The Physics of Heavy Fermion Superconductivity

Lecture II. BCS meets Kondo: mean-field approach to the Kondo Lattice.

Piers Coleman Center for Materials Theory, Rutgers.

Boulder School 2014: Modern Aspects of Superconductivity June 30-July 25, 2014

14-17 July 2014

The Physics of Heavy Fermion Superconductivity

- 1. Introduction: Heavy Fermions and the Kondo Lattice.
- 2. BCS meets Kondo: mean-field approach to the Kondo Lattice.
- 3. Glue vs Fabric: Good, Bad and Ugly Heavy Fermion Superconductors.
- 4. Composite vs AFM induced pairing.

Last Time: Lecture 1 Introduction to Heavy Fermions and the Kondo Lattice.

- 1. Magnetism and SC: a remarkable converegence.
- 2. Electrons on the Brink of Localization.
- 3. Cartoon introduction to Heavy Fermions.
- 4. Lev Landau versus Ken Wilson: Criticality as a driver of Superconductivity.
- 5. Anderson, Kondo and Doniach.

THE KONDO LATTICE (From Lecture I)

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \frac{J}{\mathcal{N}} \sum_{j} \vec{S}_{j} \cdot c_{\mathbf{k}\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{\mathbf{k}'\beta} e^{i(\mathbf{k}'-\mathbf{k}) \cdot \mathbf{R}_{j}}$$
T. Kasuya (1951)

"Kondo Lattice"

Note: can also write Kondo interaction in the "Cogblin Schrieffer" form

$$H_K = -J \sum_{j,\alpha,\beta} (c_{j\alpha}^{\dagger} f_{j\alpha}) (f_{j\beta}^{\dagger} c_{j\beta})$$

Physics of Heavy Fermion Superconductivity Lecture II:

- 1. The large N approach to the Kondo lattice.
- 2. Heavy Fermion Metals.
- 3. Optical Conductivity of Heavy Fermion Metals
- 4. Kondo Insulators

Gauge Theories and Strong Correlation.

Strong correlation ↔ Constrained Hilbert space ↔ Gauge theories

P.g.
$$\vec{S}_j = f_{j\alpha}^{\dagger} \left(\frac{\vec{\sigma}}{2}\right)_{\alpha\beta} f_{j\beta},$$

 $f_j \rightarrow e^{i\phi_j} f_j, \qquad U(1)_{\text{local}}$

$$H = \sum \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \frac{J}{N} \sum_j c_{j\alpha}^{\dagger} c_{j\beta} S_{\beta\alpha}(j) + H_g$$

$$S_{\alpha\beta} = f_{\alpha}^{\dagger} f_{\beta} - \delta_{\alpha\beta} n_f / N$$

$$H_g = (\Phi - \mu)c_j^{\dagger}c_j + \lambda_j(f_j^{\dagger}f_j - Q),$$
$$(Q = qN = 1)$$

$$Z = \int \mathcal{D}[\psi] e^{-NS[\psi, \dot{\psi}]}$$

$$Z = \int \mathcal{D}[\psi] e^{-NS[\psi, \dot{\psi}]}$$

$$Z = \int \mathcal{D}[\psi] e^{-NS[\psi, \dot{\psi}]}$$

$$Z = \int \mathcal{D}[\psi] e^{-NS[\psi, \dot{\psi}]}$$

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{j} H_{I}(j)$$
$$H_{I}(j) = -\frac{J}{N} \left(c_{j\beta}^{\dagger} f_{j\beta} \right) \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right)$$

$$c_{j\alpha}^{\dagger} = \frac{1}{\sqrt{N_s}} \sum_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} e^{-i\mathbf{k}\cdot\vec{R}_j}$$

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{j} H_{I}(j)$$
$$H_{I}(j) = -\frac{J}{N} \left(c_{j\beta}^{\dagger} f_{j\beta} \right) \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right)$$

Read and Newns '83.

 $H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{j} H_{I}(j)$ $H_I(j) = -\frac{J}{N} \left(c_{j\beta}^{\dagger} f_{j\beta} \right) \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right)$

 $c_{j\alpha}^{\dagger} = \frac{1}{\sqrt{N_s}} \sum_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} e^{-i\mathbf{k}\cdot\vec{R}_j}$

 $\begin{array}{l} Constraint \ n_f = Q = qN \\ \text{all terms extensive in N} \end{array}$

$$c_{j\alpha}^{\dagger} = \frac{1}{\sqrt{N_s}} \sum_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} e^{-i\mathbf{k}\cdot\vec{R}_j}$$

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{j} H_{I}(j)$$

$$H_{I}(j) = -\frac{J}{N} \left(c_{j\beta}^{\dagger} f_{j\beta} \right) \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right)$$

$$H_{I}(j) = -\frac{J}{N} \left(c_{j\beta}^{\dagger} f_{j\beta} \right) \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right)$$

$$-gA^{\dagger}A \rightarrow A^{\dagger}V + \bar{V}A + \frac{\bar{V}V}{g}$$

Large N Approach.
Read and Newns '83.

$$\begin{aligned}
H &= \sum_{k\sigma} \epsilon_k c^{\dagger}_{k\sigma} c_{k\sigma} + \sum_j H_I(j) \\
H_I(j) &= -\frac{J}{N} \left(c^{\dagger}_{j\beta} f_{j\beta} \right) \left(f^{\dagger}_{j\alpha} c_{j\alpha} \right) \\
H_I(j) &= -\frac{J}{N} \left(c^{\dagger}_{j\beta} f_{j\beta} \right) \left(f^{\dagger}_{j\alpha} c_{j\alpha} \right) \\
-gA^{\dagger}A \to A^{\dagger}V + \bar{V}A + \frac{\bar{V}V}{g} \\
H_I(j) \to H_I[V, j] &= \bar{V}_j \left(c^{\dagger}_{j\alpha} f_{j\alpha} \right) + \left(f^{\dagger}_{j\alpha} c_{j\alpha} \right) V_j + N \frac{\bar{V}_j V_j}{J}. \\
\end{aligned}$$

Composite Fermion

$$H[V,\lambda] = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{j} \left(H_{I}[V_{j},j] + \lambda_{j}[n_{f}(j) - Q] \right),$$
$$H_{I}[V,j] = \bar{V}_{j} \left(c_{j\alpha}^{\dagger} f_{j\alpha} \right) + \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right) V_{j} + N \frac{\bar{V}_{j} V_{j}}{J}.$$

Read and Newns '83.

$$H[V,\lambda] = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{j} \left(H_{I}[V_{j},j] + \lambda_{j}[n_{f}(j) - Q] \right),$$

$$H_{I}[V,j] = \overline{V}_{j} \left(c_{j\alpha}^{\dagger} f_{j\alpha} \right) + \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right) V_{j} + N \frac{\overline{V}_{j} V_{j}}{J}.$$

U(1) constraint: note $n_f = Q = (qN)$

Read and Newns '83.

$$=\operatorname{Tr}\left[\operatorname{Texp}\left(-\int_{0}^{\beta}H[V,\lambda]d\tau\right)\right]$$

$$Z = \int \mathcal{D}[V,\lambda] \int \mathcal{D}[c,f] \exp\left[-\int_{0}^{\beta}\left(\sum_{k\sigma}c_{k\sigma}^{\dagger}\partial_{\tau}c_{k\sigma} + \sum_{j\sigma}f_{j\sigma}^{\dagger}\partial_{\tau}f_{j\sigma} + H[V,\lambda]\right)\right]$$

$$H[V,\lambda] = \sum_{k\sigma}\epsilon_{k}c_{k\sigma}^{\dagger}c_{k\sigma} + \sum_{j\sigma}\left(H_{I}[V_{j},j] + \lambda_{j}[n_{f}(j) - Q]\right),$$

$$H_{I}[V,j] = \overline{V}_{j}\left(c_{j\alpha}^{\dagger}f_{j\alpha}\right) + \left(f_{j\alpha}^{\dagger}c_{j\alpha}\right)V_{j} + N\frac{\overline{V}_{j}V_{j}}{J}.$$

