitting our model. Nei-
ther of the observed gaps whose onset we can detect
follow the behaviour expected from a mean field BCS
model in the region near the transition, but the fit be-
comes closer at lower temperatures. It can be noted here
that good agreement with BCS theory can be achieved if
the transition is assumed to happen at 16 K rather than
at 17.5 K, a feature also observed in Aynajian et al.23,
however transport measurements rule this out and the
bulk transition certainly happens at 17.5 K.

Neutron scattering work24 shows that a series of incom-
mensurate spin excitations corresponding to the wavevec-
tors (1±4,0,0) become gapped at the transition, and this
must account for a significant amount of the entropy lost.
The neutron scattering data reveals that charge and spin
degrees of freedom are very strongly coupled, and the
Fermi surface reconstruction at THO has a correspond-
ing e↵ect on the spin excitation spectrum. The energy
of the a-axis gap seen in optics (3.2 meV at 4 K) is in
good agreement with the gap seen in neutron scattering24

(⇠3.5 meV at 1.5 K). This close correspondence suggests
that the spin- and charge-degrees of freedom are strongly
correlated, and that the same gap exists in the charge ex-
citation spectrum as in the spin excitation spectrum.
The neutron scattering results also show commensu-

rate excitations corresponding to the antiferromagnetic
zone centre that become gapped at the HO transition.
This gap has a value of 2 meV at 1.5 K, very close to
the observed value of the smaller gap in the c-axis opti-
cal data (1.8 meV at 4 K). The oscillator strength in our
model associated with the opening of this gap is much
smaller than for the a-axis gap; this is also in agreement
with INS which sees the commensurate mode as consid-
erably weaker than the incommensurate modes. This is
further good evidence that the gap seen in the optical
data is related to the gap in the spin excitation spectrum
seen in the neutron scattering.
Recent ARPES22 measurements and STM6,23 studies

show the behaviour of the band structure at the transi-
tion near the Fermi level. ARPES shows a heavy quasi-
particle band that crosses the Fermi level from above at
the hidden order transition and hybridizes with a light
hole band. Measurements of the di↵erential conductance
using STM see a similar e↵ect; a light band breaks into
two heavy bands at the transition, forming a gap at the
Fermi level. The STM data suggests an e↵ective mass of
5 me in the coherence region (in agreement with optical
results7) increasing to ⇠ 25 me in the HO state, while
ARPES sees an e↵ective mass of 22 me in the HO state.
The STM6,23 show a heavy band splitting at the tran-

sition into two heavy bands with a gap of ⇠4 meV at
the Fermi level. However, when the band splits there are
additional empty states that appear above the Fermi en-
ergy with a gap of approximately 2 meV (see Schmidt
et al.6 Figure 5c, and Aynajian et al. Figure 4c). This
band of empty states is available for transitions from the
filled band at the Fermi level, and the gap between these
two bands shows close agreement with the smaller gap
seen in the optical conductivity measured along the c-
axis. We therefore suggest that this band accounts for
not only the corresponding optically-observed gap, but
the commensurate spin excitation gap as well.
The origin of the larger gap seen in the c-axis is less

clear: its value at 4 K (2.7 meV) does not correspond
well with any gap seen in neutron scattering. APRES
measurements22 see a heavy quasiparticle band dispers-
ing 4 meV below EF . STM measurements, likewise,
do not see any gaps corresponding to 3 meV between
filled states and empty states (though arguably there is
a gap between two empty bands of about this magni-
tude). Both ARPES and STM, however, are limited to
measuring a cleaved surface, while we observe this e↵ect
only in the c-direction. We suggest that this gap has
not been previously observed using the other available
probes. The fact that it does not correspond to a gap in
the spin excitation spectrum suggests that for the charge
carriers involved, spin and charge degrees of freedom are
decoupled.
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Color scale has been adjusted to show only the positive part of the subtracted spectrum. Note that all the spectral maps in the
lower panel are plotted keeping the range of the color scale fixed. Below THO a coherent heavy fermionic band rapidly emerges
which simultaneously becomes sharper and more dispersive as the sample is cooled down. The red arrow in a indicates the
momentum at which the EDCs shown in Fig. 3 are taken.

exhibit a dramatic dependence on the incident photon
energies, revealing a multitude of electronic states near
(kx = 0, ky = 0), some of which have not been clearly
delineated by previous photoemission studies. We em-
phasize that at no single photon energy are we able to
clearly distinguish all five features, thus underscoring the
importance of photon energy dependent measurements in
revealing and disentangling the complete electronic struc-
ture of URu2Si2. A compilation of these di↵erent features
is shown in Fig. 1 f. Feature 1 has been previously shown
to be of surface origin, while feature 2 corresponds to a
light hole-like band which has been attributed to a bulk
state [11, 12]. Feature 3 exhibits an ‘M’-shaped disper-
sion also reported at 7 eV [13, 14], and is connected to
a relatively flat band (feature 4) ostensibly of predom-
inantly 5f character. Finally, hole-like states (feature
5) that cross the Fermi level EF at kx ⇡ 0.54 ⇡/a form
propeller-shaped Fermi surface (FS) sheets, also observed
in quantum oscillation measurements [15, 16]. Another
FS sheet reported by Shubnikov-de Haas (SdH) oscilla-
tions [17] exhibits an extremal kF similar to our feature
2, the light hole band. However, the SdH experiments
also indicate that this FS sheet is closed along the (001)
direction and only appears above a magnetic field of 21
T. At face value, this strong kz dependence appears in-
consistent with our data, however, this could be resolved
by the fact that our measurements are performed in the
absence of a magnetic field.

By changing photon energy, we can probe di↵erent
values of kz along the (001) direction and can therefore
determine the electronic dispersion perpendicular to the

Ru2Si2 planes. We do not observe any appreciable dis-
persion along kz for features 2, 3, and 4, while feature
1 has already been ascribed to a surface-derived origin
and feature 5 is apparent at only very few photon ener-
gies. The main e↵ect of varying photon energies here is
to strongly modulate the photoelectron matrix elements
of these di↵erent features, suggesting that these states
have substantially di↵erent orbital character.

We will concentrate primarily on features 2, 3 and 4
in Fig. 1, all three of which undergo dramatic modifi-
cations across THO. The lack of obvious kz dispersion
makes it di�cult to definitively assign these features to
bulk states. Nevertheless, their strong temperature de-
pendence allows us to state conclusively that they are
tied to the onset of HO in the bulk. Moreover, the ab-
sence of feature 3 in Rh-doped samples where the HO
state is destroyed [13] further supports the assignment
to bulk-derived states. Having identified the electronic
states of interest, we now address their evolution across
THO. In what follows we will refer to the states corre-
sponding to feature 3 (‘M’ shaped band) and feature 4
(flat band) as heavy fermion states and to feature 2 as
the conduction band.

To investigate the heavy fermion states, we set h⌫ =
31 eV, a photon energy at which these states can be eas-
ily tracked. As shown in Fig. 2, above THO only di↵use
spectral weight is observed close to the Fermi level, in-
dicating large scattering rates. As the temperature is
lowered below THO, a well-defined heavy fermion band
forms, which becomes progressively sharper and more
dispersive upon cooling. This development is even more
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FIG. 2: Incoherent-coherent transition of the f-derived states at THO. a-e, Temperature evolution of the ARPES
intensity plots of URu2Si2 measured along the (0,0) - (⇡,0) direction at 31 eV photon energy over the temperature range 2-20
K. In the lower panel ARPES spectral maps obtained after subtracting the corresponding intensity map at 25 K is shown.
Color scale has been adjusted to show only the positive part of the subtracted spectrum. Note that all the spectral maps in the
lower panel are plotted keeping the range of the color scale fixed. Below THO a coherent heavy fermionic band rapidly emerges
which simultaneously becomes sharper and more dispersive as the sample is cooled down. The red arrow in a indicates the
momentum at which the EDCs shown in Fig. 3 are taken.

exhibit a dramatic dependence on the incident photon
energies, revealing a multitude of electronic states near
(kx = 0, ky = 0), some of which have not been clearly
delineated by previous photoemission studies. We em-
phasize that at no single photon energy are we able to
clearly distinguish all five features, thus underscoring the
importance of photon energy dependent measurements in
revealing and disentangling the complete electronic struc-
ture of URu2Si2. A compilation of these di↵erent features
is shown in Fig. 1 f. Feature 1 has been previously shown
to be of surface origin, while feature 2 corresponds to a
light hole-like band which has been attributed to a bulk
state [11, 12]. Feature 3 exhibits an ‘M’-shaped disper-
sion also reported at 7 eV [13, 14], and is connected to
a relatively flat band (feature 4) ostensibly of predom-
inantly 5f character. Finally, hole-like states (feature
5) that cross the Fermi level EF at kx ⇡ 0.54 ⇡/a form
propeller-shaped Fermi surface (FS) sheets, also observed
in quantum oscillation measurements [15, 16]. Another
FS sheet reported by Shubnikov-de Haas (SdH) oscilla-
tions [17] exhibits an extremal kF similar to our feature
2, the light hole band. However, the SdH experiments
also indicate that this FS sheet is closed along the (001)
direction and only appears above a magnetic field of 21
T. At face value, this strong kz dependence appears in-
consistent with our data, however, this could be resolved
by the fact that our measurements are performed in the
absence of a magnetic field.

By changing photon energy, we can probe di↵erent
values of kz along the (001) direction and can therefore
determine the electronic dispersion perpendicular to the

Ru2Si2 planes. We do not observe any appreciable dis-
persion along kz for features 2, 3, and 4, while feature
1 has already been ascribed to a surface-derived origin
and feature 5 is apparent at only very few photon ener-
gies. The main e↵ect of varying photon energies here is
to strongly modulate the photoelectron matrix elements
of these di↵erent features, suggesting that these states
have substantially di↵erent orbital character.

We will concentrate primarily on features 2, 3 and 4
in Fig. 1, all three of which undergo dramatic modifi-
cations across THO. The lack of obvious kz dispersion
makes it di�cult to definitively assign these features to
bulk states. Nevertheless, their strong temperature de-
pendence allows us to state conclusively that they are
tied to the onset of HO in the bulk. Moreover, the ab-
sence of feature 3 in Rh-doped samples where the HO
state is destroyed [13] further supports the assignment
to bulk-derived states. Having identified the electronic
states of interest, we now address their evolution across
THO. In what follows we will refer to the states corre-
sponding to feature 3 (‘M’ shaped band) and feature 4
(flat band) as heavy fermion states and to feature 2 as
the conduction band.

To investigate the heavy fermion states, we set h⌫ =
31 eV, a photon energy at which these states can be eas-
ily tracked. As shown in Fig. 2, above THO only di↵use
spectral weight is observed close to the Fermi level, in-
dicating large scattering rates. As the temperature is
lowered below THO, a well-defined heavy fermion band
forms, which becomes progressively sharper and more
dispersive upon cooling. This development is even more
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FIG. 2: Incoherent-coherent transition of the f-derived states at THO. a-e, Temperature evolution of the ARPES
intensity plots of URu2Si2 measured along the (0,0) - (⇡,0) direction at 31 eV photon energy over the temperature range 2-20
K. In the lower panel ARPES spectral maps obtained after subtracting the corresponding intensity map at 25 K is shown.
Color scale has been adjusted to show only the positive part of the subtracted spectrum. Note that all the spectral maps in the
lower panel are plotted keeping the range of the color scale fixed. Below THO a coherent heavy fermionic band rapidly emerges
which simultaneously becomes sharper and more dispersive as the sample is cooled down. The red arrow in a indicates the
momentum at which the EDCs shown in Fig. 3 are taken.

exhibit a dramatic dependence on the incident photon
energies, revealing a multitude of electronic states near
(kx = 0, ky = 0), some of which have not been clearly
delineated by previous photoemission studies. We em-
phasize that at no single photon energy are we able to
clearly distinguish all five features, thus underscoring the
importance of photon energy dependent measurements in
revealing and disentangling the complete electronic struc-
ture of URu2Si2. A compilation of these di↵erent features
is shown in Fig. 1 f. Feature 1 has been previously shown
to be of surface origin, while feature 2 corresponds to a
light hole-like band which has been attributed to a bulk
state [11, 12]. Feature 3 exhibits an ‘M’-shaped disper-
sion also reported at 7 eV [13, 14], and is connected to
a relatively flat band (feature 4) ostensibly of predom-
inantly 5f character. Finally, hole-like states (feature
5) that cross the Fermi level EF at kx ⇡ 0.54 ⇡/a form
propeller-shaped Fermi surface (FS) sheets, also observed
in quantum oscillation measurements [15, 16]. Another
FS sheet reported by Shubnikov-de Haas (SdH) oscilla-
tions [17] exhibits an extremal kF similar to our feature
2, the light hole band. However, the SdH experiments
also indicate that this FS sheet is closed along the (001)
direction and only appears above a magnetic field of 21
T. At face value, this strong kz dependence appears in-
consistent with our data, however, this could be resolved
by the fact that our measurements are performed in the
absence of a magnetic field.

