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1. Introduction: Heavy Fermions and the Kondo Lattice. 

2. BCS meets Kondo: mean-field approach to the Kondo Lattice. 

3. Glue vs Fabric: Good, Bad and Ugly Heavy Fermion Superconductors.  

4. Composite vs AFM induced pairing.
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Last Time: Lecture 1 Introduction to Heavy Fermions and the Kondo Lattice. 
!
1. Magnetism and SC: a remarkable converegence. 

2. Electrons on the Brink of Localization. 

3. Cartoon introduction to Heavy Fermions. 

4. Lev Landau versus Ken Wilson:  Criticality as a driver of Superconductivity. 

5. Anderson, Kondo and Doniach. 



THE KONDO LATTICE (From Lecture I)
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T. Kasuya (1951)

“Kondo Lattice”

Note: can also write Kondo interaction 
in the “Coqblin Schrieffer” form
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Physics of Heavy Fermion Superconductivity Lecture II: 
!
1.  The large N approach to the Kondo lattice. 
!
2. Heavy Fermion Metals. 
!
3.  Optical Conductivity of Heavy Fermion Metals 
!
4.  Kondo Insulators



U

Gauge Theories and Strong Correlation.

e- spin
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Large N Approach.
Read and Newns ’83.
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36 Heavy electrons

electrons that span decades of energy up to a cutoff, beit the Debye energy ωD in superconductivity or the
(much larger) bandwidth D in the Kondo effect [32, 33].

To follow this analogy in greater depth, recall that in the path integral the Kondo interaction factorizes as

J
N

c†βS αβcα −→ V̄
(
c†α fα

)
+

(
f †αcα

)
V + N

V̄V
J
, (18.143)

so by comparing the right and left hand side, we see that the composite operators S βαcβ and c†βS αβ behave
as a single fermion denoted by the contractions:

1
N

∑

β

S βαcβ =
(

V̄
J

)
fα,

1
N

∑

β

c†βS αβ =
(V

J

)
f †α, (18.144)

Composite Fermion

Physically, this means that the spins bind high energy electrons, transforming themselves into composites
which then hybridize with the conduction electrons. The resulting “heavy fermions” can be thought of as
moments ionized in the magnetically polar electron fluid to form mobile, negatively charged heavy electrons
while leaving behind a positively charged “Kondo singlet”.

Microscopically, the many body amplitude to scatter an electron off a local moment develops a bound-state
pole, which for large N we can denote by the diagrams:

Γ ≡
O(1)

V V̄
+

O(1/N)

The leading diagram describes a kind of “condensation” of the hybridization field; the second and higher
terms describe the smaller O(1/N) fluctuations around the mean-field theory.

The temporal correlations between spin-flips and conduction electrons extend over a finite time, described
by the contraction

1
N

∑

β

cβ(τ)S βα(τ′) = g(τ − τ′) f̂α(τ′). (18.145)

Here the spin-flip correlation function g(τ − τ′) is an analogue of the Gor’kov function, extending out to a
coherence time τK ∼ !/TK . Notice that in contrast to the Cooper pair, this composite object is a fermion and
thus requires a distinct operator f̂α for its expression. The Fourier (Laplace) decomposition of g(τ) describes
the Spectral distribution of electrons and spin-flips inside the composite f-electron which we may calculate
as follows:

1
N

∑

β

cβ(τ)S βα(τ′) =
1
N

∑

β

cβ(τ) f †β(τ′) fα(τ′)

=
1
N

∑

β

⟨Tcβ(τ) f †β(τ′)⟩ fα(τ′)
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Extensive in N
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28 Heavy electrons

18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
h(k)︷!!!︸︸!!!︷(

ϵk V
V̄ λ

) (
ckσ
fkσ

)
+ NNs

( |V |2
J
− λq

)
(18.111)

=
∑

kσ
ψ†kσ h(k) ψkσ + NNs

( |V |2
J
− λq

)
.

Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation

ψkσ =

(
ckσ
fkσ

)
, ψ†kσ =

(
c†kσ, f †,kσ

)
, h(k) =

(
ϵk V
V̄ λ

)
. (18.112)

We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
− λq

)
. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues

Det
[
E±k 1 −

(
ϵk V
V̄ λ

)]
= (Ek± − ϵk)(Ek± − λ) − |V |2 = 0, (18.114)

or

Ek± =
ϵk + λ

2
±

[( ϵk − λ
2

)2
+ |V |2

] 1
2

, (18.115)

and eigenvectors taking the BCS form

{
uk
vk

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
2
± (ϵk − λ)/2

2
√(

ϵk−λ
2

)2
+ |V |2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2

. (18.116)
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17.1.4 Mean-field theory of the Kondo Lattice

Diagonalization of the Hamiltonian

We can now make the bold jump from the single impurity problem, to the lattice. Most of the
methods described in the last subsection generalize very naturally from the impurity to the lattice:
the main difficulty is to understand the underlying physics. The mean-field Hamiltonian for the
lattice[49? ] takes the form

HMFT =
∑

k⃗σ

ϵk⃗c
†

k⃗σck⃗σ +
∑

j,α

(
f † jαψ jαVo + V̄oψ

†
jβ f jβ + λo f † jα f jα

)
+ Nn

(
V̄oVo

J
− λoq

)
,

where n is the number of sites in the lattice. Notice, before we begin, that the composite f-state
at each site of the lattice is entirely local, in that hybridization occurs at one site only. Were the
composite f-state to be in any way non-local, we would expect that the hybridization of one f-
state would involve conduction electrons at different sites. We begin by rewriting the mean field
Hamiltonian in momentum space, as follows

HMFT =
∑

k⃗σ

(
c†k⃗σ, f

†
k⃗σ

) ( ϵk⃗ Vo
Vo λo

) (
ck⃗σ
f⃗kσ

)
+ Nn

(
V̄oVo

J
− λoq

)

where

f †k⃗σ =
1
√

n

∑

j
f † jσei⃗k·R⃗ j

is the Fourier transform of the f−electron field. The absence of k− dependence in the hybridization
is evident that each composite f−electron is spatially local. This Hamiltonian can be diagonalized
in the form

HMFT =
∑

k⃗σ

(
a†k⃗σ, b

†
k⃗σ

) (Ek⃗+ 0
0 Ek⃗−

) (
ak⃗σ
bk⃗σ

)
+ Nn

(
V̄oVo

J
− λoq

)

where a†k⃗σ and b†k⃗σ are linear combinations of c†k⃗σ and f †k⃗σ, playing the role of “quasiparticle op-
erators” of the theory and the momentum state eigenvalues Ek⃗± of this Hamiltonian are determined
by the condition

Det
[
Ek⃗±1 −

(
ϵk⃗ Vo
Vo λo

)]
= 0,

which gives

Ek⃗± =
ϵk⃗ + λo

2
±
⎡
⎢⎢⎢⎢⎢⎣

(
ϵk⃗ − λo

2

)2
+ |Vo|2

⎤
⎥⎥⎥⎥⎥⎦

1
2

(17.44)

are the energies of the upper and lower bands. The dispersion described by these energies is shown
in Fig. 17.8 . A number of points can be made about this dispersion:
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17.1.4 Mean-field theory of the Kondo Lattice

Diagonalization of the Hamiltonian

We can now make the bold jump from the single impurity problem, to the lattice. Most of the
methods described in the last subsection generalize very naturally from the impurity to the lattice:
the main difficulty is to understand the underlying physics. The mean-field Hamiltonian for the
lattice[49? ] takes the form
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where n is the number of sites in the lattice. Notice, before we begin, that the composite f-state
at each site of the lattice is entirely local, in that hybridization occurs at one site only. Were the
composite f-state to be in any way non-local, we would expect that the hybridization of one f-
state would involve conduction electrons at different sites. We begin by rewriting the mean field
Hamiltonian in momentum space, as follows
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is the Fourier transform of the f−electron field. The absence of k− dependence in the hybridization
is evident that each composite f−electron is spatially local. This Hamiltonian can be diagonalized
in the form
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where a†k⃗σ and b†k⃗σ are linear combinations of c†k⃗σ and f †k⃗σ, playing the role of “quasiparticle op-
erators” of the theory and the momentum state eigenvalues Ek⃗± of this Hamiltonian are determined
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are the energies of the upper and lower bands. The dispersion described by these energies is shown
in Fig. 17.8 . A number of points can be made about this dispersion:
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in Fig. 17.8 . A number of points can be made about this dispersion:
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Diagonalization of the Hamiltonian