U(1) constraint: note $n_f = Q = (qN)$

Read and Newns '83.

$$= \operatorname{Tr} \left[\operatorname{Texp} \left(-\int_{0}^{\beta} H[V,\lambda] d\tau \right) \right] \text{Extensive in N}$$

$$Z = \int \mathcal{D}[V,\lambda] \int \mathcal{D}[c,f] \exp\left[-\int_0^\beta \left(\sum_{k\sigma} c_{\mathbf{k}\sigma}^{\dagger} \partial_{\tau} c_{\mathbf{k}\sigma} + \sum_{j\sigma} f_{j\sigma}^{\dagger} \partial_{\tau} f_{j\sigma} + H[V,\lambda]\right)\right]$$

$$H[V,\lambda] = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{j} \left(H_{I}[V_{j},j] + \lambda_{j}[n_{f}(j) - Q] \right),$$
$$H_{I}[V,j] = \bar{V}_{j} \left(c_{j\alpha}^{\dagger} f_{j\alpha} \right) + \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right) V_{j} + N \frac{\bar{V}_{j} V_{j}}{J}.$$

U(1) constraint: note $n_f = Q = (qN)$

$$=\operatorname{Tr}\left[\operatorname{Texp}\left(-\int_{0}^{\beta}H[V,\lambda]d\tau\right)\right]$$

$$Z = \int \mathcal{D}[V,\lambda] \int \mathcal{D}[c,f] \exp\left[-\int_{0}^{\beta}\left(\sum_{k\sigma}c_{k\sigma}^{\dagger}\partial_{\tau}c_{k\sigma} + \sum_{j\sigma}f_{j\sigma}^{\dagger}\partial_{\tau}f_{j\sigma} + H[V,\lambda]\right)\right]$$

$$H[V,\lambda] = \sum_{k\sigma}\epsilon_{k}c_{k\sigma}^{\dagger}c_{k\sigma} + \sum_{j\sigma}\left(H_{I}[V_{j},j] + \lambda_{j}[n_{f}(j) - Q]\right),$$

$$H_{I}[V,j] = \overline{V}_{j}\left(c_{j\alpha}^{\dagger}f_{j\alpha}\right) + \left(f_{j\alpha}^{\dagger}c_{j\alpha}\right)V_{j} + N\frac{\overline{V}_{j}V_{j}}{J}.$$

$$Z = \mathrm{Tr}e^{-\beta H_{MFT}}, \qquad (N \to \infty)$$

$$H[V,\lambda] = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{j} \left(H_{I}[V_{j},j] + \lambda_{j}[n_{f}(j) - Q] \right),$$
$$H_{I}[V,j] = \bar{V}_{j} \left(c_{j\alpha}^{\dagger} f_{j\alpha} \right) + \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right) V_{j} + N \frac{\bar{V}_{j} V_{j}}{J}.$$

Read and Newns '83.

$$Z = \mathrm{Tr}e^{-\beta H_{MFT}}, \qquad (N \to \infty)$$

$$H[V,\lambda] = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{j} \left(H_{I}[V_{j},j] + \lambda_{j}[n_{f}(j) - Q] \right),$$
$$H_{I}[V,j] = \bar{V}_{j} \left(c_{j\alpha}^{\dagger} f_{j\alpha} \right) + \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right) V_{j} + N \frac{\bar{V}_{j} V_{j}}{J}.$$

100

$$Z = \mathrm{Tr}e^{-\beta H_{MFT}}, \qquad (N \to \infty)$$

$$V_j = V$$

at each site

$$H[V,\lambda] = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{j} \left(H_{I}[V_{j},j] + \lambda_{j}[n_{f}(j) - Q] \right),$$
$$H_{I}[V,j] = \bar{V}_{j} \left(c_{j\alpha}^{\dagger} f_{j\alpha} \right) + \left(f_{j\alpha}^{\dagger} c_{j\alpha} \right) V_{j} + N \frac{\bar{V}_{j} V_{j}}{J}.$$

$$J/N = c^{\dagger}_{\sigma}f_{\sigma} \bullet \bar{V} \qquad V \bullet f^{\dagger}_{\sigma'c\sigma'}$$

$$-\frac{J}{N} (c^{\dagger}_{\sigma}f_{\sigma}) (f^{\dagger}_{\sigma'c\sigma'})$$

Detailed calcn.

$$H_{MFT} = \sum_{\mathbf{k}\sigma} \left(c^{\dagger}_{\mathbf{k}\sigma}, f^{\dagger}_{\mathbf{k}\sigma} \right) \underbrace{\left(\begin{array}{c} \epsilon_{\mathbf{k}} & V \\ \overline{V} & \lambda \end{array} \right)}_{\mathbf{k}\sigma} \left(\begin{array}{c} c_{\mathbf{k}\sigma} \\ f_{\mathbf{k}\sigma} \end{array} \right) + N\mathcal{N}_{s} \left(\frac{|V|^{2}}{J} - \lambda q \right)$$
$$= \sum_{\mathbf{k}\sigma} \psi^{\dagger}_{\mathbf{k}\sigma} \underline{h}(\mathbf{k}) \psi_{\mathbf{k}\sigma} + N\mathcal{N}_{s} \left(\frac{|V|^{2}}{J} - \lambda q \right).$$

Detailed calcn.

$$H_{MFT} = \sum_{\mathbf{k}\sigma} \left(c^{\dagger}_{\mathbf{k}\sigma}, f^{\dagger}_{\mathbf{k}\sigma} \right) \underbrace{\left(\begin{array}{c} \epsilon_{\mathbf{k}} & V \\ \overline{V} & \lambda \end{array} \right)}_{\mathbf{k}\sigma} \left(\begin{array}{c} c_{\mathbf{k}\sigma} \\ f_{\mathbf{k}\sigma} \end{array} \right) + N\mathcal{N}_{s} \left(\frac{|V|^{2}}{J} - \lambda q \right)$$
$$= \sum_{\mathbf{k}\sigma} \psi^{\dagger}_{\mathbf{k}\sigma} \underline{h}(\mathbf{k}) \psi_{\mathbf{k}\sigma} + N\mathcal{N}_{s} \left(\frac{|V|^{2}}{J} - \lambda q \right).$$

$$f^{\dagger}_{\vec{k}\sigma} = \frac{1}{\sqrt{n}} \sum_{j} f^{\dagger}_{j\sigma} e^{i\vec{k}\cdot\vec{R}_{j}}$$
$$\begin{split} H_{MFT} &= \sum_{\mathbf{k}\sigma} \left(c^{\dagger}_{\mathbf{k}\sigma}, f^{\dagger}_{\mathbf{k}\sigma} \right) \underbrace{\begin{pmatrix} \mathbf{k} \\ \mathbf$$