By changing photon energy, we can probe di↵erent
values of kz along the (001) direction and can therefore
determine the electronic dispersion perpendicular to the

Ru2Si2 planes. We do not observe any appreciable dis-
persion along kz for features 2, 3, and 4, while feature
1 has already been ascribed to a surface-derived origin
and feature 5 is apparent at only very few photon ener-
gies. The main e↵ect of varying photon energies here is
to strongly modulate the photoelectron matrix elements
of these di↵erent features, suggesting that these states
have substantially di↵erent orbital character.

We will concentrate primarily on features 2, 3 and 4
in Fig. 1, all three of which undergo dramatic modifi-
cations across THO. The lack of obvious kz dispersion
makes it di�cult to definitively assign these features to
bulk states. Nevertheless, their strong temperature de-
pendence allows us to state conclusively that they are
tied to the onset of HO in the bulk. Moreover, the ab-
sence of feature 3 in Rh-doped samples where the HO
state is destroyed [13] further supports the assignment
to bulk-derived states. Having identified the electronic
states of interest, we now address their evolution across
THO. In what follows we will refer to the states corre-
sponding to feature 3 (‘M’ shaped band) and feature 4
(flat band) as heavy fermion states and to feature 2 as
the conduction band.

To investigate the heavy fermion states, we set h⌫ =
31 eV, a photon energy at which these states can be eas-
ily tracked. As shown in Fig. 2, above THO only di↵use
spectral weight is observed close to the Fermi level, in-
dicating large scattering rates. As the temperature is
lowered below THO, a well-defined heavy fermion band
forms, which becomes progressively sharper and more
dispersive upon cooling. This development is even more
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FIG. 2: Incoherent-coherent transition of the f-derived states at THO. a-e, Temperature evolution of the ARPES
intensity plots of URu2Si2 measured along the (0,0) - (⇡,0) direction at 31 eV photon energy over the temperature range 2-20
K. In the lower panel ARPES spectral maps obtained after subtracting the corresponding intensity map at 25 K is shown.
Color scale has been adjusted to show only the positive part of the subtracted spectrum. Note that all the spectral maps in the
lower panel are plotted keeping the range of the color scale fixed. Below THO a coherent heavy fermionic band rapidly emerges
which simultaneously becomes sharper and more dispersive as the sample is cooled down. The red arrow in a indicates the
momentum at which the EDCs shown in Fig. 3 are taken.

exhibit a dramatic dependence on the incident photon
energies, revealing a multitude of electronic states near
(kx = 0, ky = 0), some of which have not been clearly
delineated by previous photoemission studies. We em-
phasize that at no single photon energy are we able to
clearly distinguish all five features, thus underscoring the
importance of photon energy dependent measurements in
revealing and disentangling the complete electronic struc-
ture of URu2Si2. A compilation of these di↵erent features
is shown in Fig. 1 f. Feature 1 has been previously shown
to be of surface origin, while feature 2 corresponds to a
light hole-like band which has been attributed to a bulk
state [11, 12]. Feature 3 exhibits an ‘M’-shaped disper-
sion also reported at 7 eV [13, 14], and is connected to
a relatively flat band (feature 4) ostensibly of predom-
inantly 5f character. Finally, hole-like states (feature
5) that cross the Fermi level EF at kx ⇡ 0.54 ⇡/a form
propeller-shaped Fermi surface (FS) sheets, also observed
in quantum oscillation measurements [15, 16]. Another
FS sheet reported by Shubnikov-de Haas (SdH) oscilla-
tions [17] exhibits an extremal kF similar to our feature
2, the light hole band. However, the SdH experiments
also indicate that this FS sheet is closed along the (001)
direction and only appears above a magnetic field of 21
T. At face value, this strong kz dependence appears in-
consistent with our data, however, this could be resolved
by the fact that our measurements are performed in the
absence of a magnetic field.

By changing photon energy, we can probe di↵erent
values of kz along the (001) direction and can therefore
determine the electronic dispersion perpendicular to the

Ru2Si2 planes. We do not observe any appreciable dis-
persion along kz for features 2, 3, and 4, while feature
1 has already been ascribed to a surface-derived origin
and feature 5 is apparent at only very few photon ener-
gies. The main e↵ect of varying photon energies here is
to strongly modulate the photoelectron matrix elements
of these di↵erent features, suggesting that these states
have substantially di↵erent orbital character.

We will concentrate primarily on features 2, 3 and 4
in Fig. 1, all three of which undergo dramatic modifi-
cations across THO. The lack of obvious kz dispersion
makes it di�cult to definitively assign these features to
bulk states. Nevertheless, their strong temperature de-
pendence allows us to state conclusively that they are
tied to the onset of HO in the bulk. Moreover, the ab-
sence of feature 3 in Rh-doped samples where the HO
state is destroyed [13] further supports the assignment
to bulk-derived states. Having identified the electronic
states of interest, we now address their evolution across
THO. In what follows we will refer to the states corre-
sponding to feature 3 (‘M’ shaped band) and feature 4
(flat band) as heavy fermion states and to feature 2 as
the conduction band.

To investigate the heavy fermion states, we set h⌫ =
31 eV, a photon energy at which these states can be eas-
ily tracked. As shown in Fig. 2, above THO only di↵use
spectral weight is observed close to the Fermi level, in-
dicating large scattering rates. As the temperature is
lowered below THO, a well-defined heavy fermion band
forms, which becomes progressively sharper and more
dispersive upon cooling. This development is even more
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FIG. 2: Incoherent-coherent transition of the f-derived states at THO. a-e, Temperature evolution of the ARPES
intensity plots of URu2Si2 measured along the (0,0) - (⇡,0) direction at 31 eV photon energy over the temperature range 2-20
K. In the lower panel ARPES spectral maps obtained after subtracting the corresponding intensity map at 25 K is shown.
Color scale has been adjusted to show only the positive part of the subtracted spectrum. Note that all the spectral maps in the
lower panel are plotted keeping the range of the color scale fixed. Below THO a coherent heavy fermionic band rapidly emerges
which simultaneously becomes sharper and more dispersive as the sample is cooled down. The red arrow in a indicates the
momentum at which the EDCs shown in Fig. 3 are taken.

exhibit a dramatic dependence on the incident photon
energies, revealing a multitude of electronic states near
(kx = 0, ky = 0), some of which have not been clearly
delineated by previous photoemission studies. We em-
phasize that at no single photon energy are we able to
clearly distinguish all five features, thus underscoring the
importance of photon energy dependent measurements in
revealing and disentangling the complete electronic struc-
ture of URu2Si2. A compilation of these di↵erent features
is shown in Fig. 1 f. Feature 1 has been previously shown
to be of surface origin, while feature 2 corresponds to a
light hole-like band which has been attributed to a bulk
state [11, 12]. Feature 3 exhibits an ‘M’-shaped disper-
sion also reported at 7 eV [13, 14], and is connected to
a relatively flat band (feature 4) ostensibly of predom-
inantly 5f character. Finally, hole-like states (feature
5) that cross the Fermi level EF at kx ⇡ 0.54 ⇡/a form
propeller-shaped Fermi surface (FS) sheets, also observed
in quantum oscillation measurements [15, 16]. Another
FS sheet reported by Shubnikov-de Haas (SdH) oscilla-
tions [17] exhibits an extremal kF similar to our feature
2, the light hole band. However, the SdH experiments
also indicate that this FS sheet is closed along the (001)
direction and only appears above a magnetic field of 21
T. At face value, this strong kz dependence appears in-
consistent with our data, however, this could be resolved
by the fact that our measurements are performed in the
absence of a magnetic field.

By changing photon energy, we can probe di↵erent
values of kz along the (001) direction and can therefore
determine the electronic dispersion perpendicular to the

Ru2Si2 planes. We do not observe any appreciable dis-
persion along kz for features 2, 3, and 4, while feature
1 has already been ascribed to a surface-derived origin
and feature 5 is apparent at only very few photon ener-
gies. The main e↵ect of varying photon energies here is
to strongly modulate the photoelectron matrix elements
of these di↵erent features, suggesting that these states
have substantially di↵erent orbital character.

We will concentrate primarily on features 2, 3 and 4
in Fig. 1, all three of which undergo dramatic modifi-
cations across THO. The lack of obvious kz dispersion
makes it di�cult to definitively assign these features to
bulk states. Nevertheless, their strong temperature de-
pendence allows us to state conclusively that they are
tied to the onset of HO in the bulk. Moreover, the ab-
sence of feature 3 in Rh-doped samples where the HO
state is destroyed [13] further supports the assignment
to bulk-derived states. Having identified the electronic
states of interest, we now address their evolution across
THO. In what follows we will refer to the states corre-
sponding to feature 3 (‘M’ shaped band) and feature 4
(flat band) as heavy fermion states and to feature 2 as
the conduction band.

To investigate the heavy fermion states, we set h⌫ =
31 eV, a photon energy at which these states can be eas-
ily tracked. As shown in Fig. 2, above THO only di↵use
spectral weight is observed close to the Fermi level, in-
dicating large scattering rates. As the temperature is
lowered below THO, a well-defined heavy fermion band
forms, which becomes progressively sharper and more
dispersive upon cooling. This development is even more
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FIG. 3: Suppression of quasiparticle scattering rate

upon entering the hidden order phase. a, Tempera-
ture dependence of the EDCs taken at the red arrow in Fig.
2 a with corresponding fits (solid red lines). An instrumental
resolution of 6 meV was used in the fits, as obtained from
a gold reference. b, Change in the imaginary part of the
spectral function ⌃

00
and c quasiparticle binding energy with

temperature as extracted from fits in a. A sharp drop in mag-
nitude observed across THO shown in i

¯
ndicates a dramatic

enhancement of the lifetime of the quasiparticles on entering
the hidden order phase.

apparent in the lower panels of Fig. 2, where the corre-
sponding spectrum taken at 25K has been subtracted.
In more conventional Kondo lattice systems, coherent
heavy fermion bands develop only gradually below the
Kondo temperature TK, which is approximately 70 K for
URu2Si2. In contrast, we observe only incoherent, lo-
calized states consistent with recent optical spectroscopy
measurements [18], which suddenly gain coherence below
THO.