We can now make the bold jump from the single impurity problem, to the lattice. Most of the
methods described in the last subsection generalize very naturally from the impurity to the lattice:
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are the energies of the upper and lower bands. The dispersion described by these energies is shown
in Fig. 17.8 . A number of points can be made about this dispersion:

75

28 Heavy electrons

18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
h(k)︷!!!︸︸!!!︷(

ϵk V
V̄ λ

) (
ckσ
fkσ

)
+ NNs

( |V |2
J
− λq

)
(18.111)

=
∑

kσ
ψ†kσ h(k) ψkσ + NNs

( |V |2
J
− λq

)
.

Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation

ψkσ =

(
ckσ
fkσ

)
, ψ†kσ =

(
c†kσ, f †,kσ

)
, h(k) =

(
ϵk V
V̄ λ

)
. (18.112)

We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
− λq

)
. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues

Det
[
E±k 1 −

(
ϵk V
V̄ λ

)]
= (Ek± − ϵk)(Ek± − λ) − |V |2 = 0, (18.114)

or

Ek± =
ϵk + λ

2
±

[( ϵk − λ
2

)2
+ |V |2

] 1
2

, (18.115)

and eigenvectors taking the BCS form

{
uk
vk

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
2
± (ϵk − λ)/2

2
√(

ϵk−λ
2

)2
+ |V |2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2

. (18.116)

28 Heavy electrons

18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
h(k)︷!!!︸︸!!!︷(

ϵk V
V̄ λ

) (
ckσ
fkσ

)
+ NNs

( |V |2
J
− λq

)
(18.111)

=
∑

kσ
ψ†kσ h(k) ψkσ + NNs

( |V |2
J
− λq

)
.

Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation

ψkσ =

(
ckσ
fkσ

)
, ψ†kσ =

(
c†kσ, f †,kσ

)
, h(k) =

(
ϵk V
V̄ λ

)
. (18.112)

We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
− λq

)
. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues

Det
[
E±k 1 −

(
ϵk V
V̄ λ

)]
= (Ek± − ϵk)(Ek± − λ) − |V |2 = 0, (18.114)

or

Ek± =
ϵk + λ

2
±

[( ϵk − λ
2

)2
+ |V |2

] 1
2

, (18.115)

and eigenvectors taking the BCS form

{
uk
vk

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
2
± (ϵk − λ)/2

2
√(

ϵk−λ
2

)2
+ |V |2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2

. (18.116)

28 Heavy electrons

18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
h(k)︷!!!︸︸!!!︷(

ϵk V
V̄ λ

) (
ckσ
fkσ

)
+ NNs

( |V |2
J
− λq

)
(18.111)

=
∑

kσ
ψ†kσ h(k) ψkσ + NNs

( |V |2
J
− λq

)
.

Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation

ψkσ =

(
ckσ
fkσ

)
, ψ†kσ =

(
c†kσ, f †,kσ

)
, h(k) =

(
ϵk V
V̄ λ

)
. (18.112)

We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
− λq

)
. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues

Det
[
E±k 1 −

(
ϵk V
V̄ λ

)]
= (Ek± − ϵk)(Ek± − λ) − |V |2 = 0, (18.114)

or

Ek± =
ϵk + λ

2
±

[( ϵk − λ
2

)2
+ |V |2

] 1
2

, (18.115)

and eigenvectors taking the BCS form

{
uk
vk

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
2
± (ϵk − λ)/2

2
√(

ϵk−λ
2

)2
+ |V |2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2

. (18.116)

28 Heavy electrons

18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
h(k)︷!!!︸︸!!!︷(

ϵk V
V̄ λ

) (
ckσ
fkσ

)
+ NNs

( |V |2
J
− λq

)
(18.111)

=
∑

kσ
ψ†kσ h(k) ψkσ + NNs

( |V |2
J
− λq

)
.

Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation

ψkσ =

(
ckσ
fkσ

)
, ψ†kσ =

(
c†kσ, f †,kσ

)
, h(k) =

(
ϵk V
V̄ λ

)
. (18.112)

We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
− λq

)
. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues

Det
[
E±k 1 −

(
ϵk V
V̄ λ

)]
= (Ek± − ϵk)(Ek± − λ) − |V |2 = 0, (18.114)

or

Ek± =
ϵk + λ

2
±

[( ϵk − λ
2

)2
+ |V |2

] 1
2

, (18.115)

and eigenvectors taking the BCS form

{
uk
vk

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
2
± (ϵk − λ)/2

2
√(

ϵk−λ
2

)2
+ |V |2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2

. (18.116)



Detailed calcn.

c⃝2010 Piers Coleman Chapter 17.