$$H_{MFT} = \sum_{\mathbf{k}\sigma} \left(c^{\dagger}_{\mathbf{k}\sigma}, f^{\dagger}_{\mathbf{k}\sigma} \right) \underbrace{\left(\begin{array}{c} \mathbf{\epsilon}_{\mathbf{k}} & V \\ \overline{V} & \lambda \end{array} \right)}_{\mathbf{k}\sigma} \left(\begin{array}{c} c_{\mathbf{k}\sigma} \\ f_{\mathbf{k}\sigma} \end{array} \right) + N\mathcal{N}_{s} \left(\frac{|V|^{2}}{J} - \lambda q \right) \\ = \sum_{\mathbf{k}\sigma} \psi^{\dagger}_{\mathbf{k}\sigma} \underline{h}(\mathbf{k}) \psi_{\mathbf{k}\sigma} + N\mathcal{N}_{s} \left(\frac{|V|^{2}}{J} - \lambda q \right) . \\ f^{\dagger}_{\overline{k}\sigma} = \frac{1}{\sqrt{n}} \sum_{j} f^{\dagger}_{j\sigma} e^{i\vec{k}\cdot\vec{R}_{j}} \\ H_{MFT} = \sum_{\mathbf{k}\sigma} \left(a^{\dagger}_{\mathbf{k}\sigma}, b^{\dagger}_{\mathbf{k}\sigma} \right) \begin{pmatrix} E_{\mathbf{k}^{+}} & 0 \\ 0 & E_{\mathbf{k}^{-}} \end{pmatrix} \begin{pmatrix} a_{\mathbf{k}\sigma} \\ b_{\mathbf{k}\sigma} \end{pmatrix} + Nn \left(\frac{\overline{V}V}{J} - \lambda q \right) . \end{cases}$$

$$\operatorname{Det}\left[E_{\mathbf{k}}^{\pm}\underline{1} - \begin{pmatrix}\epsilon_{\mathbf{k}} & V\\ \overline{V} & \lambda\end{pmatrix}\right] = (E_{\mathbf{k}\pm} - \epsilon_{\mathbf{k}})(E_{\mathbf{k}\pm} - \lambda) - |V|^{2} = 0,$$

$$H_{MFT} = \sum_{\mathbf{k}\sigma} \left(c^{\dagger}_{\mathbf{k}\sigma}, f^{\dagger}_{\mathbf{k}\sigma} \right) \underbrace{\left(\begin{array}{c} \epsilon_{\mathbf{k}} & V \\ \overline{V} & \lambda \end{array} \right)}_{\mathbf{k}\sigma} \left(\begin{array}{c} c_{\mathbf{k}\sigma} \\ f_{\mathbf{k}\sigma} \end{array} \right) + N\mathcal{N}_{s} \left(\frac{|V|^{2}}{J} - \lambda q \right) \\ = \sum_{\mathbf{k}\sigma} \psi^{\dagger}_{\mathbf{k}\sigma} \underline{h}(\mathbf{k}) \psi_{\mathbf{k}\sigma} + N\mathcal{N}_{s} \left(\frac{|V|^{2}}{J} - \lambda q \right) . \\ f^{\dagger}_{\overline{k}\sigma} = \frac{1}{\sqrt{n}} \sum_{j} f^{\dagger}_{j\sigma} e^{i\vec{k}\cdot\vec{R}_{j}} \\ H_{MFT} = \sum_{\mathbf{k}\sigma} \left(a^{\dagger}_{\mathbf{k}\sigma}, b^{\dagger}_{\mathbf{k}\sigma} \right) \begin{pmatrix} E_{\mathbf{k}^{+}} & 0 \\ 0 & E_{\mathbf{k}^{-}} \end{pmatrix} \begin{pmatrix} a_{\mathbf{k}\sigma} \\ b_{\mathbf{k}\sigma} \end{pmatrix} + Nn \left(\frac{\overline{V}V}{J} - \lambda q \right) . \end{cases}$$

$$\operatorname{Det}\left[E_{\mathbf{k}}^{\pm}\underline{1} - \begin{pmatrix}\epsilon_{\mathbf{k}} & V\\ \overline{V} & \lambda\end{pmatrix}\right] = (E_{\mathbf{k}\pm} - \epsilon_{\mathbf{k}})(E_{\mathbf{k}\pm} - \lambda) - |V|^{2} = 0,$$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 \right]^{\frac{1}{2}},$$

$$H_{MFT} = \sum_{\mathbf{k}\sigma} \left(c^{\dagger}_{\mathbf{k}\sigma}, f^{\dagger}_{\mathbf{k}\sigma} \right) \underbrace{\left(\begin{array}{c} \mathbf{k}_{\mathbf{k}} & V \\ \overline{V} & \lambda \end{array} \right)}_{\mathbf{k}\sigma} \left(\begin{array}{c} c_{\mathbf{k}\sigma} \\ f_{\mathbf{k}\sigma} \end{array} \right) + N\mathcal{N}_{s} \left(\frac{|V|^{2}}{J} - \lambda q \right) \\ = \sum_{\mathbf{k}\sigma} \psi^{\dagger}_{\mathbf{k}\sigma} \underline{h}(\mathbf{k}) \psi_{\mathbf{k}\sigma} + N\mathcal{N}_{s} \left(\frac{|V|^{2}}{J} - \lambda q \right) . \\ f^{\dagger}_{\overline{k}\sigma} = \frac{1}{\sqrt{n}} \sum_{j} f^{\dagger}_{j\sigma} e^{i\vec{k}\cdot\vec{R}_{j}} \\ H_{MFT} = \sum_{\mathbf{k}\sigma} \left(a^{\dagger}_{\mathbf{k}\sigma}, b^{\dagger}_{\mathbf{k}\sigma} \right) \begin{pmatrix} E_{\mathbf{k}^{+}} & 0 \\ 0 & E_{\mathbf{k}^{-}} \end{pmatrix} \begin{pmatrix} a_{\mathbf{k}\sigma} \\ b_{\mathbf{k}\sigma} \end{pmatrix} + Nn \left(\frac{\overline{V}V}{J} - \lambda q \right) . \end{cases}$$

$$\operatorname{Det}\left[E_{\mathbf{k}}^{\pm}\underline{1} - \begin{pmatrix}\epsilon_{\mathbf{k}} & V\\ \overline{V} & \lambda\end{pmatrix}\right] = (E_{\mathbf{k}\pm} - \epsilon_{\mathbf{k}})(E_{\mathbf{k}\pm} - \lambda) - |V|^{2} = 0,$$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 \right]^{\frac{1}{2}},$$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 \right]^{\frac{1}{2}},$$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 \right]^{\frac{1}{2}},$$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 \right]^{\frac{1}{2}},$$

 $a^{\dagger}_{\mathbf{k}\sigma} = u_{\mathbf{k}}c^{\dagger}_{\mathbf{k}\sigma} + v_{\mathbf{k}}f^{\dagger}_{\mathbf{k}\sigma}$ $b^{\dagger}_{\mathbf{k}\sigma} = -v_{\mathbf{k}}c^{\dagger}_{\mathbf{k}\sigma} + u_{\mathbf{k}}f^{\dagger}_{\mathbf{k}\sigma}$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 \right]^{\frac{1}{2}},$$

$$a^{\dagger}_{\mathbf{k}\sigma} = u_{\mathbf{k}}c^{\dagger}_{\mathbf{k}\sigma} + v_{\mathbf{k}}f^{\dagger}_{\mathbf{k}\sigma} \left\{ \begin{array}{c} u_{\mathbf{k}} \\ v_{\mathbf{k}} \end{array} \right\} = \left[\frac{1}{2} \pm \frac{(\epsilon_{\mathbf{k}} - \lambda)/2}{2\sqrt{\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2}\right)^2 + |V|^2}} \right]^{\frac{1}{2}}.$$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 \right]^{\frac{1}{2}}, \qquad |MF\rangle = \int_{|\mathbf{k}|} \frac{1}{2} \left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 = \left[\frac{1}{2} \pm \frac{\epsilon_{\mathbf{k}} - \lambda}{2\sqrt{\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2}\right)^2 + |V|^2}} \right]^{\frac{1}{2}}.$$