To better quantify this temperature dependence, we
have analyzed the energy distribution curves (EDCs)
at the momentum indicated (red arrow) in Fig. 2 a.
The data were fit to a lorentzian plus a temperature-
independent Shirley background [19], multiplied by a
Fermi-Dirac function and finally convolved with the in-
strumental resolution. As can be observed in Fig. 3 b, the
scattering rate obtained from the width of the lorentzian
exhibits a sharp drop precisely at THO. A similar tem-
perature dependence has been observed in inelastic neu-
tron scattering measurements, where the intensity of low
energy spin excitations is greatly diminished upon enter-

ing the hidden order phase [20]. Moreover, a decrease
in the electronic relaxation rate upon entering the HO
phase has also been reported in recent pump-probe ex-
periments [21]. The development of the dispersion is re-
flected in the shift of the peak of the EDC by approxi-
mately 4meV (Fig. 3 c), which is consistent with optical
spectroscopy [22, 23], transport [24, 25] and tunneling
measurements [26]. We note that this energy shift tracks
the typical temperature dependence of an order param-
eter, supporting the notion that the observed changes in
the electronic structure are directly related to the hidden
order parameter. Indeed, this suggests that the changes
in the electronic density of states at the HO transition
which are often referred to as the hidden order gap are
instead associated with the hybridization which gives rise
to the heavy fermion states.
We now turn to the temperature dependence of the

conduction band states across THO. For this purpose we
set h⌫ = 49 eV, where the signal from the conduction
band is strongly enhanced. In Figs. 4 a-b, we compare
spectra measured at 2K and 20K, revealing very strong
changes of the conduction band across THO due to the
hybridization between the conduction band and the in-
coherent U 5f states as they develop coherence, an ob-
servation closely consistent with recent fourier-transform
scanning tunneling spectroscopy measurements which
track quasiparticle interference patterns [27, 28]. This is
demonstrated clearly in Fig. 4 c, where the di↵erence of
the spectra measured at 2K and 20K is presented. The
additional spectral weight below THO tracks exactly the
dispersion of the ‘M’ band, showing that the formation
of the coherent heavy fermion liquid goes hand in hand
with the hybridization of the conduction band. This sit-
uation is summarized schematically in Fig. 4 e, showing
how variations in the photoelectron matrix elements due
to rapidly changing orbital characters can give rise to an
apparent dispersion anomaly as the bands hybridize.
Although the dispersion anomaly in Fig. 4 a resembles

a kink feature, we believe it is not related to the coupling
of the quasiparticles to a bosonic excitation. Apart from
the arguments given above, there are a number of ad-
ditional reasons why electron-boson coupling is unlikely
to be responsible for the observed kink in the dispersion.
First, the ‘kink’ energy is characteristic of the boson en-
ergy, but is shown to be highly temperature dependent
in Fig. 4 d, vanishing above THO. Second, the ratio of
band velocity at higher binding energies to the the veloc-
ity at EF i.e vHBE/vEF would be representative of the
electron-boson coupling and mass renormalization, but
the value of vHBE/vEF ⇡ 4.0 ± 0.2 at 2 K would sig-
nify an unphysically large value of the coupling strength,
particularly for such a soft mode.
The emergence of the ‘M’ feature observed here at h⌫ =

49, 27, and 21 eV agrees well with previous laser ARPES
studies at h⌫ = 7 eV [13, 14], where it was interpreted
in terms of a symmetry reduction and the resulting zone
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FIG. 2: Incoherent-coherent transition of the f-derived states at THO. a-e, Temperature evolution of the ARPES
intensity plots of URu2Si2 measured along the (0,0) - (⇡,0) direction at 31 eV photon energy over the temperature range 2-20
K. In the lower panel ARPES spectral maps obtained after subtracting the corresponding intensity map at 25 K is shown.
Color scale has been adjusted to show only the positive part of the subtracted spectrum. Note that all the spectral maps in the
lower panel are plotted keeping the range of the color scale fixed. Below THO a coherent heavy fermionic band rapidly emerges
which simultaneously becomes sharper and more dispersive as the sample is cooled down. The red arrow in a indicates the
momentum at which the EDCs shown in Fig. 3 are taken.

exhibit a dramatic dependence on the incident photon
energies, revealing a multitude of electronic states near
(kx = 0, ky = 0), some of which have not been clearly
delineated by previous photoemission studies. We em-
phasize that at no single photon energy are we able to
clearly distinguish all five features, thus underscoring the
importance of photon energy dependent measurements in
revealing and disentangling the complete electronic struc-
ture of URu2Si2. A compilation of these di↵erent features
is shown in Fig. 1 f. Feature 1 has been previously shown
to be of surface origin, while feature 2 corresponds to a
light hole-like band which has been attributed to a bulk
state [11, 12]. Feature 3 exhibits an ‘M’-shaped disper-
sion also reported at 7 eV [13, 14], and is connected to
a relatively flat band (feature 4) ostensibly of predom-
inantly 5f character. Finally, hole-like states (feature
5) that cross the Fermi level EF at kx ⇡ 0.54 ⇡/a form
propeller-shaped Fermi surface (FS) sheets, also observed
in quantum oscillation measurements [15, 16]. Another
FS sheet reported by Shubnikov-de Haas (SdH) oscilla-
tions [17] exhibits an extremal kF similar to our feature
2, the light hole band. However, the SdH experiments
also indicate that this FS sheet is closed along the (001)
direction and only appears above a magnetic field of 21
T. At face value, this strong kz dependence appears in-
consistent with our data, however, this could be resolved
by the fact that our measurements are performed in the
absence of a magnetic field.

By changing photon energy, we can probe di↵erent
values of kz along the (001) direction and can therefore
determine the electronic dispersion perpendicular to the

Ru2Si2 planes. We do not observe any appreciable dis-
persion along kz for features 2, 3, and 4, while feature
1 has already been ascribed to a surface-derived origin
and feature 5 is apparent at only very few photon ener-
gies. The main e↵ect of varying photon energies here is
to strongly modulate the photoelectron matrix elements
of these di↵erent features, suggesting that these states
have substantially di↵erent orbital character.

We will concentrate primarily on features 2, 3 and 4
in Fig. 1, all three of which undergo dramatic modifi-
cations across THO. The lack of obvious kz dispersion
makes it di�cult to definitively assign these features to
bulk states. Nevertheless, their strong temperature de-
pendence allows us to state conclusively that they are
tied to the onset of HO in the bulk. Moreover, the ab-
sence of feature 3 in Rh-doped samples where the HO
state is destroyed [13] further supports the assignment
to bulk-derived states. Having identified the electronic
states of interest, we now address their evolution across
THO. In what follows we will refer to the states corre-
sponding to feature 3 (‘M’ shaped band) and feature 4
(flat band) as heavy fermion states and to feature 2 as
the conduction band.

To investigate the heavy fermion states, we set h⌫ =
31 eV, a photon energy at which these states can be eas-
ily tracked. As shown in Fig. 2, above THO only di↵use
spectral weight is observed close to the Fermi level, in-
dicating large scattering rates. As the temperature is
lowered below THO, a well-defined heavy fermion band
forms, which becomes progressively sharper and more
dispersive upon cooling. This development is even more
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FIG. 2: Incoherent-coherent transition of the f-derived states at THO. a-e, Temperature evolution of the ARPES
intensity plots of URu2Si2 measured along the (0,0) - (⇡,0) direction at 31 eV photon energy over the temperature range 2-20
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which simultaneously becomes sharper and more dispersive as the sample is cooled down. The red arrow in a indicates the
momentum at which the EDCs shown in Fig. 3 are taken.

exhibit a dramatic dependence on the incident photon
energies, revealing a multitude of electronic states near
(kx = 0, ky = 0), some of which have not been clearly
delineated by previous photoemission studies. We em-
phasize that at no single photon energy are we able to
clearly distinguish all five features, thus underscoring the
importance of photon energy dependent measurements in
revealing and disentangling the complete electronic struc-
ture of URu2Si2. A compilation of these di↵erent features
is shown in Fig. 1 f. Feature 1 has been previously shown
to be of surface origin, while feature 2 corresponds to a
light hole-like band which has been attributed to a bulk
state [11, 12]. Feature 3 exhibits an ‘M’-shaped disper-
sion also reported at 7 eV [13, 14], and is connected to
a relatively flat band (feature 4) ostensibly of predom-
inantly 5f character. Finally, hole-like states (feature
5) that cross the Fermi level EF at kx ⇡ 0.54 ⇡/a form
propeller-shaped Fermi surface (FS) sheets, also observed
in quantum oscillation measurements [15, 16]. Another
FS sheet reported by Shubnikov-de Haas (SdH) oscilla-
tions [17] exhibits an extremal kF similar to our feature
2, the light hole band. However, the SdH experiments
also indicate that this FS sheet is closed along the (001)
direction and only appears above a magnetic field of 21
T. At face value, this strong kz dependence appears in-
consistent with our data, however, this could be resolved
by the fact that our measurements are performed in the
absence of a magnetic field.

By changing photon energy, we can probe di↵erent
values of kz along the (001) direction and can therefore
determine the electronic dispersion perpendicular to the

Ru2Si2 planes. We do not observe any appreciable dis-
persion along kz for features 2, 3, and 4, while feature
1 has already been ascribed to a surface-derived origin
and feature 5 is apparent at only very few photon ener-
gies. The main e↵ect of varying photon energies here is
to strongly modulate the photoelectron matrix elements
of these di↵erent features, suggesting that these states
have substantially di↵erent orbital character.

We will concentrate primarily on features 2, 3 and 4
in Fig. 1, all three of which undergo dramatic modifi-
cations across THO. The lack of obvious kz dispersion
makes it di�cult to definitively assign these features to
bulk states. Nevertheless, their strong temperature de-
pendence allows us to state conclusively that they are
tied to the onset of HO in the bulk. Moreover, the ab-
sence of feature 3 in Rh-doped samples where the HO
state is destroyed [13] further supports the assignment
to bulk-derived states. Having identified the electronic
states of interest, we now address their evolution across
THO. In what follows we will refer to the states corre-
sponding to feature 3 (‘M’ shaped band) and feature 4
(flat band) as heavy fermion states and to feature 2 as
the conduction band.

To investigate the heavy fermion states, we set h⌫ =
31 eV, a photon energy at which these states can be eas-
ily tracked. As shown in Fig. 2, above THO only di↵use
spectral weight is observed close to the Fermi level, in-
dicating large scattering rates. As the temperature is
lowered below THO, a well-defined heavy fermion band
forms, which becomes progressively sharper and more
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(kx = 0, ky = 0), some of which have not been clearly
delineated by previous photoemission studies. We em-
phasize that at no single photon energy are we able to
clearly distinguish all five features, thus underscoring the
importance of photon energy dependent measurements in
revealing and disentangling the complete electronic struc-
ture of URu2Si2. A compilation of these di↵erent features
is shown in Fig. 1 f. Feature 1 has been previously shown
to be of surface origin, while feature 2 corresponds to a
light hole-like band which has been attributed to a bulk
state [11, 12]. Feature 3 exhibits an ‘M’-shaped disper-
sion also reported at 7 eV [13, 14], and is connected to
a relatively flat band (feature 4) ostensibly of predom-
inantly 5f character. Finally, hole-like states (feature
5) that cross the Fermi level EF at kx ⇡ 0.54 ⇡/a form
propeller-shaped Fermi surface (FS) sheets, also observed
in quantum oscillation measurements [15, 16]. Another
FS sheet reported by Shubnikov-de Haas (SdH) oscilla-
tions [17] exhibits an extremal kF similar to our feature
2, the light hole band. However, the SdH experiments
also indicate that this FS sheet is closed along the (001)
direction and only appears above a magnetic field of 21
T. At face value, this strong kz dependence appears in-
consistent with our data, however, this could be resolved
by the fact that our measurements are performed in the
absence of a magnetic field.

By changing photon energy, we can probe di↵erent
values of kz along the (001) direction and can therefore
determine the electronic dispersion perpendicular to the

Ru2Si2 planes. We do not observe any appreciable dis-
persion along kz for features 2, 3, and 4, while feature
1 has already been ascribed to a surface-derived origin
and feature 5 is apparent at only very few photon ener-
gies. The main e↵ect of varying photon energies here is
to strongly modulate the photoelectron matrix elements
of these di↵erent features, suggesting that these states
have substantially di↵erent orbital character.