17.1.4 Mean-field theory of the Kondo Lattice

Diagonalization of the Hamiltonian

We can now make the bold jump from the single impurity problem, to the lattice. Most of the
methods described in the last subsection generalize very naturally from the impurity to the lattice:
the main difficulty is to understand the underlying physics. The mean-field Hamiltonian for the
lattice[49? ] takes the form

HMFT =
∑

k⃗σ

ϵk⃗c
†

k⃗σck⃗σ +
∑

j,α

(
f † jαψ jαVo + V̄oψ

†
jβ f jβ + λo f † jα f jα

)
+ Nn

(
V̄oVo

J
− λoq

)
,

where n is the number of sites in the lattice. Notice, before we begin, that the composite f-state
at each site of the lattice is entirely local, in that hybridization occurs at one site only. Were the
composite f-state to be in any way non-local, we would expect that the hybridization of one f-
state would involve conduction electrons at different sites. We begin by rewriting the mean field
Hamiltonian in momentum space, as follows

HMFT =
∑

k⃗σ

(
c†k⃗σ, f

†
k⃗σ

) ( ϵk⃗ Vo
Vo λo

) (
ck⃗σ
f⃗kσ

)
+ Nn

(
V̄oVo

J
− λoq

)

where

f †k⃗σ =
1
√

n

∑

j
f † jσei⃗k·R⃗ j

is the Fourier transform of the f−electron field. The absence of k− dependence in the hybridization
is evident that each composite f−electron is spatially local. This Hamiltonian can be diagonalized
in the form

HMFT =
∑

k⃗σ

(
a†k⃗σ, b

†
k⃗σ

) (Ek⃗+ 0
0 Ek⃗−

) (
ak⃗σ
bk⃗σ

)
+ Nn

(
V̄oVo

J
− λoq

)

where a†k⃗σ and b†k⃗σ are linear combinations of c†k⃗σ and f †k⃗σ, playing the role of “quasiparticle op-
erators” of the theory and the momentum state eigenvalues Ek⃗± of this Hamiltonian are determined
by the condition

Det
[
Ek⃗±1 −

(
ϵk⃗ Vo
Vo λo

)]
= 0,

which gives

Ek⃗± =
ϵk⃗ + λo

2
±
⎡
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(
ϵk⃗ − λo

2

)2
+ |Vo|2

⎤
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1
2
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are the energies of the upper and lower bands. The dispersion described by these energies is shown
in Fig. 17.8 . A number of points can be made about this dispersion:
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enlarged Fermi surface volume now counts the total number of occupied quasiparticle states

Ntot = ⟨
∑

kλσ

nkλσ⟩ = ⟨n̂ f + n̂c⟩ (18.118)

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total number of
conduction electrons. This means

Ntot = N
VFS a3

(2π)3 = Q + nc, (18.119)

where a3 is the volume of the unit cell. This is rather remarkable, for the expansion of the Fermi surface
implies an increased charge density in the Fermi sea. Since charge is conserved, we are forced to con-
clude there is a compensating +Q|e| charge density per unit cell provided by the Kondo singlets formed
at each site, as illustrated in Fig. 18.10.

• We can construct the mean-field ground-state from the quasiparticle operators as follows:

|MF⟩ =
∏

|k|<kFσ

b†kσ|0⟩ =
∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩. (18.120)

However, this state only satisfies the constraint on the average. We can improve it by imposing the
constraint, forming a “Gutzwiller” wavefunction[?, ?, ?]

|GW⟩ = PQ

∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩, (18.121)

where, using (18.48)

PQ =
∏

j

PQ( j) =
∫ 2π

0

∏

j

dα j

2π
ei

∑
j α j(n̂ f j−Q). (18.122)

The action of the constraint gives rise to a highly incompressible Fermi liquid, in which the compress-
ibility is far smaller than the density of states.