$$|MF\rangle = \prod_{|\mathbf{k}| < k_F \sigma} b^{\dagger}_{\mathbf{k}\sigma} |0\rangle = \prod_{|\mathbf{k}| < k_F \sigma} (-v_{\mathbf{k}} c_{\mathbf{k}\sigma} + u_{\mathbf{k}} f^{\dagger}_{\mathbf{k}\sigma}) |0\rangle.$$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 \right]^{\frac{1}{2}},$$
$$a_{\mathbf{k}\sigma}^{\dagger} = u_{\mathbf{k}}c_{\mathbf{k}\sigma}^{\dagger} + v_{\mathbf{k}}f_{\mathbf{k}\sigma}^{\dagger} \left\{ \begin{array}{c} u_{\mathbf{k}} \\ v_{\mathbf{k}} \end{array} \right\} = \left[\frac{1}{2} \pm \frac{(\epsilon_{\mathbf{k}} - \lambda)/2}{2\sqrt{\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2}\right)^2 + |V|^2}} \right]^{\frac{1}{2}}$$

$$|MF\rangle = \prod_{|\mathbf{k}| < k_F\sigma} b^{\dagger}_{\mathbf{k}\sigma} |0\rangle = \prod_{|\mathbf{k}| < k_F\sigma} (-v_{\mathbf{k}}c_{\mathbf{k}\sigma} + u_{\mathbf{k}}f^{\dagger}_{\mathbf{k}\sigma}) |0\rangle.$$

$$|GW\rangle = P_Q \prod_{|\mathbf{k}| < k_F \sigma} (-v_{\mathbf{k}} c_{\mathbf{k}\sigma} + u_{\mathbf{k}} f^{\dagger}_{\mathbf{k}\sigma}) |0\rangle,$$

"Gutzwiller" wavefunction

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^{2} + |V|^{2} \right]^{\frac{1}{2}}, \qquad |MF\rangle = \prod_{|\mathbf{k}| < k_{F}\sigma} b^{\dagger}_{\mathbf{k}\sigma} |0\rangle = \prod_{|\mathbf{k}| < k_{F}\sigma} (-v_{\mathbf{k}}c_{\mathbf{k}\sigma} + u_{\mathbf{k}}f^{\dagger}_{\mathbf{k}\sigma}) |0\rangle.$$

$$a^{\dagger}_{\mathbf{k}\sigma} = u_{\mathbf{k}}c^{\dagger}_{\mathbf{k}\sigma} + v_{\mathbf{k}}f^{\dagger}_{\mathbf{k}\sigma} \left\{ \begin{array}{c} u_{\mathbf{k}} \\ v_{\mathbf{k}} \end{array} \right\} = \left[\frac{1}{2} \pm \frac{(\epsilon_{\mathbf{k}} - \lambda)/2}{2\sqrt{\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2}\right)^{2}} + |V|^{2}} \right]^{\frac{1}{2}}.$$

$$|MF\rangle = \prod_{|\mathbf{k}| < k_{F}\sigma} b^{\dagger}_{\mathbf{k}\sigma} |0\rangle = \prod_{|\mathbf{k}| < k_{F}\sigma} (-v_{\mathbf{k}}c_{\mathbf{k}\sigma} + u_{\mathbf{k}}f^{\dagger}_{\mathbf{k}\sigma}) |0\rangle.$$

$$|GW\rangle = P_{Q} \prod_{|\mathbf{k}| < k_{F}\sigma} (-v_{\mathbf{k}}c_{\mathbf{k}\sigma} + u_{\mathbf{k}}f^{\dagger}_{\mathbf{k}\sigma}) |0\rangle.$$

$$Gutzwiller'' wavefunction$$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^{2} + |V|^{2} \right]^{\frac{1}{2}}, \qquad |MF\rangle = \prod_{|\mathbf{k}| < k_{F}\sigma} b^{\dagger}{}_{\mathbf{k}\sigma} |0\rangle = \prod_{|\mathbf{k}| < k_{F}\sigma} (-v_{\mathbf{k}}c_{\mathbf{k}\sigma} + u_{\mathbf{k}}f^{\dagger}{}_{\mathbf{k}\sigma}) |0\rangle.$$

$$a^{\dagger}{}_{\mathbf{k}\sigma} = u_{\mathbf{k}}c^{\dagger}{}_{\mathbf{k}\sigma} + v_{\mathbf{k}}f^{\dagger}{}_{\mathbf{k}\sigma} \left\{ \begin{array}{c} u_{\mathbf{k}} \\ v_{\mathbf{k}} \end{array} \right\} = \left[\frac{1}{2} \pm \frac{(\epsilon_{\mathbf{k}} - \lambda)/2}{2\sqrt{\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2}\right)^{2}} + |V|^{2}} \right]^{\frac{1}{2}}.$$

$$|MF\rangle = \prod_{|\mathbf{k}| < k_{F}\sigma} b^{\dagger}{}_{\mathbf{k}\sigma} |0\rangle = \prod_{|\mathbf{k}| < k_{F}\sigma} (-v_{\mathbf{k}}c_{\mathbf{k}\sigma} + u_{\mathbf{k}}f^{\dagger}{}_{\mathbf{k}\sigma}) |0\rangle,$$

$$|GW\rangle = P_{Q} \prod_{|\mathbf{k}| < k_{F}\sigma} (-v_{\mathbf{k}}c_{\mathbf{k}\sigma} + u_{\mathbf{k}}f^{\dagger}{}_{\mathbf{k}\sigma}) |0\rangle,$$

$$\vec{v}_{\mathbf{Gutzwiller}}.$$

$$\vec{v}_{\mathbf{Gutzwiller}}.$$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^{2} + |V|^{2} \right]^{\frac{1}{2}}, \qquad |MF\rangle = \prod_{|\mathbf{k}| < k_{F}\sigma} b^{\dagger}_{\mathbf{k}\sigma} |0\rangle = \prod_{|\mathbf{k}| < k_{F}\sigma} (-v_{\mathbf{k}}c_{\mathbf{k}\sigma} + u_{\mathbf{k}}f^{\dagger}_{\mathbf{k}\sigma}) |0\rangle.$$

$$a^{\dagger}_{\mathbf{k}\sigma} = u_{\mathbf{k}}c^{\dagger}_{\mathbf{k}\sigma} + v_{\mathbf{k}}f^{\dagger}_{\mathbf{k}\sigma} \left\{ \begin{array}{c} u_{\mathbf{k}} \\ v_{\mathbf{k}} \end{array} \right\} = \left[\frac{1}{2} \pm \frac{(\epsilon_{\mathbf{k}} - \lambda)/2}{2\sqrt{\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2}\right)^{2}} + |V|^{2}} \right]^{\frac{1}{2}}.$$

$$|MF\rangle = \prod_{|\mathbf{k}| < k_{F}\sigma} b^{\dagger}_{\mathbf{k}\sigma} |0\rangle = \prod_{|\mathbf{k}| < k_{F}\sigma} (-v_{\mathbf{k}}c_{\mathbf{k}\sigma} + u_{\mathbf{k}}f^{\dagger}_{\mathbf{k}\sigma}) |0\rangle.$$

$$|GW\rangle = P_{Q} \prod_{|\mathbf{k}| < k_{F}\sigma} (-v_{\mathbf{k}}c_{\mathbf{k}\sigma} + u_{\mathbf{k}}f^{\dagger}_{\mathbf{k}\sigma}) |0\rangle.$$

$$Gutzwiller'' wavefunction$$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 \right]^{\frac{1}{2}},$$

$$E(\mathbf{k})$$

$$E = \epsilon + \frac{V^2}{E - \lambda}$$

. . . .