We will concentrate primarily on features 2, 3 and 4
in Fig. 1, all three of which undergo dramatic modifi-
cations across THO. The lack of obvious kz dispersion
makes it di�cult to definitively assign these features to
bulk states. Nevertheless, their strong temperature de-
pendence allows us to state conclusively that they are
tied to the onset of HO in the bulk. Moreover, the ab-
sence of feature 3 in Rh-doped samples where the HO
state is destroyed [13] further supports the assignment
to bulk-derived states. Having identified the electronic
states of interest, we now address their evolution across
THO. In what follows we will refer to the states corre-
sponding to feature 3 (‘M’ shaped band) and feature 4
(flat band) as heavy fermion states and to feature 2 as
the conduction band.

To investigate the heavy fermion states, we set h⌫ =
31 eV, a photon energy at which these states can be eas-
ily tracked. As shown in Fig. 2, above THO only di↵use
spectral weight is observed close to the Fermi level, in-
dicating large scattering rates. As the temperature is
lowered below THO, a well-defined heavy fermion band
forms, which becomes progressively sharper and more
dispersive upon cooling. This development is even more



Chaterjee et al, arXiv 1211.5312

High Resolution ARPES 3

 
 

252015105

6

4

2

 5

 6

7

 4

252015105-60 0.0 20-20-40

THO
Ļ

THOĻ

THO

Temperature (K)E - EF (meV)

data
fitsa b

c

2K

25K

20K

17.5K

15K

12K

10K

5K

B
in

di
ng

 E
ne

rg
y 

(m
eV

)
�� 

   
   

(m
eV

)
⌃

00

FIG. 3: Suppression of quasiparticle scattering rate

upon entering the hidden order phase. a, Tempera-
ture dependence of the EDCs taken at the red arrow in Fig.
2 a with corresponding fits (solid red lines). An instrumental
resolution of 6 meV was used in the fits, as obtained from
a gold reference. b, Change in the imaginary part of the
spectral function ⌃

00
and c quasiparticle binding energy with

temperature as extracted from fits in a. A sharp drop in mag-
nitude observed across THO shown in i

¯
ndicates a dramatic

enhancement of the lifetime of the quasiparticles on entering
the hidden order phase.

apparent in the lower panels of Fig. 2, where the corre-
sponding spectrum taken at 25K has been subtracted.
In more conventional Kondo lattice systems, coherent
heavy fermion bands develop only gradually below the
Kondo temperature TK, which is approximately 70 K for
URu2Si2. In contrast, we observe only incoherent, lo-
calized states consistent with recent optical spectroscopy
measurements [18], which suddenly gain coherence below
THO.

To better quantify this temperature dependence, we
have analyzed the energy distribution curves (EDCs)
at the momentum indicated (red arrow) in Fig. 2 a.
The data were fit to a lorentzian plus a temperature-
independent Shirley background [19], multiplied by a
Fermi-Dirac function and finally convolved with the in-
strumental resolution. As can be observed in Fig. 3 b, the
scattering rate obtained from the width of the lorentzian
exhibits a sharp drop precisely at THO. A similar tem-
perature dependence has been observed in inelastic neu-
tron scattering measurements, where the intensity of low
energy spin excitations is greatly diminished upon enter-

ing the hidden order phase [20]. Moreover, a decrease
in the electronic relaxation rate upon entering the HO
phase has also been reported in recent pump-probe ex-
periments [21]. The development of the dispersion is re-
flected in the shift of the peak of the EDC by approxi-
mately 4meV (Fig. 3 c), which is consistent with optical
spectroscopy [22, 23], transport [24, 25] and tunneling
measurements [26]. We note that this energy shift tracks
the typical temperature dependence of an order param-
eter, supporting the notion that the observed changes in
the electronic structure are directly related to the hidden
order parameter. Indeed, this suggests that the changes
in the electronic density of states at the HO transition
which are often referred to as the hidden order gap are
instead associated with the hybridization which gives rise
to the heavy fermion states.
We now turn to the temperature dependence of the

conduction band states across THO. For this purpose we
set h⌫ = 49 eV, where the signal from the conduction
band is strongly enhanced. In Figs. 4 a-b, we compare
spectra measured at 2K and 20K, revealing very strong
changes of the conduction band across THO due to the
hybridization between the conduction band and the in-
coherent U 5f states as they develop coherence, an ob-
servation closely consistent with recent fourier-transform
scanning tunneling spectroscopy measurements which
track quasiparticle interference patterns [27, 28]. This is
demonstrated clearly in Fig. 4 c, where the di↵erence of
the spectra measured at 2K and 20K is presented. The
additional spectral weight below THO tracks exactly the
dispersion of the ‘M’ band, showing that the formation
of the coherent heavy fermion liquid goes hand in hand
with the hybridization of the conduction band. This sit-
uation is summarized schematically in Fig. 4 e, showing
how variations in the photoelectron matrix elements due
to rapidly changing orbital characters can give rise to an
apparent dispersion anomaly as the bands hybridize.
Although the dispersion anomaly in Fig. 4 a resembles

a kink feature, we believe it is not related to the coupling
of the quasiparticles to a bosonic excitation. Apart from
the arguments given above, there are a number of ad-
ditional reasons why electron-boson coupling is unlikely
to be responsible for the observed kink in the dispersion.
First, the ‘kink’ energy is characteristic of the boson en-
ergy, but is shown to be highly temperature dependent
in Fig. 4 d, vanishing above THO. Second, the ratio of
band velocity at higher binding energies to the the veloc-
ity at EF i.e vHBE/vEF would be representative of the
electron-boson coupling and mass renormalization, but
the value of vHBE/vEF ⇡ 4.0 ± 0.2 at 2 K would sig-
nify an unphysically large value of the coupling strength,
particularly for such a soft mode.
The emergence of the ‘M’ feature observed here at h⌫ =

49, 27, and 21 eV agrees well with previous laser ARPES
studies at h⌫ = 7 eV [13, 14], where it was interpreted
in terms of a symmetry reduction and the resulting zone

Heavy fermion bands come into focus at THO
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FIG. 2: Incoherent-coherent transition of the f-derived states at THO. a-e, Temperature evolution of the ARPES
intensity plots of URu2Si2 measured along the (0,0) - (⇡,0) direction at 31 eV photon energy over the temperature range 2-20
K. In the lower panel ARPES spectral maps obtained after subtracting the corresponding intensity map at 25 K is shown.
Color scale has been adjusted to show only the positive part of the subtracted spectrum. Note that all the spectral maps in the
lower panel are plotted keeping the range of the color scale fixed. Below THO a coherent heavy fermionic band rapidly emerges
which simultaneously becomes sharper and more dispersive as the sample is cooled down. The red arrow in a indicates the
momentum at which the EDCs shown in Fig. 3 are taken.

exhibit a dramatic dependence on the incident photon
energies, revealing a multitude of electronic states near
(kx = 0, ky = 0), some of which have not been clearly
delineated by previous photoemission studies. We em-
phasize that at no single photon energy are we able to
clearly distinguish all five features, thus underscoring the
importance of photon energy dependent measurements in
revealing and disentangling the complete electronic struc-
ture of URu2Si2. A compilation of these di↵erent features
is shown in Fig. 1 f. Feature 1 has been previously shown
to be of surface origin, while feature 2 corresponds to a
light hole-like band which has been attributed to a bulk
state [11, 12]. Feature 3 exhibits an ‘M’-shaped disper-
sion also reported at 7 eV [13, 14], and is connected to
a relatively flat band (feature 4) ostensibly of predom-
inantly 5f character. Finally, hole-like states (feature
5) that cross the Fermi level EF at kx ⇡ 0.54 ⇡/a form
propeller-shaped Fermi surface (FS) sheets, also observed
in quantum oscillation measurements [15, 16]. Another
FS sheet reported by Shubnikov-de Haas (SdH) oscilla-
tions [17] exhibits an extremal kF similar to our feature
2, the light hole band. However, the SdH experiments
also indicate that this FS sheet is closed along the (001)
direction and only appears above a magnetic field of 21
T. At face value, this strong kz dependence appears in-
consistent with our data, however, this could be resolved
by the fact that our measurements are performed in the
absence of a magnetic field.

By changing photon energy, we can probe di↵erent
values of kz along the (001) direction and can therefore
determine the electronic dispersion perpendicular to the

Ru2Si2 planes. We do not observe any appreciable dis-
persion along kz for features 2, 3, and 4, while feature
1 has already been ascribed to a surface-derived origin
and feature 5 is apparent at only very few photon ener-
gies. The main e↵ect of varying photon energies here is
to strongly modulate the photoelectron matrix elements
of these di↵erent features, suggesting that these states
have substantially di↵erent orbital character.

We will concentrate primarily on features 2, 3 and 4
in Fig. 1, all three of which undergo dramatic modifi-
cations across THO. The lack of obvious kz dispersion
makes it di�cult to definitively assign these features to
bulk states. Nevertheless, their strong temperature de-
pendence allows us to state conclusively that they are
tied to the onset of HO in the bulk. Moreover, the ab-
sence of feature 3 in Rh-doped samples where the HO
state is destroyed [13] further supports the assignment
to bulk-derived states. Having identified the electronic
states of interest, we now address their evolution across
THO. In what follows we will refer to the states corre-
sponding to feature 3 (‘M’ shaped band) and feature 4
(flat band) as heavy fermion states and to feature 2 as
the conduction band.

To investigate the heavy fermion states, we set h⌫ =
31 eV, a photon energy at which these states can be eas-
ily tracked. As shown in Fig. 2, above THO only di↵use
spectral weight is observed close to the Fermi level, in-
dicating large scattering rates. As the temperature is
lowered below THO, a well-defined heavy fermion band
forms, which becomes progressively sharper and more
dispersive upon cooling. This development is even more
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intensity plots of URu2Si2 measured along the (0,0) - (⇡,0) direction at 31 eV photon energy over the temperature range 2-20
K. In the lower panel ARPES spectral maps obtained after subtracting the corresponding intensity map at 25 K is shown.
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which simultaneously becomes sharper and more dispersive as the sample is cooled down. The red arrow in a indicates the
momentum at which the EDCs shown in Fig. 3 are taken.

exhibit a dramatic dependence on the incident photon
energies, revealing a multitude of electronic states near
(kx = 0, ky = 0), some of which have not been clearly
delineated by previous photoemission studies. We em-
phasize that at no single photon energy are we able to
clearly distinguish all five features, thus underscoring the
importance of photon energy dependent measurements in
revealing and disentangling the complete electronic struc-
ture of URu2Si2. A compilation of these di↵erent features
is shown in Fig. 1 f. Feature 1 has been previously shown
to be of surface origin, while feature 2 corresponds to a
light hole-like band which has been attributed to a bulk
state [11, 12]. Feature 3 exhibits an ‘M’-shaped disper-
sion also reported at 7 eV [13, 14], and is connected to
a relatively flat band (feature 4) ostensibly of predom-
inantly 5f character. Finally, hole-like states (feature
5) that cross the Fermi level EF at kx ⇡ 0.54 ⇡/a form
propeller-shaped Fermi surface (FS) sheets, also observed
in quantum oscillation measurements [15, 16]. Another
FS sheet reported by Shubnikov-de Haas (SdH) oscilla-
tions [17] exhibits an extremal kF similar to our feature
2, the light hole band. However, the SdH experiments
also indicate that this FS sheet is closed along the (001)
direction and only appears above a magnetic field of 21
T. At face value, this strong kz dependence appears in-
consistent with our data, however, this could be resolved
by the fact that our measurements are performed in the
absence of a magnetic field.

By changing photon energy, we can probe di↵erent
values of kz along the (001) direction and can therefore
determine the electronic dispersion perpendicular to the

Ru2Si2 planes. We do not observe any appreciable dis-
persion along kz for features 2, 3, and 4, while feature
1 has already been ascribed to a surface-derived origin
and feature 5 is apparent at only very few photon ener-
gies. The main e↵ect of varying photon energies here is
to strongly modulate the photoelectron matrix elements
of these di↵erent features, suggesting that these states
have substantially di↵erent orbital character.