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 \right]^{\frac{1}{2}},$$

$$\frac{F}{N} = -T \sum_{\mathbf{k},\pm} \ln\left[1 + e^{-\beta E_{\mathbf{k}\pm}} \right] + \mathcal{N}_s \left(\frac{V^2}{J} - \lambda q \right).$$

$$\frac{E_o}{N\mathcal{N}_s} = \int_{-\infty}^0 dE \rho^*(E) E + \left(\frac{V^2}{J} - \lambda q \right)$$
(a)
$$E = \epsilon + \frac{V^2}{E - \lambda} \qquad \rho^*(E) = \rho \frac{d\epsilon}{dE} = \rho \left(1 + \frac{V^2}{(E - \lambda)^2} \right)$$

 $E - \lambda$ $dE \quad (E-\lambda)^2$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 \right]^{\frac{1}{2}},$$

$$\frac{F}{N} = -T \sum_{\mathbf{k},\pm} \ln\left[1 + e^{-\beta E_{\mathbf{k}\pm}} \right] + \mathcal{N}_s \left(\frac{V^2}{J} - \lambda q \right).$$

$$\frac{E_o}{N\mathcal{N}_s} = \int_{-\infty}^0 dE \rho^*(E) E + \left(\frac{V^2}{J} - \lambda q \right)$$
(a)
$$E(k)$$
(b)
$$E(k)$$

$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$E(k)$$

$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$E(k)$$

$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$E(k)$$

$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$E(k)$$

$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$E(k)$$

$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$E(k)$$

$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$E(k)$$

$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$E(k)$$

$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$E(k)$$

$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$E(k)$$

$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} - \lambda q \right)$$
(c)
$$\frac{V^2}{V} = \frac{1}{2} \left(\frac{V^2}{V} -$$

$$E = \epsilon + \frac{V^2}{E - \lambda} \qquad \rho^*(E) = \rho \frac{d\epsilon}{dE} = \rho \left(1 + \frac{V^2}{(E - \lambda)^2} \right)$$

$$\frac{E_o}{N\mathcal{N}_s} = \rho \int_{-D-V^2/D}^{0} dEE\left(1 + \frac{V^2}{(E-\lambda)^2}\right) + \left(\frac{V^2}{J} - \lambda q\right)$$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^2 + |V|^2 \right]^{\frac{1}{2}},$$

$$\frac{F}{N} = -T \sum_{\mathbf{k},\pm} \ln \left[1 + e^{-\beta E_{\mathbf{k}\pm}} \right] + \mathcal{N}_s \left(\frac{V^2}{J} - \lambda q \right).$$

$$\frac{E_o}{N\mathcal{N}_s} = \int_{-\infty}^0 dE \rho^*(E) E + \left(\frac{V^2}{J} - \lambda q \right)$$

$$(a)$$

$$E = \epsilon + \frac{V^2}{E - \lambda} \qquad \rho^*(E) = \rho \frac{d\epsilon}{dE} = \rho \left(1 + \frac{V^2}{(E - \lambda)^2} \right)$$

$$\frac{E_o}{E} = \rho \int_{-\infty}^0 dE E \left(1 + \frac{V^2}{2} \right) + \left(\frac{V^2}{2} - \lambda q \right)$$

$$\frac{E_o}{N\mathcal{N}_s} = \rho \int_{-D-V^2/D}^{0} dEE\left(1 + \frac{V^2}{(E-\lambda)^2}\right) + \left(\frac{V^2}{J} - \lambda q\right)$$

$$\frac{E_o}{NN_s} = -\frac{\rho}{2} \left(D + \frac{V^2}{D} \right)^2 + \frac{\Delta}{\pi} \int_{-D}^0 dE \left(\frac{1}{E - \lambda} + \frac{\lambda}{(E - \lambda)^2} \right) + \left(\frac{V^2}{J} - \lambda q \right)$$
$$= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln \left(\frac{\lambda}{D} \right) + \left(\frac{V^2}{J} - \lambda q \right) \qquad (\Delta = \pi \rho |V|^2)$$

$$E_{\mathbf{k}\pm} = \frac{\epsilon_{\mathbf{k}} + \lambda}{2} \pm \left[\left(\frac{\epsilon_{\mathbf{k}} - \lambda}{2} \right)^{2} + |V|^{2} \right]^{\frac{1}{2}},$$

$$\frac{F}{N} = -T \sum_{\mathbf{k},\pm} \ln\left[1 + e^{-\beta E_{\mathbf{k}\pm}} \right] + \mathcal{N}_{s} \left(\frac{V^{2}}{J} - \lambda q \right).$$

$$\frac{E_{o}}{N\mathcal{N}_{s}} = \int_{-\infty}^{0} dE \rho^{*}(E)E + \left(\frac{V^{2}}{J} - \lambda q \right)$$
(a)
$$E_{\mathbf{k}\pm} = \frac{V^{2}}{k} = e^{*}(E) = e^{\frac{d\epsilon}{2}} = e^{\left(1 + e^{-\gamma E_{\mathbf{k}\pm}}\right)}$$

$$E = \epsilon + \frac{V^2}{E - \lambda} \qquad \rho^*(E) = \rho \frac{d\epsilon}{dE} = \rho \left(1 + \frac{V^2}{(E - \lambda)^2} \right)$$

$$\frac{E_o}{N\mathcal{N}_s} = \rho \int_{-D-V^2/D}^{0} dEE\left(1 + \frac{V^2}{(E-\lambda)^2}\right) + \left(\frac{V^2}{J} - \lambda q\right)$$

$$\frac{E_o}{N\mathcal{N}_s} = -\frac{\rho}{2} \left(D + \frac{V^2}{D} \right)^2 + \frac{\Delta}{\pi} \int_{-D}^0 dE \left(\frac{1}{E - \lambda} + \frac{\lambda}{(E - \lambda)^2} \right) + \left(\frac{V^2}{J} - \lambda q \right)$$
$$= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{D}\right) + \left(\frac{V^2}{J} - \lambda q\right)$$

$$\begin{aligned} (\Delta = \pi \rho |V|^2) \\ \frac{E_0}{NN_s} &= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{D}\right) + \left(\frac{\pi \rho V^2}{\pi \rho J} - \lambda q\right) \\ &= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{D}\right) + \left(\frac{\Delta}{\pi \rho J} - \lambda q\right) \\ &= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{De^{-\frac{1}{J\rho}}}\right) - \lambda q \\ &= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{T_K}\right) - \lambda q. \end{aligned}$$

$$T_K = De^{-\frac{1}{J\rho}}$$

$$(\Delta = \pi \rho |V|^2)$$

$$\frac{E_0}{NN_s} = -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{D}\right) + \left(\frac{\pi \rho V^2}{\pi \rho J} - \lambda q\right) \qquad \text{E(k)}$$

$$= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{D}\right) + \left(\frac{\Delta}{\pi \rho J} - \lambda q\right) \qquad \text{E(k)}$$

$$= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{De^{-\frac{1}{J_\rho}}}\right) - \lambda q \qquad \text{Heavy fermion}$$

$$= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{T_K}\right) - \lambda q. \qquad \text{(a)} \qquad \text{(b)} \qquad \rho^{*}(E)$$

$$T_K = D e^{-\frac{1}{J\rho}}$$
$$\frac{\partial E_0}{\partial \lambda} = \langle n_f \rangle - Q = 0$$

$$T_{K} = De^{-\frac{1}{J\rho}}$$
$$\frac{\partial E_{0}}{\partial \lambda} = \langle n_{f} \rangle - Q = 0 \qquad \frac{\Delta}{\pi \lambda} - q = 0$$
$$\frac{E_{o}(V)}{NN_{s}} = \frac{\Delta}{\pi} \ln\left(\frac{\Delta}{\pi q e T_{K}}\right) - \frac{D^{2}\rho}{2},$$

$$(\Delta = \pi \rho |V|^2)$$

$$\frac{E_0}{NN_s} = -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{D}\right) + \left(\frac{\pi \rho V^2}{\pi \rho J} - \lambda q\right) \qquad \text{E(K)}$$

$$= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{D}\right) + \left(\frac{\Delta}{\pi \rho J} - \lambda q\right) \qquad \text{E(K)}$$

$$= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{De^{-\frac{1}{J\rho}}}\right) - \lambda q \qquad \text{(a)}$$

$$T_{K} = De^{-\frac{1}{J\rho}}$$
$$\frac{\partial E_{0}}{\partial \lambda} = \langle n_{f} \rangle - Q = 0 \qquad \frac{\Delta}{\pi \lambda} - q = 0$$
$$\frac{E_{o}(V)}{NN_{s}} = \frac{\Delta}{\pi} \ln\left(\frac{\Delta}{\pi q e T_{K}}\right) - \frac{D^{2}\rho}{2},$$

 $\frac{\partial E_0}{\partial \Delta} = 0$

$$(\Delta = \pi \rho |V|^2)$$

$$\frac{E_0}{NN_s} = -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{D}\right) + \left(\frac{\pi \rho V^2}{\pi \rho J} - \lambda q\right) \qquad \text{E(k)}$$

$$= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{D}\right) + \left(\frac{\Delta}{\pi \rho J} - \lambda q\right) \qquad \text{E(k)}$$

$$= -\frac{D^2 \rho}{2} + \frac{\Delta}{\pi} \ln\left(\frac{\lambda}{De^{-\frac{1}{J_\rho}}}\right) - \lambda q \qquad \text{(a)}$$

$$E[V]$$

$$T_{K} = De^{-\frac{1}{J\rho}}$$

$$\frac{\partial E_{0}}{\partial \lambda} = \langle n_{f} \rangle - Q = 0 \qquad \frac{\Delta}{\pi \lambda} - q = 0$$

$$\frac{E_{o}(V)}{NN_{s}} = \frac{\Delta}{\pi} \ln\left(\frac{\Delta}{\pi q e T_{K}}\right) - \frac{D^{2}\rho}{2},$$

$$\frac{\partial E_{0}}{\partial \Delta} = 0 \qquad \qquad 0 = \frac{1}{\pi} \ln\left(\frac{\Delta e^{2}}{\pi q T_{K}}\right)$$

$$\Delta = \frac{\pi q}{e^{2}} T_{K}$$

Composite nature of the Heavy Fermion.

•The large N approach to the Kondo lattice. Spin x conduction = composite fermion

Composite Fermion

$$\frac{1}{N}\sum_{\beta} \overline{c_{\beta}(\tau)} S_{\beta\alpha}(\tau') = g(\tau - \tau') \hat{f}_{\alpha}(\tau').$$

$$\frac{1}{N} \sum_{\beta} \overline{c_{\beta}(\tau)} S_{\beta\alpha}(\tau') = g(\tau - \tau') \hat{f}_{\alpha}(\tau').$$

$$\frac{1}{N} \sum_{\beta} \overline{c_{\beta}(\tau)} S_{\beta\alpha}(\tau') = \frac{1}{N} \sum_{\beta} \overline{c_{\beta}(\tau)} f^{\dagger}_{\beta}(\tau') f_{\alpha}(\tau')$$

$$= \frac{1}{N} \sum_{\beta} \langle T c_{\beta}(\tau) f^{\dagger}_{\beta}(\tau') \rangle f_{\alpha}(\tau')$$

$$= -G_{cf}(\tau - \tau') f_{\alpha}(\tau').$$

$$\frac{1}{N} \sum_{\beta} \overline{c_{\beta}(\tau)} S_{\beta\alpha}(\tau') = g(\tau - \tau') \hat{f}_{\alpha}(\tau').$$

$$\frac{1}{N} \sum_{\beta} \overline{c_{\beta}(\tau)} S_{\beta\alpha}(\tau') = \frac{1}{N} \sum_{\beta} \overline{c_{\beta}(\tau)} f^{\dagger}{}_{\beta}(\tau') f_{\alpha}(\tau')$$

$$= \frac{1}{N} \sum_{\beta} \langle T c_{\beta}(\tau) f^{\dagger}{}_{\beta}(\tau') \rangle f_{\alpha}(\tau')$$

$$= -G_{cf}(\tau - \tau') f_{\alpha}(\tau').$$

$$g(\tau - \tau') = \langle Tc_{\beta}(\tau) f^{\dagger}{}_{\beta}(\tau') \rangle = -G_{cf}(\tau - \tau')$$

$$\frac{1}{N} \sum_{\beta} \overline{c_{\beta}(\tau)} S_{\beta\alpha}(\tau') = g(\tau - \tau') \hat{f}_{\alpha}(\tau').$$

$$\frac{1}{N} \sum_{\beta} \overline{c_{\beta}(\tau)} S_{\beta\alpha}(\tau') = \frac{1}{N} \sum_{\beta} \overline{c_{\beta}(\tau)} f^{\dagger}_{\beta}(\tau') f_{\alpha}(\tau')$$

$$= \frac{1}{N} \sum_{\beta} \langle T c_{\beta}(\tau) f^{\dagger}_{\beta}(\tau') \rangle f_{\alpha}(\tau')$$

$$= -G_{cf}(\tau - \tau') f_{\alpha}(\tau').$$

$$g(\tau - \tau') = \langle Tc_{\beta}(\tau) f^{\dagger}{}_{\beta}(\tau') \rangle = -G_{cf}(\tau - \tau')$$

$$g(\tau) \sim \begin{cases} \rho V \ln \left(\frac{T_K \tau}{\hbar} \right) & (\hbar/D << \tau << \hbar/T_K) \\ \frac{1}{\tau} & (\tau >> \hbar/T_K) \end{cases}$$

Bound-state built from electrons spanning decades of energy out to the Band-Width.

Physics of Heavy Fermion Superconductivity Lecture II:

- 1. The large N approach to the Kondo lattice.
- 2. Heavy Fermion Metals.
- 3. Optical Conductivity of Heavy Fermion Metals
- 4. Kondo Insulators

Large N Approach.

Read and Newns '83.