We will concentrate primarily on features 2, 3 and 4
in Fig. 1, all three of which undergo dramatic modifi-
cations across THO. The lack of obvious kz dispersion
makes it di�cult to definitively assign these features to
bulk states. Nevertheless, their strong temperature de-
pendence allows us to state conclusively that they are
tied to the onset of HO in the bulk. Moreover, the ab-
sence of feature 3 in Rh-doped samples where the HO
state is destroyed [13] further supports the assignment
to bulk-derived states. Having identified the electronic
states of interest, we now address their evolution across
THO. In what follows we will refer to the states corre-
sponding to feature 3 (‘M’ shaped band) and feature 4
(flat band) as heavy fermion states and to feature 2 as
the conduction band.

To investigate the heavy fermion states, we set h⌫ =
31 eV, a photon energy at which these states can be eas-
ily tracked. As shown in Fig. 2, above THO only di↵use
spectral weight is observed close to the Fermi level, in-
dicating large scattering rates. As the temperature is
lowered below THO, a well-defined heavy fermion band
forms, which becomes progressively sharper and more
dispersive upon cooling. This development is even more
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which simultaneously becomes sharper and more dispersive as the sample is cooled down. The red arrow in a indicates the
momentum at which the EDCs shown in Fig. 3 are taken.

exhibit a dramatic dependence on the incident photon
energies, revealing a multitude of electronic states near
(kx = 0, ky = 0), some of which have not been clearly
delineated by previous photoemission studies. We em-
phasize that at no single photon energy are we able to
clearly distinguish all five features, thus underscoring the
importance of photon energy dependent measurements in
revealing and disentangling the complete electronic struc-
ture of URu2Si2. A compilation of these di↵erent features
is shown in Fig. 1 f. Feature 1 has been previously shown
to be of surface origin, while feature 2 corresponds to a
light hole-like band which has been attributed to a bulk
state [11, 12]. Feature 3 exhibits an ‘M’-shaped disper-
sion also reported at 7 eV [13, 14], and is connected to
a relatively flat band (feature 4) ostensibly of predom-
inantly 5f character. Finally, hole-like states (feature
5) that cross the Fermi level EF at kx ⇡ 0.54 ⇡/a form
propeller-shaped Fermi surface (FS) sheets, also observed
in quantum oscillation measurements [15, 16]. Another
FS sheet reported by Shubnikov-de Haas (SdH) oscilla-
tions [17] exhibits an extremal kF similar to our feature
2, the light hole band. However, the SdH experiments
also indicate that this FS sheet is closed along the (001)
direction and only appears above a magnetic field of 21
T. At face value, this strong kz dependence appears in-
consistent with our data, however, this could be resolved
by the fact that our measurements are performed in the
absence of a magnetic field.

By changing photon energy, we can probe di↵erent
values of kz along the (001) direction and can therefore
determine the electronic dispersion perpendicular to the

Ru2Si2 planes. We do not observe any appreciable dis-
persion along kz for features 2, 3, and 4, while feature
1 has already been ascribed to a surface-derived origin
and feature 5 is apparent at only very few photon ener-
gies. The main e↵ect of varying photon energies here is
to strongly modulate the photoelectron matrix elements
of these di↵erent features, suggesting that these states
have substantially di↵erent orbital character.

We will concentrate primarily on features 2, 3 and 4
in Fig. 1, all three of which undergo dramatic modifi-
cations across THO. The lack of obvious kz dispersion
makes it di�cult to definitively assign these features to
bulk states. Nevertheless, their strong temperature de-
pendence allows us to state conclusively that they are
tied to the onset of HO in the bulk. Moreover, the ab-
sence of feature 3 in Rh-doped samples where the HO
state is destroyed [13] further supports the assignment
to bulk-derived states. Having identified the electronic
states of interest, we now address their evolution across
THO. In what follows we will refer to the states corre-
sponding to feature 3 (‘M’ shaped band) and feature 4
(flat band) as heavy fermion states and to feature 2 as
the conduction band.

To investigate the heavy fermion states, we set h⌫ =
31 eV, a photon energy at which these states can be eas-
ily tracked. As shown in Fig. 2, above THO only di↵use
spectral weight is observed close to the Fermi level, in-
dicating large scattering rates. As the temperature is
lowered below THO, a well-defined heavy fermion band
forms, which becomes progressively sharper and more
dispersive upon cooling. This development is even more
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and an excited singlet.

hasta: spear (latin)

Figure 1: (a) A normal Kondo effect occurs in ions with an odd number of f-electrons, where the ground
state is guaranteed to be doubly degenerate by time-reversal symmetry (known as a Kramers doublet).
Virtual valence fluctations to an excited singlet state are associated with a scalar hybridization. (b) In
URu2Si2, quasiparticles inherit an Ising symmetry from a 5f2 non-Kramers doublet. Loss or gain of an
electron necessarily leads to an excited Kramers doublet, and the development of a coherent hybridization
is associated with a two-component spinor hybridization that carries a magnetic quantum number and
must therefore develop at a phase transition. (c) Phase diagram for hastatic order, showing how tuning
the parameter λ ∝ (P − Pc). leads to a spin flop between hastatic order and Ising magnetic order. Inset:
at the 1st order line, the longitudinal spin gap is predicted to vanish as ∆ ∝

√
Pc − P . (d) Polar plot

showing the predicted cos4 θ form of the non-linear susceptibility χ3 induced by hastatic order, where θ
is the angle of the field from the c-axis.
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                                      A uniform hybridization breaks no 
symmetry and develops as a cross-over. 4

where the addition and subtraction of angular momen-
tum in units of 4~ is a consequence of the four-fold sym-
metry of the URu2Si2 tetragonal crystal. However, the
presence of a perfect Ising anisotropy requires an Ising
selection rule

h�±|J±|�⌥i = 0 (14)

that, in the absence of fine-tuning of the coe�cients an,
leads to the condition that �(Jz + 4n0) 6= (Jz + 4n)± 1,
or Jz 6= 2(n � n0) ± 1

2 , requiring Jz 2 Z must be an in-
teger. For any generic half-integer Jz, corresponding to
a Kramers doublet, the selection rule is absent so that
crystal fields mix the Jz states leading to isotropic mag-
netic properties. Within the five-parameter crystal-field
Hamiltonian of URu2Si2 , a simulated annealling search
yielded just one finely tuned 5f3 (Kramers) state with
nearly zero transverse moment, but the fit to single-
ion bulk properties was poor.47 In the tetragonal crys-
talline environment of URu2Si2 , such Ising anisotropy
is most natural in a 5f2 (J = 4) configuration of the
uranium ion, but doublets with integer J in general do
not enjoy the symmetry protection of their half-integer
(Kramers) counterparts. However in URu2Si2 a combina-
tion of tetragonal and time-reversal symmetries protects
a non-Kramers doublet

|�5± >= ↵|Jz = ±3 > +�|Jz = ⌥1 > (15)

that is quadrupolar in the basal plane and magnetic along
the c-axis, and it has been proposed as the origin of the
magnetic anisotropy in both the dilute and the dense
URu2Si2 ;40–42 this can be checked with a direct bench-
top test.47 In the hastatic proposal the Ising anisotropy
of the U 5f2 ions is transferred to the quasiparticles
via hybridization between integer J local moments and
half-integer J conduction electrons, and this mixing of
Kramers parity (K = (�1)2J) has important symmetry
implications.40,41

Conventionally in heavy fermion materials, hybridiza-
tion involves valence fluctuations between a ground-state
Kramers doublet and an excited singlet (cf. Fig. 4); in
this case, hybridization is a scalar that develops via a
crossover leading to mobile heavy quasiparticles. How-
ever if the ground-state is a non-Kramers doublet, the
Kondo e↵ect will involve an excited Kramers doublet (cf
Fig. 4). The quasiparticle hybridization now carries a
global spin quantum number and has two distinct am-
plitudes that form a spinor defining the hastatic order
parameter

 =

✓
 "
 #

◆
. (16)

The onset of hybridization must break spin rotational in-
variance in addition to single- and double time-reversal
invariances via a phase transition; we note that optical,
spectroscopic and tunneling probes35–39 in URu2Si2 in-
dicate the hybridization occurs abruptly at the hidden
order transition in contrast to the crossover behavior ob-
served in other heavy fermion systems (cf. Fig. 4).

FIG. 4: Schematic of (a) conventional (scalar) vs (b) spinorial
hybridization where the hybridization is a) a crossover and
b) breaks spin-rotatinonal and time-reversal symmetries and
thus develops discontinuously as a phase transition.

III. HASTATIC ORDER ”HIGHLIGHTS”

We next summarize the main points of the hastatic
proposal,40,41 noting that the interested reader can find
further discussion with more details elsewhere. Hastatic
order captures the key features of the observed pressure-
induced first-order phase transition in URu2Si2 between
the hidden order and the Ising antiferromagnetic (AFM)
phases.7,48–51 The most general Landau functional for the
free energy density of a hastatic state with a spinorial
order parameter  as a function of pressure and temper-
ature is

f [ ] = ↵(Tc � T )| |2 + �| |4 � �( †�z )
2 (17)

and � = �(P � Pc) where P is pressure and the
term �( †�z )2 determines whether the direction of the
spinor, either along the c-axis or in the basal plane (cf.
Fig. 5a).
Experimentally the TAFM (P ) line is almost vertical,

indicating by the Clausius-Clapeyron relation that there
is negligible change in entropy between the HO and the
AFM states. Indeed these two phases share a number of
key features, including common Fermi surface pockets;
this has prompted the proposal that they are linked by
“adiabatic continuity”, associated by a notational rota-
tion in the space of internal parameters.20,48 This is eas-
ily accomodated with a spinor order parameter; for the
AFM phase (P > Pc), there is a large staggered Ising
f-moment with

 A /
✓
1
0

◆
,  B /

✓
0
1

◆
(18)

corresponding to time-reversed spin configurations on al-
ternating layers A and B. For the HO state (P < Pc),
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But if  the ground-state is a non-Kramer’s doublet, the 
Kondo effect occurs via an excited Kramer’s doublet. 

metric Kondo model is a Fermi liquid. However, if the competing screening channels are

symmetry-equivalent, then non-Fermi liquid behavior and a residual entropy result. Is there

a deviation from perfect channel symmetry that is at once strong enough to destroy the

zero-point entropy whilst remaining weak enough to preserve some type of non-Fermi liquid

behavior? In two channel Kondo models, deviation from channel symmetry on the Fermi

surface immediately leads to Fermi liquid behavior. In principle this leaves open the possi-

bility of a marginal channel asymmetry that is absent at the Fermi surface but grows as one

moves away from it. For example, in the Γ5 scenario,1,11 one isospin direction is odd under

time-reversal whereas the other two are even. Thus there is weaker symmetry protection

than in the usual 2CKM scenario,12 and further investigation is necessary to see whether

marginal channel asymmetries exist here. We also note that an intermediate asymptotic

regime with TF (H) ∝ H can be obtained within the hexadecapolar Kondo scenario pro-

vided that the crystal-field splitting between the Γ1 and the Γ2 singlets is small and an

intermediate-coupling condition is obeyed.13

In conclusion, we have used high-resolution magnetization measurements to confirm the

absence of a zero-point entropy in TURS. Exploiting the fact that an applied field restores

Fermi liquid behavior in TURS, we find that the field-dependent Fermi temperature TF (H)

scales linearly with field rather than the quadratic behavior expected for the 2CKM. Since

this technique does not depend on subtraction issues, it would be interesting to apply it to

various impurity systems previously found to display quadrupolar Kondo behavior5 where we

expect TF (H) ∼ H4 or TF (s) ∼ s2 where s is strain. Of particular interest is the quadrupolar

Kondo candidate14 PrxLa1−xPb3 for x ≤ 0.05 where no ZPE has been observed. Finally,

we would like to encourage more low-field and low-temperature measurements on TURS to

learn more about the nature of its underlying impurity fixed point.
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NSF NIRT-ECS-0608842 (P. Chandra) and DOE DE-FG02-99ER45790 (P. Coleman).