Physics of Heavy Fermion Superconductivity Lecture II:

- 1. The large N approach to the Kondo lattice.
- 2. Heavy Fermion Metals.
- 3. Optical Conductivity of Heavy Fermion Metals
- 4. Kondo Insulators

$$\int_0^\infty \frac{\mathrm{d}\omega}{\pi} \sigma(\omega) = f_1 = \frac{\pi}{2} \left(\frac{n_c e^2}{m} \right)$$

$$\int_0^\infty \frac{\mathrm{d}\omega}{\pi} \sigma(\omega) = f_1 = \frac{\pi}{2} \left(\frac{n_c e^2}{m} \right)$$

 $\int_0^{\sim V} d\omega \sigma(\omega) = f_2 = \frac{\pi}{2} \frac{n_{\rm HF} e^2}{m^*}$

$$\vec{j} = e \sum_{\mathbf{k}\sigma} \vec{\nabla}_{\mathbf{k}} \epsilon_{\mathbf{k}\sigma} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma}$$

$$\sigma(i\nu_n) = \left(\frac{ne^2}{m}\right) \frac{1}{\nu_n} \left[2\pi iT \sum_{|\omega_r| < \nu_n/2} \frac{1}{i\nu_n + i\Gamma - (\Sigma^+ - \Sigma^-)}\right], \qquad (\nu_n > 0)$$

$$\sigma(i\nu_n) = \left(\frac{ne^2}{m}\right) \frac{1}{\nu_n} \left[2\pi iT \sum_{|\omega_r| < \nu_n/2} \frac{1}{i\nu_n + i\Gamma - (\Sigma^+ - \Sigma^-)}\right], \qquad (\nu_n > 0)$$

$$\sigma(i\nu) = \left(\frac{ne^2}{m}\right) \frac{1}{\nu_n} \int_{-i\nu/2}^{i\nu/2} dz \left(\frac{1}{i\nu + i\Gamma - (\Sigma(z + i\nu/2) - \Sigma(z - i\nu/2))}\right),$$

$$\sigma(i\nu_n) = \left(\frac{ne^2}{m}\right) \frac{1}{\nu_n} \left[2\pi iT \sum_{|\omega_r| < \nu_n/2} \frac{1}{i\nu_n + i\Gamma - (\Sigma^+ - \Sigma^-)} \right], \qquad (\nu_n > 0)$$

$$\sigma(i\nu) = \left(\frac{ne^2}{m}\right) \frac{1}{\nu_n} \int_{-i\nu/2}^{i\nu/2} dz \left(\frac{1}{i\nu + i\Gamma - (\Sigma(z + i\nu/2) - \Sigma(z - i\nu/2)))}\right),$$

$$\begin{split} \int_{-i\nu/2}^{i\nu/2} dz \left(\frac{1}{i\nu - (\Sigma(z + i\nu/2) - \Sigma(z - i\nu/2))} \right) &= \frac{i\nu}{i\tilde{\nu}} \left[1 - \frac{V^2}{i\tilde{\nu}(z_+ - z_-)} \left(\ln \left[\frac{\frac{i\nu}{2} - z_+}{-\frac{i\nu}{2} - z_+} \right] - \ln \left[\frac{\frac{i\nu}{2} - z_-}{-\frac{i\nu}{2} - z_-} \right] \right) \right] \\ z_{\pm} &= \lambda \pm \sqrt{\left(\frac{i\nu}{2} \right)^2 - V^2[i\nu]}, \qquad V^2[i\nu] = V^2 \frac{i\nu}{i\nu + i\Gamma} \end{split}$$

$$\sigma(i\nu_n) = \left(\frac{ne^2}{m}\right) \frac{1}{\nu_n} \left[2\pi iT \sum_{|\omega_r| < \nu_n/2} \frac{1}{i\nu_n + i\Gamma - (\Sigma^+ - \Sigma^-)} \right], \qquad (\nu_n > 0)$$

$$\sigma(i\nu) = \left(\frac{ne^2}{m}\right) \frac{1}{\nu_n} \int_{-i\nu/2}^{i\nu/2} dz \left(\frac{1}{i\nu + i\Gamma - (\Sigma(z + i\nu/2) - \Sigma(z - i\nu/2)))}\right),$$

$$\int_{-i\nu/2}^{i\nu/2} dz \left(\frac{1}{i\nu - (\Sigma(z + i\nu/2) - \Sigma(z - i\nu/2))} \right) = \frac{i\nu}{i\tilde{\nu}} \left[1 - \frac{V^2}{i\tilde{\nu}(z_+ - z_-)} \left(\ln \left[\frac{\frac{i\nu}{2} - z_+}{-\frac{i\nu}{2} - z_+} \right] - \ln \left[\frac{\frac{i\nu}{2} - z_-}{-\frac{i\nu}{2} - z_-} \right] \right) \right] z_{\pm} = \lambda \pm \sqrt{\left(\frac{i\nu}{2} \right)^2 - V^2[i\nu]}, \qquad V^2[i\nu] = V^2 \frac{i\nu}{i\nu + i\Gamma}$$

$$\sigma(i\nu) = \left(\frac{ne^2}{m}\right) \frac{1}{\Gamma - i(i\nu)} \left[1 - \frac{V^2}{i(\nu + \Gamma)(z_+ - z_-)} \left(\ln\left[\frac{\frac{i\nu}{2} - z_+}{-\frac{i\nu}{2} - z_+}\right] - \ln\left[\frac{\frac{i\nu}{2} - z_-}{-\frac{i\nu}{2} - z_-}\right]\right)\right]$$

$$\sigma(i\nu_n) = \left(\frac{ne^2}{m}\right) \frac{1}{\nu_n} \left[2\pi iT \sum_{|\omega_r| < \nu_n/2} \frac{1}{i\nu_n + i\Gamma - (\Sigma^+ - \Sigma^-)}\right], \qquad (\nu_n > 0)$$

$$\sigma(i\nu) = \left(\frac{ne^2}{m}\right) \frac{1}{\nu_n} \int_{-i\nu/2}^{i\nu/2} dz \left(\frac{1}{i\nu + i\Gamma - (\Sigma(z + i\nu/2) - \Sigma(z - i\nu/2))}\right),$$

$$\begin{split} \int_{-i\nu/2}^{i\nu/2} dz \left(\frac{1}{i\nu - (\Sigma(z + i\nu/2) - \Sigma(z - i\nu/2))} \right) &= \frac{i\nu}{i\tilde{\nu}} \left[1 - \frac{V^2}{i\tilde{\nu}(z_+ - z_-)} \left(\ln \left[\frac{\frac{i\nu}{2} - z_+}{-\frac{i\nu}{2} - z_+} \right] - \ln \left[\frac{\frac{i\nu}{2} - z_-}{-\frac{i\nu}{2} - z_-} \right] \right) \right] \\ z_{\pm} &= \lambda \pm \sqrt{\left(\frac{i\nu}{2} \right)^2 - V^2[i\nu]}, \qquad V^2[i\nu] = V^2 \frac{i\nu}{i\nu + i\Gamma} \end{split}$$

$$\sigma(i\nu) = \left(\frac{ne^2}{m}\right) \frac{1}{\Gamma - i(i\nu)} \left[1 - \frac{V^2}{i(\nu + \Gamma)(z_+ - z_-)} \left(\ln\left[\frac{\frac{i\nu}{2} - z_+}{-\frac{i\nu}{2} - z_+}\right] - \ln\left[\frac{\frac{i\nu}{2} - z_-}{-\frac{i\nu}{2} - z_-}\right]\right)\right]$$

$$\begin{aligned} \sigma(\omega+i\delta) &= \left(\frac{ne^2}{m}\right) \frac{1}{\Gamma-i\omega} \left[1 + \frac{V^2}{(\omega+i\Gamma)(z_+-z_-)} \left(\ln\left[\frac{z_++\frac{\omega}{2}}{z_+-\frac{\omega}{2}}\right] - \ln\left[\frac{z_-+\frac{\omega}{2}}{z_--\frac{\omega}{2}}\right]\right)\right],\\ z_{\pm} &= \lambda \pm \sqrt{\left(\frac{\omega}{2}\right)^2 - V^2} \frac{\omega}{\omega+i\Gamma}. \end{aligned}$$