1 H. Amitsuka and T. Sakakibara, J. Phys. Soc. Japan 63, 736-47 (1994).

2 H. Amitsuka et al., Physica B 281 326-331 (2000).

8

“Hastatic” order.   

Kramers

(K=-1)

Γ7 |5f3,�i =  ̂†
�|0i

non-

Kramers

(K=+1)

Γ5 |5f2,↵i = �̂†
↵|0i

 ̂"  ̂#

|5f3,�ih5f2,↵| =  ̂†
��̂↵



hasta: spear (latin)

But if  the ground-state is a non-Kramer’s doublet, the 
Kondo effect occurs via an excited Kramer’s doublet. 

metric Kondo model is a Fermi liquid. However, if the competing screening channels are

symmetry-equivalent, then non-Fermi liquid behavior and a residual entropy result. Is there

a deviation from perfect channel symmetry that is at once strong enough to destroy the

zero-point entropy whilst remaining weak enough to preserve some type of non-Fermi liquid

behavior? In two channel Kondo models, deviation from channel symmetry on the Fermi

surface immediately leads to Fermi liquid behavior. In principle this leaves open the possi-

bility of a marginal channel asymmetry that is absent at the Fermi surface but grows as one

moves away from it. For example, in the Γ5 scenario,1,11 one isospin direction is odd under

time-reversal whereas the other two are even. Thus there is weaker symmetry protection

than in the usual 2CKM scenario,12 and further investigation is necessary to see whether

marginal channel asymmetries exist here. We also note that an intermediate asymptotic

regime with TF (H) ∝ H can be obtained within the hexadecapolar Kondo scenario pro-

vided that the crystal-field splitting between the Γ1 and the Γ2 singlets is small and an

intermediate-coupling condition is obeyed.13

In conclusion, we have used high-resolution magnetization measurements to confirm the

absence of a zero-point entropy in TURS. Exploiting the fact that an applied field restores

Fermi liquid behavior in TURS, we find that the field-dependent Fermi temperature TF (H)

scales linearly with field rather than the quadratic behavior expected for the 2CKM. Since

this technique does not depend on subtraction issues, it would be interesting to apply it to

various impurity systems previously found to display quadrupolar Kondo behavior5 where we

expect TF (H) ∼ H4 or TF (s) ∼ s2 where s is strain. Of particular interest is the quadrupolar

Kondo candidate14 PrxLa1−xPb3 for x ≤ 0.05 where no ZPE has been observed. Finally,

we would like to encourage more low-field and low-temperature measurements on TURS to

learn more about the nature of its underlying impurity fixed point.

We acknowledge helpful discussions with N. Andrei, C. Bolech, D.L. Cox and M. B.

Maple. This work was supported in part by NSF DMR-0906943 (G. Kotliar and A. Tóth),
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where the addition and subtraction of angular momen-
tum in units of 4~ is a consequence of the four-fold sym-
metry of the URu2Si2 tetragonal crystal. However, the
presence of a perfect Ising anisotropy requires an Ising
selection rule

h�±|J±|�⌥i = 0 (14)

that, in the absence of fine-tuning of the coe�cients an,
leads to the condition that �(Jz + 4n0) 6= (Jz + 4n)± 1,
or Jz 6= 2(n � n0) ± 1

2 , requiring Jz 2 Z must be an in-
teger. For any generic half-integer Jz, corresponding to
a Kramers doublet, the selection rule is absent so that
crystal fields mix the Jz states leading to isotropic mag-
netic properties. Within the five-parameter crystal-field
Hamiltonian of URu2Si2 , a simulated annealling search
yielded just one finely tuned 5f3 (Kramers) state with
nearly zero transverse moment, but the fit to single-
ion bulk properties was poor.47 In the tetragonal crys-
talline environment of URu2Si2 , such Ising anisotropy
is most natural in a 5f2 (J = 4) configuration of the
uranium ion, but doublets with integer J in general do
not enjoy the symmetry protection of their half-integer
(Kramers) counterparts. However in URu2Si2 a combina-
tion of tetragonal and time-reversal symmetries protects
a non-Kramers doublet

|�5± >= ↵|Jz = ±3 > +�|Jz = ⌥1 > (15)

that is quadrupolar in the basal plane and magnetic along
the c-axis, and it has been proposed as the origin of the
magnetic anisotropy in both the dilute and the dense
URu2Si2 ;40–42 this can be checked with a direct bench-
top test.47 In the hastatic proposal the Ising anisotropy
of the U 5f2 ions is transferred to the quasiparticles
via hybridization between integer J local moments and
half-integer J conduction electrons, and this mixing of
Kramers parity (K = (�1)2J) has important symmetry
implications.40,41

Conventionally in heavy fermion materials, hybridiza-
tion involves valence fluctuations between a ground-state
Kramers doublet and an excited singlet (cf. Fig. 4); in
this case, hybridization is a scalar that develops via a
crossover leading to mobile heavy quasiparticles. How-
ever if the ground-state is a non-Kramers doublet, the
Kondo e↵ect will involve an excited Kramers doublet (cf
Fig. 4). The quasiparticle hybridization now carries a
global spin quantum number and has two distinct am-
plitudes that form a spinor defining the hastatic order
parameter

 =

✓
 "
 #

◆
. (16)

The onset of hybridization must break spin rotational in-
variance in addition to single- and double time-reversal
invariances via a phase transition; we note that optical,
spectroscopic and tunneling probes35–39 in URu2Si2 in-
dicate the hybridization occurs abruptly at the hidden
order transition in contrast to the crossover behavior ob-
served in other heavy fermion systems (cf. Fig. 4).

FIG. 4: Schematic of (a) conventional (scalar) vs (b) spinorial
hybridization where the hybridization is a) a crossover and
b) breaks spin-rotatinonal and time-reversal symmetries and
thus develops discontinuously as a phase transition.

III. HASTATIC ORDER ”HIGHLIGHTS”

We next summarize the main points of the hastatic
proposal,40,41 noting that the interested reader can find
further discussion with more details elsewhere. Hastatic
order captures the key features of the observed pressure-
induced first-order phase transition in URu2Si2 between
the hidden order and the Ising antiferromagnetic (AFM)
phases.7,48–51 The most general Landau functional for the
free energy density of a hastatic state with a spinorial
order parameter  as a function of pressure and temper-
ature is

f [ ] = ↵(Tc � T )| |2 + �| |4 � �( †�z )
2 (17)

and � = �(P � Pc) where P is pressure and the
term �( †�z )2 determines whether the direction of the
spinor, either along the c-axis or in the basal plane (cf.
Fig. 5a).
Experimentally the TAFM (P ) line is almost vertical,

indicating by the Clausius-Clapeyron relation that there
is negligible change in entropy between the HO and the
AFM states. Indeed these two phases share a number of
key features, including common Fermi surface pockets;
this has prompted the proposal that they are linked by
“adiabatic continuity”, associated by a notational rota-
tion in the space of internal parameters.20,48 This is eas-
ily accomodated with a spinor order parameter; for the
AFM phase (P > Pc), there is a large staggered Ising
f-moment with

 A /
✓
1
0

◆
,  B /

✓
0
1

◆
(18)

corresponding to time-reversed spin configurations on al-
ternating layers A and B. For the HO state (P < Pc),
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heavy fermions. However valence fluctuations from a 5f 2 ground-state create excited states with

an odd number of electrons and hence a Kramers degeneracy (cf. Fig. 1b).

In this case, the quasiparticle hybridization has two components, Ψσ that determine the mix-

ing of the excited Kramers doublet into the ground-state. These two amplitudes form a spinor

defining the “hastatic” order parameter

Ψ =

(

Ψ↑

Ψ↓

)

. (3)

The presence of distinct up/down hybridization components indicates that Ψ carries the global

spin quantum number; its development must now break time-reversal and spin rotational invari-

ance via a phase transition. In the magnetic phase, this spinor points along the c-axis

ΨA ∼
(

1
0

)

, ΨB ∼
(

0
1

)

(4)

corresponding to time-reversed configurations on alternating layers A and B, leading to a large

staggered Ising moment; in the HO state, it points in the basal plane

ΨA ∼
1√
2

(

e−iφ/2

eiφ/2

)

, ΨB ∼
1√
2

(

−e−iφ/2

eiφ/2

)

, (5)

where again, ΨB = ΘΨA and it is protected from developing a large moment by the pure Ising

character of the 5f 2 ground-state.

Hastatic order permits a direct realization of the adiabatic continuity between the HO and

AFM in terms of a single Landau functional for the free energy

f [T, P,Bz] = [α(Tc − T )− ηzB
2
z ]|Ψ|2 + β|Ψ|4 − γ(Ψ†σzΨ)2 (6)

where γ = δ(P − Pc) is a pressure-tuned anisotropy term. The unique feature of the theory

is that the non-Kramers doublet has Ising character, and only couples to the z-component of

the magnetic field Bz = B cos θ. The resulting Ising splitting of the non-Kramer’s doublet

6
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an magnetic state where Ψ†σ⃗Ψ = |Ψ|2(0, 0,±1) lies along the c-axis. In the HO state, rotations

between hastatic and AFM order will lead to a gapped Ising collective mode at wavevector which

we identify with the longitudinal spin fluctuations observed in inelastic neutron scattering (30).

At the first order line, P = Pc, the quartic anisotropy term vanishes; we predict that the gap to

longitudinal spin fluctuations will vanish according to ∆ ∝
√

γ|Ψ|2 ∼ |Ψ|
√

Pc(T )− P (for

more details see supporting online material). Experimental observation of this feature would

provide direct confirmation of the adiabatic connection and the common origin of the hidden and

AFM order.

We now present a microscopic model that relates hastatic order to the valence fluctuations

in URu2Si2. Our theory is based on a two-channel Anderson lattice model where the uranium

ground-state is a 5f 2 Ising Γ5 doublet (4), |±⟩ = a| ± 3⟩+ b|∓ 1⟩, written in terms of J = 5/2

f-electrons in the three tetragonal orbitals Γ±
7 and Γ6
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more details see supporting online material). Experimental observation of this feature would
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We now present a microscopic model that relates hastatic order to the valence fluctuations
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heavy fermions. However valence fluctuations from a 5f 2 ground-state create excited states with

an odd number of electrons and hence a Kramers degeneracy (cf. Fig. 1b).
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ing of the excited Kramers doublet into the ground-state. These two amplitudes form a spinor

defining the “hastatic” order parameter

Ψ =
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)
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The presence of distinct up/down hybridization components indicates that Ψ carries the global

spin quantum number; its development must now break time-reversal and spin rotational invari-

ance via a phase transition. In the magnetic phase, this spinor points along the c-axis

ΨA ∼
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where again, ΨB = ΘΨA and it is protected from developing a large moment by the pure Ising
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2
z ]|Ψ|2 + β|Ψ|4 − γ(Ψ†σzΨ)2 (6)
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Figure 1: (a) A normal Kondo effect occurs in ions with an odd number of f-electrons, where the ground
state is guaranteed to be doubly degenerate by time-reversal symmetry (known as a Kramers doublet).
Virtual valence fluctations to an excited singlet state are associated with a scalar hybridization. (b) In
URu2Si2, quasiparticles inherit an Ising symmetry from a 5f2 non-Kramers doublet. Loss or gain of an
electron necessarily leads to an excited Kramers doublet, and the development of a coherent hybridization
is associated with a two-component spinor hybridization that carries a magnetic quantum number and
must therefore develop at a phase transition. (c) Phase diagram for hastatic order, showing how tuning
the parameter λ ∝ (P − Pc). leads to a spin flop between hastatic order and Ising magnetic order. Inset:
at the 1st order line, the longitudinal spin gap is predicted to vanish as ∆ ∝

√
Pc − P . (d) Polar plot

showing the predicted cos4 θ form of the non-linear susceptibility χ3 induced by hastatic order, where θ
is the angle of the field from the c-axis.
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III. LANDAU THEORY FOR HASTATIC ORDER.