$$\begin{aligned} \sigma(\omega+i\delta) &= \left(\frac{ne^2}{m}\right) \frac{1}{\Gamma-i\omega} \left[1 + \frac{V^2}{(\omega+i\Gamma)(z_+-z_-)} \left(\ln\left[\frac{z_++\frac{\omega}{2}}{z_+-\frac{\omega}{2}}\right] - \ln\left[\frac{z_-+\frac{\omega}{2}}{z_--\frac{\omega}{2}}\right]\right)\right],\\ z_{\pm} &= \lambda \pm \sqrt{\left(\frac{\omega}{2}\right)^2 - V^2} \frac{\omega}{\omega+i\Gamma}. \end{aligned}$$

$$\begin{aligned} \sigma(\omega+i\delta) &= \left(\frac{ne^2}{m}\right) \frac{1}{\Gamma-i\omega} \left[1 + \frac{V^2}{(\omega+i\Gamma)(z_+-z_-)} \left(\ln\left[\frac{z_++\frac{\omega}{2}}{z_+-\frac{\omega}{2}}\right] - \ln\left[\frac{z_-+\frac{\omega}{2}}{z_--\frac{\omega}{2}}\right]\right)\right],\\ z_{\pm} &= \lambda \pm \sqrt{\left(\frac{\omega}{2}\right)^2 - V^2} \frac{\omega}{\omega+i\Gamma}. \end{aligned}$$

$$\begin{aligned} \sigma(\omega+i\delta) &= \left(\frac{ne^2}{m}\right) \frac{1}{\Gamma-i\omega} \left[1 + \frac{V^2}{(\omega+i\Gamma)(z_+-z_-)} \left(\ln\left[\frac{z_++\frac{\omega}{2}}{z_+-\frac{\omega}{2}}\right] - \ln\left[\frac{z_-+\frac{\omega}{2}}{z_--\frac{\omega}{2}}\right]\right)\right],\\ z_{\pm} &= \lambda \pm \sqrt{\left(\frac{\omega}{2}\right)^2 - V^2} \frac{\omega}{\omega+i\Gamma}. \end{aligned}$$

Millis and Lee, 1987 $\sigma(\omega)$ $\Delta \omega \sim V \sim \sqrt{T_{\rm K} D}$ $(\tau^*)^{-1} = \tau^{-1} \frac{m}{m^*}$ 'Interband' $f_1 = \frac{\pi n e^2}{2m}$ $\frac{ne^{2}\tau}{m}$ $f_2 = \frac{\pi n e^2}{2m^*}$ ^т CePd₃ YbFe₄Sb₁₂ 𝒯_{CeAl3} $\sim \sqrt{T_{\rm K}D^{\prime}}$ ω CeCu_e CeRu₄Sb₁₂ $V^2/D \sim T_K \Rightarrow V \sim \sqrt{T_K D}$ $= 90 \text{ cm}^{-1}$ 200 300 400 500 100 Frequency (cm⁻¹) 中UCu₅ CeRu₄Sb₁₂. $\int_{0}^{\infty} \frac{\mathrm{d}\omega}{\pi} \sigma(\omega) = f_1 = \frac{\pi}{2} \left(\frac{n_c e^2}{m} \right)$ YbFe₄Sb₁₂ $\Delta = 380 \text{ cm}^{-1}$ $\int d\omega \sigma(\omega) = f_2 = \frac{\pi}{2} \frac{n_{\rm HF} e^2}{m^*}$ 2000 3000 1000 ∯ UPt₃ Frequency (cm⁻¹) 30 10 100 1000 1

S.V. Dordevic, D.N. Basov, N.R. Dilley, E.D. Bauer, and M.B. Maple, Phys. Rev. Lett. 86, 2001, 684,

 m^*/m_b

1000

100

10 =

1

0.1 0.1

 $(\Delta/T^*)^2$

 $\sigma_1(10^3 \, \Omega^{-1} \mathrm{cm}^{-1})$

3

2

0

2

 $\sigma_1(10^3 \ \Omega^{-1} {
m cm}^{-1})$

Physics of Heavy Fermion Superconductivity Lecture II:

- 1. The large N approach to the Kondo lattice.
- 2. Heavy Fermion Metals.
- 3. Optical Conductivity of Heavy Fermion Metals
- 4. Kondo Insulators

Mott Phil Mag, 30,403,1974

pressure are discussed. It is suggested that the low-pressure form of SmS is an excitonic insulator. In SmB_6 and high-pressure SmS a very small gap separates occupied from unoccupied states, this in our view being due to hybridization of 4f and 5d bands. The electrical properties are discussed ; if kT is greater than the gap

energy, then the gap does not affect the metallic behaviour. Finally metallic compounds such as $CeAl_3$ are described, in which there is no magnetic ordering at

MAGNETIC AND SEMICONDUCTING PROPERTIES OF SmB₈†

A. Menth and E. Buehler Bell Telephone Laboratories, Murray Hill, New Jersey

and

T. H. Geballe Department of Applied Physics, Stanford University, Stanford, California, and Bell Telephone Laboratories, Murray Hill, New Jersey (Received 21 November 1968)

FIG. 1. Resistance of SmB_6 as a function of temperature. Closed circles: resistance versus T; open circles: resistance versus $10^3/T$.

MAGNETIC AND SEMICONDUCTING PROPERTIES OF SmB₈†

A. Menth and E. Buehler Bell Telephone Laboratories, Murray Hill, New Jersey

and

T. H. Geballe Department of Applied Physics, Stanford University, Stanford, California, and Bell Telephone Laboratories, Murray Hill, New Jersey (Received 21 November 1968)

FIG. 1. Resistance of SmB_6 as a function of temperature. Closed circles: resistance versus T; open circles: resistance versus $10^3/T$.

Persistent conductivity Plateau

Frustrated magnetism: pairing of spinons SP(N). Read and Sachdev, PRL, 66, 1773 (1991)

Frustrated magnetism: pairing of spinons SP(N). Read and Sachdev, PRL, 66, 1773 (1991)

Scott Thomas, Rutgers NHETC.

PC: why don't you ever use the group SP(N)?

Frustrated magnetism: pairing of spinons SP(N). Read and Sachdev, PRL, 66, 1773 (1991)

Scott Thomas, Rutgers NHETC.

PC: why don't you ever use the group SP(N)? Scott: "Simple, no Baryons."

Frustrated magnetism: pairing of spinons SP(N). Read and Sachdev, PRL, 66, 1773 (1991)

Scott Thomas, Rutgers NHETC.

PC: why don't you ever use the group SP(N)? Scott: "Simple, no Baryons."

SU(N):MesonsBaryons $\bar{q}q$ $q_1q_2 \dots q_N$

Frustrated magnetism: pairing of spinons SP(N). Read and Sachdev, PRL, 66, 1773 (1991)

Scott Thomas, Rutgers NHETC.

PC: why don't you ever use the group SP(N)? Scott: "Simple, no Baryons."

SU(N):	Mesons	Baryons
	$\overline{q}q$	$q_1 q_2 \dots q_N$
		Cooper pairs
SP(N):	qq	$q_a q_{-a}$

Frustrated magnetism: pairing of spinons SP(N). Read and Sachdev, PRL, 66, 1773 (1991)

"Symplectic Large N" R. Flint and PC '08 $S^{ba} = f_b^{\dagger} f_a - \operatorname{sgn}(a) \operatorname{sgn}(b) f_{-b}^{\dagger} f_{-a}$