A. Landau theory in zero field

The most general Landau functional for the free energy density of a hastatic state with

a spinorial order parameter  as a function of pressure and temperature is

f [ ] = ↵(Tc � T )| |2 + �| |4 � �( †�z )
2 (4)

where � = �(P � Pc) is a pressure-tuned anisotropy term and

 = r
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@ cos(✓/2)ei�/2

sin(✓/2)e�i�/2

1

A , (5)

where ✓ is the disclination of  †~� from the c-axis. Using this expression for  ,

f = �↵(T � Tc)r
2 + �r4 � �r4 cos2 ✓. (6)

If P < Pc, then � < 0 and the minimum of the free energy occurs for ✓ = ⇡/2, corresponding

to the hidden order state ordered state. By contrast, if P > Pc, then � > 0 and the minimum

(3)

FIG. 1. Global phase diagram predicted by Landau theory.
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Figure 1: (a) A normal Kondo effect occurs in ions with an odd number of f-electrons, where the ground
state is guaranteed to be doubly degenerate by time-reversal symmetry (known as a Kramers doublet).
Virtual valence fluctations to an excited singlet state are associated with a scalar hybridization. (b) In
URu2Si2, quasiparticles inherit an Ising symmetry from a 5f2 non-Kramers doublet. Loss or gain of an
electron necessarily leads to an excited Kramers doublet, and the development of a coherent hybridization
is associated with a two-component spinor hybridization that carries a magnetic quantum number and
must therefore develop at a phase transition. (c) Phase diagram for hastatic order, showing how tuning
the parameter λ ∝ (P − Pc). leads to a spin flop between hastatic order and Ising magnetic order. Inset:
at the 1st order line, the longitudinal spin gap is predicted to vanish as ∆ ∝

√
Pc − P . (d) Polar plot

showing the predicted cos4 θ form of the non-linear susceptibility χ3 induced by hastatic order, where θ
is the angle of the field from the c-axis.
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The lowest lying excited state is most likely the 5f 3 (J = 9/2) state, but for simplicity here we

take it to be the symmetry-equivalent 5f 1 state. Valence fluctuations from the ground state (Γ5)

to the excited state (Γ+
7 ) occur in two orthogonal conduction channels, (33, 34) Γ−

7 and Γ6. This

allows us to read off the hybridization matrix elements of the Anderson model

HV F (j) = V6ψ
†
Γ6±

(j)|Γ+
7 ±⟩⟨Γ5 ± |+ V7ψ

†
Γ7∓

(j)|Γ+
7 ∓⟩⟨Γ5 ± |+H.c.. (8)

where ± denotes the “up” and “down” states of the coupled Kramers and non-Kramers dou-

blets. The field ψ†
Γσ(j) =

∑

k

[

Φ†
Γ(k)

]

στ
c†kτe

−ik ·Rj creates a conduction electron at site j with

spin σ in a Wannier orbital with symmetry Γ ∈ {6, 7}, while V6 and V7 are the corresponding

hybridization strengths.

Hastatic order is revealed by factorizing the Hubbard operators,

|Γ+
7 σ⟩⟨Γ5α| = Ψ̂†

σχα. (9)

Here Ψ̂†
σ is a boson representing the excited f 1 doublet, |Γ+

7 σ⟩ = Ψ̂†
σ|Ω⟩: Ψ̂†

σ carries a half-integer

magnetic moment and a positive charge +e. Hastatic order is the condensation of this boson,

generating a hybridization of the conduction electrons with the Ising 5f 2 state; here represented

by the pseudo-fermion χ†
α, |Γ5α⟩ = χ†

α|Ω⟩. The Γ5 doublet has both magnetic and quadrupolar

moments represented by χ†σ⃗χ = (Ox2−y2 ,Oxy,mz), where mz is the Ising magnetic moment

and Ox2−y2 and Oxy are quadrupole moments.

Using this factorization, we can rewrite the valence fluctuation term as,

HV F (j) =
∑

k

c†kσV̂ση(k, j)χη(j)e
−ik ·Rj +H.c. (10)
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where V̂(k, j) = V6ΦΓ6

†(k)B̂†
j + V7ΦΓ−

7

†(k)B̂†
jσ1, B̂j =

(

Ψ̂↑ 0
0 Ψ̂↓

)

. In the ordered state,

Bj = ⟨B̂j⟩ is replaced by its expectation value. In a magnetic state, the diagonal entries of Bj

alternate between layers, but in a hastatic state, both entries are finite

B†
j = |Ψ|

(

ei(Q ·Rj+φ)/2 0
0 e−i(Q ·Rj+φ)/2

)

≡ |Ψ|Uj, (11)

with magnitude |Ψ|. The internal angle, φ, rotates Bj within the basal plane, tuning the HO

state. As the HO and AFM appear to share a single commensurate wavevector, Q = (0, 0, 2πc )

(17, 27, 28), we use this wavevector here. It is convenient to absorb the unitary matrix, Uj into

the pseudo-fermion, χ̃j = Ujχj . In this gauge, one channel (Γ6) is uniform, while the other (Γ−
7 )

is staggered

HV F =
∑

k

c†kV6(k)χk + c†kV7(k)χk+Q + h.c. (12)

where the hybridization form factors V7(k) = V7Φ7
†(k)σ1 and V6(k) = V6Φ6

†(k).

One of the key elements of the hastatic theory is the formation of mobile Ising quasiparticles,

and the observed Ising anisotropy enables us to set some of the parameters of the theory. The

staggered order guarantees that the mean-field Hamiltonian is invariant under the combination

of time-reversal and a translation along the c-axis, leading to a two-fold spin degeneracy at each

point in momentum space which is Zeeman-split in an applied magnetic field. The Zeeman

coupling to the the non-Kramers 5f 2 doublet is purely Ising, while that of conduction band is

isotropic. Thus when the field points along the c-axis, the g-factor reflects the full f-electron

contribution g∗, but when the field points in the basal plane it is determined by the small fraction

of conduction electrons hybridized into the quasiparticle band, of order TK/D, where TK is the

Kondo temperature and D is the band-width cut-off; in summary the full anisotropic g-factor is

then determined by g(θ) ≈ g∗ cos θ + gc
(

TK

D

)

where gc = 2. Experimentally (18), the g-factor

anisotropy is approximately gz/g⊥ ≈ 30, which enables us to phenomenologically set the ratio
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In the slave formulation, the atomic Hamiltonian isHa(j) = �E
P

� b
†
j�bj�. The introduc-

tion of slave bosons and fermions to represent the Hubbard operators requires a constraint

to maintain one particle per site, �j

⇣P
� b

†
j�bj� +

P
↵ �

†
j↵�j↵ � 1

⌘
.

We take a simplified model of the conduction electron hopping, treating them as s-wave

electrons located at the U site, hopping on a bct lattice with dispersion

✏
k

= �8t cos
kxa

2
cos

kya

2
cos

kzc

2
� µ. (32)

We do, however, want to capture the essential characteristics of the URu2Si2 bandstructure

- namely nesting between an electron Fermi surface about the zone center and a hole Fermi

surface at Q[3]s. In order to favor a staggered hybridization, and to match up with ARPES

experiments suggesting a heavy f-band[2], we take the hole Fermi surface to be generated

from a weakly dispersion � band. This f-electron hopping will be naturally generated by

hybridization fluctuations above THO, e↵ectively where hB†Bi 6= 0 while B = 0. A large N

expansion of this problem would capture these fluctuation e↵ects, but is overly complicated

for this problem so we put this dispersion in by hand, ✏fk = �8tf cos
kxa
2 cos kya

2 cos kzc
2 .

So to summarize, our mean-field Hamiltonian is,

H =
X

k

✏
k

c†
k�ck�+

X

k

tf
k

�†
k⌘�k⌘+

X

j

(�E+�j)b
†
j�bj�+�j

⇣
�†
j⌘�j⌘ � 1

⌘
+
X

j

HV F (j). (33)

We rewrite this Hamiltonian in matrix form

H =
X

k

⇣
c†
k

, c†
k+Q

,�†
k

,�†
k+Q

⌘

H↵�(k)z }| {0

BBBBB@

✏
k

0 V6(k) V7(k)

0 ✏
k+Q

�V7(k) �V6(k)

V†
6(k) �V†

7(k) �
k

0

V†
7(k) �V†

6(k) 0 �
k+Q

1

CCCCCA

0

BBBBB@

c
k

c
k+Q

�
k

�
k+Q

1

CCCCCA

+
X

j

h
(�E + �)b†j�bj� � �

i
. (34)

where we have suppressed spin indices, made the assumption that �j = � is uniform, equiv-

alent to enforcing the constraint on average, introduced �
k

= � � ✏fk, and used the sim-

plification that Q is half a reciprocal lattice vector, making V(k +Q) = �V(k), as shown
above.

In the absence of particle-hole symmetry, this Hamiltonian cannot be diagonalized ana-

lytically, and must be done numerically, giving a set of four doubly degenerate bands, E
k⌘.
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f-electrons in the three tetragonal orbitals Γ±
7 and Γ6

|+⟩ = (af †

Γ−

7
↓
f †

Γ+

7
↓
+ bf †

Γ6↑
f †

Γ+

7
↑
)|0⟩

|−⟩ = (af †

Γ−

7
↑
f †

Γ+

7
↑
+ bf †

Γ6↓
f †

Γ+

7
↓
)|0⟩. (7)

The lowest lying excited state is most likely the 5f 3 (J = 9/2) state, but for simplicity here we

take it to be the symmetry-equivalent 5f 1 state. Valence fluctuations from the ground state (Γ5)

to the excited state (Γ+
7 ) occur in two orthogonal conduction channels, (33, 34) Γ−

7 and Γ6. This

allows us to read off the hybridization matrix elements of the Anderson model

HV F (j) = V6ψ
†
Γ6±

(j)|Γ+
7 ±⟩⟨Γ5 ± |+ V7ψ

†
Γ7∓

(j)|Γ+
7 ∓⟩⟨Γ5 ± |+H.c.. (8)

where ± denotes the “up” and “down” states of the coupled Kramers and non-Kramers dou-

blets. The field ψ†
Γσ(j) =

∑

k

[

Φ†
Γ(k)

]

στ
c†kτe

−ik ·Rj creates a conduction electron at site j with

spin σ in a Wannier orbital with symmetry Γ ∈ {6, 7}, while V6 and V7 are the corresponding

hybridization strengths.

Hastatic order is revealed by factorizing the Hubbard operators,

|Γ+
7 σ⟩⟨Γ5α| = Ψ̂†

σχα. (9)

Here Ψ̂†
σ is a boson representing the excited f 1 doublet, |Γ+

7 σ⟩ = Ψ̂†
σ|Ω⟩: Ψ̂†

σ carries a half-integer

magnetic moment and a positive charge +e. Hastatic order is the condensation of this boson,

generating a hybridization of the conduction electrons with the Ising 5f 2 state; here represented

by the pseudo-fermion χ†
α, |Γ5α⟩ = χ†

α|Ω⟩. The Γ5 doublet has both magnetic and quadrupolar

moments represented by χ†σ⃗χ = (Ox2−y2 ,Oxy,mz), where mz is the Ising magnetic moment

and Ox2−y2 and Oxy are quadrupole moments.

Using this factorization, we can rewrite the valence fluctuation term as,

HV F (j) =
∑

k

c†kσV̂ση(k, j)χη(j)e
−ik ·Rj +H.c. (10)
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5f2 ⌦ 5f1 + e�

HV F (j) = V6 
†
�6±(j) 

†
j±�j± + V7 

†
�7⌥(j) 

†
j⌥�j± +H.c.

h †
ji = | |

✓
ei(Q·Rj+�)/2

e�i(Q·Rj+�)/2

◆
, (� = ⇡/4).

where V̂(k, j) = V6ΦΓ6

†(k)B̂†
j + V7ΦΓ−

7

†(k)B̂†
jσ1, B̂j =

(

Ψ̂↑ 0
0 Ψ̂↓

)

. In the ordered state,

Bj = ⟨B̂j⟩ is replaced by its expectation value. In a magnetic state, the diagonal entries of Bj

alternate between layers, but in a hastatic state, both entries are finite

B†
j = |Ψ|

(

ei(Q ·Rj+φ)/2 0
0 e−i(Q ·Rj+φ)/2

)

≡ |Ψ|Uj, (11)

with magnitude |Ψ|. The internal angle, φ, rotates Bj within the basal plane, tuning the HO

state. As the HO and AFM appear to share a single commensurate wavevector, Q = (0, 0, 2πc )

(17, 27, 28), we use this wavevector here. It is convenient to absorb the unitary matrix, Uj into

the pseudo-fermion, χ̃j = Ujχj . In this gauge, one channel (Γ6) is uniform, while the other (Γ−
7 )

is staggered

HV F =
∑

k

c†kV6(k)χk + c†kV7(k)χk+Q + h.c. (12)

where the hybridization form factors V7(k) = V7Φ7
†(k)σ1 and V6(k) = V6Φ6

†(k).

One of the key elements of the hastatic theory is the formation of mobile Ising quasiparticles,

and the observed Ising anisotropy enables us to set some of the parameters of the theory. The

staggered order guarantees that the mean-field Hamiltonian is invariant under the combination

of time-reversal and a translation along the c-axis, leading to a two-fold spin degeneracy at each

point in momentum space which is Zeeman-split in an applied magnetic field. The Zeeman

coupling to the the non-Kramers 5f 2 doublet is purely Ising, while that of conduction band is

isotropic. Thus when the field points along the c-axis, the g-factor reflects the full f-electron

contribution g∗, but when the field points in the basal plane it is determined by the small fraction

of conduction electrons hybridized into the quasiparticle band, of order TK/D, where TK is the

Kondo temperature and D is the band-width cut-off; in summary the full anisotropic g-factor is

then determined by g(θ) ≈ g∗ cos θ + gc
(

TK

D

)

where gc = 2. Experimentally (18), the g-factor

anisotropy is approximately gz/g⊥ ≈ 30, which enables us to phenomenologically set the ratio
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In the slave formulation, the atomic Hamiltonian isHa(j) = �E
P

� b
†
j�bj�. The introduc-

tion of slave bosons and fermions to represent the Hubbard operators requires a constraint

to maintain one particle per site, �j

⇣P
� b

†
j�bj� +

P
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†
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.

We take a simplified model of the conduction electron hopping, treating them as s-wave

electrons located at the U site, hopping on a bct lattice with dispersion

✏
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= �8t cos
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cos

kya
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cos

kzc
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� µ. (32)

We do, however, want to capture the essential characteristics of the URu2Si2 bandstructure

- namely nesting between an electron Fermi surface about the zone center and a hole Fermi

surface at Q[3]s. In order to favor a staggered hybridization, and to match up with ARPES

experiments suggesting a heavy f-band[2], we take the hole Fermi surface to be generated

from a weakly dispersion � band. This f-electron hopping will be naturally generated by

hybridization fluctuations above THO, e↵ectively where hB†Bi 6= 0 while B = 0. A large N

expansion of this problem would capture these fluctuation e↵ects, but is overly complicated

for this problem so we put this dispersion in by hand, ✏fk = �8tf cos
kxa
2 cos kya

2 cos kzc
2 .

So to summarize, our mean-field Hamiltonian is,

H =
X
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k
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tf
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X

j

(�E+�j)b
†
j�bj�+�j

⇣
�†
j⌘�j⌘ � 1

⌘
+
X

j

HV F (j). (33)

We rewrite this Hamiltonian in matrix form

H =
X

k

⇣
c†
k

, c†
k+Q

,�†
k

,�†
k+Q

⌘

H↵�(k)z }| {0
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✏
k

0 V6(k) V7(k)
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where we have suppressed spin indices, made the assumption that �j = � is uniform, equiv-

alent to enforcing the constraint on average, introduced �
k

= � � ✏fk, and used the sim-

plification that Q is half a reciprocal lattice vector, making V(k +Q) = �V(k), as shown
above.

In the absence of particle-hole symmetry, this Hamiltonian cannot be diagonalized ana-

lytically, and must be done numerically, giving a set of four doubly degenerate bands, E
k⌘.
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For simplicity we have discussed the two channel Anderson model involving fluctuations

from a 5f 2 �5 ground state to 5f 1 (J = 5/2). However, the more realistic case involves

fluctuations to 5f 3, whose low energy states have J = 9/2, and are split into five Kramers

doublets by the tetragonal crystal field,

|�1
7±i = a| ± 5/2i+ b|⌥ 3/2i

|�2
7±i = �b| ± 5/2i+ a|⌥ 3/2i

|�1,2,3
6 ±i = c1,2,3| ± 9/2i+ d1,2,3| ± 1/2i+ e1,2,3|⌥ 7/2i. (37)

There are two generic situations: either a �7 doublet will be lowest in energy, and the valence

fluctuations will be determined by the overlap,

|�7±i = ↵ †
6⌥|�5±i+ � †

7⌥|�5⌥i, (38)

or a �6 doublet will be lowest in energy, with the relevant overlap,

|�6±i = ↵ †
7⌥|�5±i+ � †

6⌥|�5⌥i, (39)

���

��� ���

(36)

FIG. 2. (A) Band structure of the hastatic order is shown in solid blue, while the bare conduction

(red) and f (green) bands are dashed. (B) Mean field parameters b and � as a function of temper-

ature. (C) Density of states in hastatic order, for the region close to the Fermi energy containing

the hybridization gap.
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Consistency with experiment.



Figure 3: Magnetic response of hastatic order. (a) Polar plot of calculated g-factor, g(θ) averaged over
the Fermi surface, as a function of magnetic field angle θ (see SOM for details), compared with results
of Altarawneh et al. (20), overlaid in green. (b) As a consequence of the broken time-reversal symmetry,
we predict a staggered conduction electron moment that onsets at the HO transition with a linear Tc − T
temperature dependence (staggering pattern shown in inset). The magnitude of this moment is governed by
TK/D ∼ .01µB/U . (c) We have calculated the tetragonal symmetry breaking component of the uniform
susceptibility, χxy(T ). To compare our results to Okazaki et al (18) (overlaid as green squares), we have
plotted the two-fold oscillation amplitude of the magnetic torque, A (in black), where A cos 2φ ≡ τ2φ

V =

−µ0H2

V cos 2φχxy(T ). A goes as (Tc − T )2 just below the HO transition. For details of our calculation,
including parameter choices, please see the supporting online material (32).
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(a) Transverse moment in conduction sea

m~ O(TK/D)~ 0.01𝞵

Figure 3: Magnetic response of hastatic order. (a) Polar plot of calculated g-factor, g(θ) averaged over
the Fermi surface, as a function of magnetic field angle θ (see SOM for details), compared with results
of Altarawneh et al. (20), overlaid in green. (b) As a consequence of the broken time-reversal symmetry,
we predict a staggered conduction electron moment that onsets at the HO transition with a linear Tc − T
temperature dependence (staggering pattern shown in inset). The magnitude of this moment is governed by
TK/D ∼ .01µB/U . (c) We have calculated the tetragonal symmetry breaking component of the uniform
susceptibility, χxy(T ). To compare our results to Okazaki et al (18) (overlaid as green squares), we have
plotted the two-fold oscillation amplitude of the magnetic torque, A (in black), where A cos 2φ ≡ τ2φ

V =

−µ0H2

V cos 2φχxy(T ). A goes as (Tc − T )2 just below the HO transition. For details of our calculation,
including parameter choices, please see the supporting online material (32).
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Figure 1: (a) A normal Kondo effect occurs in ions with an odd number of f-electrons, where the ground
state is guaranteed to be doubly degenerate by time-reversal symmetry (known as a Kramers doublet).
Virtual valence fluctations to an excited singlet state are associated with a scalar hybridization. (b) In
URu2Si2, quasiparticles inherit an Ising symmetry from a 5f2 non-Kramers doublet. Loss or gain of an
electron necessarily leads to an excited Kramers doublet, and the development of a coherent hybridization
is associated with a two-component spinor hybridization that carries a magnetic quantum number and
must therefore develop at a phase transition. (c) Phase diagram for hastatic order, showing how tuning
the parameter λ ∝ (P − Pc). leads to a spin flop between hastatic order and Ising magnetic order. Inset:
at the 1st order line, the longitudinal spin gap is predicted to vanish as ∆ ∝

√
Pc − P . (d) Polar plot

showing the predicted cos4 θ form of the non-linear susceptibility χ3 induced by hastatic order, where θ
is the angle of the field from the c-axis.

19

(b) Giant non-linear susceptibility 
anomaly.µB



(a) Transverse moment in conduction sea

m~ O(TK/D)~ 0.01𝞵

Figure 3: Magnetic response of hastatic order. (a) Polar plot of calculated g-factor, g(θ) averaged over
the Fermi surface, as a function of magnetic field angle θ (see SOM for details), compared with results
of Altarawneh et al. (20), overlaid in green. (b) As a consequence of the broken time-reversal symmetry,
we predict a staggered conduction electron moment that onsets at the HO transition with a linear Tc − T
temperature dependence (staggering pattern shown in inset). The magnitude of this moment is governed by
TK/D ∼ .01µB/U . (c) We have calculated the tetragonal symmetry breaking component of the uniform
susceptibility, χxy(T ). To compare our results to Okazaki et al (18) (overlaid as green squares), we have
plotted the two-fold oscillation amplitude of the magnetic torque, A (in black), where A cos 2φ ≡ τ2φ

V =

−µ0H2

V cos 2φχxy(T ). A goes as (Tc − T )2 just below the HO transition. For details of our calculation,
including parameter choices, please see the supporting online material (32).

19

Figure 1: (a) A normal Kondo effect occurs in ions with an odd number of f-electrons, where the ground
state is guaranteed to be doubly degenerate by time-reversal symmetry (known as a Kramers doublet).
Virtual valence fluctations to an excited singlet state are associated with a scalar hybridization. (b) In
URu2Si2, quasiparticles inherit an Ising symmetry from a 5f2 non-Kramers doublet. Loss or gain of an
electron necessarily leads to an excited Kramers doublet, and the development of a coherent hybridization
is associated with a two-component spinor hybridization that carries a magnetic quantum number and
must therefore develop at a phase transition. (c) Phase diagram for hastatic order, showing how tuning
the parameter λ ∝ (P − Pc). leads to a spin flop between hastatic order and Ising magnetic order. Inset:
at the 1st order line, the longitudinal spin gap is predicted to vanish as ∆ ∝

√
Pc − P . (d) Polar plot

showing the predicted cos4 θ form of the non-linear susceptibility χ3 induced by hastatic order, where θ
is the angle of the field from the c-axis.
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(c) Collapse of gap to Ising fluctuations

at 1st order transition line.

µB



Figure 4: Density of states and resonant nematicity predicted by theory. Upper panel: density of states
as a function of energy predicted by model calculation (blue line), showing f and conduction electron
components. Red line, voltage dependence of nematicity η(V ) in model calculation of scanning tunneling
spectrum. Lower panels: spatial dependence of density of states for selected bias voltages in model
calculation of scanning tunneling spectrum, showing the resonant character of the nematicity.
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(d) Resonant Nematicity in STM
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