18.6.2 Mean Field Free Energy and Saddle point

Let us now use the results of the last section to calculate the mean-field free energy FMFT and determine,
self-consistently the parameters λ and V which set the scales of the Kondo lattice. Using 18.69 we obtain

FMF = −NT
∑

k,iωr

Tr ln
[

−G−1
k (iωr)︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷

−iωr +

(
ϵk V
V λ

)]
+Ns

(
N|V |2

J
− λQ

)
, (18.123)

whereNs is the number of sites in the lattice. Note that translational invariance means that momentum is con-
served and the Green’s function is diagonal in momentum, so we can re-write the trace over the momentum as
a sum over k. Let us remind ourselves of the steps taken between (18.69) and (18.70 ). We begin by re-writing
the trace of the logarithm as a determinant, which we then factorize in terms of the energy eigenvalues,

Tr ln
[
−iωr1 +

(
ϵk V
V λ

)]
= ln det

[
−z1 +

(
ϵk V
V λ

)]
= ln

[ (Ek+−iωr)(Ek−−iωr)︷!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!︷
(ϵk − iωr)(λ − iωr) − V2

]

=
∑

n=±
ln(Ekn − iωr). (18.124)
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We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows
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We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form
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Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues
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30 Heavy electrons

enlarged Fermi surface volume now counts the total number of occupied quasiparticle states

Ntot = ⟨
∑

kλσ

nkλσ⟩ = ⟨n̂ f + n̂c⟩ (18.118)

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total number of
conduction electrons. This means

Ntot = N
VFS a3

(2π)3 = Q + nc, (18.119)

where a3 is the volume of the unit cell. This is rather remarkable, for the expansion of the Fermi surface
implies an increased charge density in the Fermi sea. Since charge is conserved, we are forced to con-
clude there is a compensating +Q|e| charge density per unit cell provided by the Kondo singlets formed
at each site, as illustrated in Fig. 18.10.

• We can construct the mean-field ground-state from the quasiparticle operators as follows:

|MF⟩ =
∏

|k|<kFσ

b†kσ|0⟩ =
∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩. (18.120)

However, this state only satisfies the constraint on the average. We can improve it by imposing the
constraint, forming a “Gutzwiller” wavefunction[?, ?, ?]

|GW⟩ = PQ

∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩, (18.121)

where, using (18.48)

PQ =
∏

j

PQ( j) =
∫ 2π

0

∏

j

dα j

2π
ei

∑
j α j(n̂ f j−Q). (18.122)

The action of the constraint gives rise to a highly incompressible Fermi liquid, in which the compress-
ibility is far smaller than the density of states.

18.6.2 Mean Field Free Energy and Saddle point

Let us now use the results of the last section to calculate the mean-field free energy FMFT and determine,
self-consistently the parameters λ and V which set the scales of the Kondo lattice. Using 18.69 we obtain

FMF = −NT
∑

k,iωr

Tr ln
[

−G−1
k (iωr)︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷

−iωr +

(
ϵk V
V λ

)]
+Ns

(
N|V |2

J
− λQ

)
, (18.123)

whereNs is the number of sites in the lattice. Note that translational invariance means that momentum is con-
served and the Green’s function is diagonal in momentum, so we can re-write the trace over the momentum as
a sum over k. Let us remind ourselves of the steps taken between (18.69) and (18.70 ). We begin by re-writing
the trace of the logarithm as a determinant, which we then factorize in terms of the energy eigenvalues,

Tr ln
[
−iωr1 +

(
ϵk V
V λ

)]
= ln det

[
−z1 +

(
ϵk V
V λ

)]
= ln

[ (Ek+−iωr)(Ek−−iωr)︷!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!︷
(ϵk − iωr)(λ − iωr) − V2

]

=
∑

n=±
ln(Ekn − iωr). (18.124)

30 Heavy electrons

enlarged Fermi surface volume now counts the total number of occupied quasiparticle states

Ntot = ⟨
∑

kλσ

nkλσ⟩ = ⟨n̂ f + n̂c⟩ (18.118)

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total number of
conduction electrons. This means

Ntot = N
VFS a3

(2π)3 = Q + nc, (18.119)

where a3 is the volume of the unit cell. This is rather remarkable, for the expansion of the Fermi surface
implies an increased charge density in the Fermi sea. Since charge is conserved, we are forced to con-
clude there is a compensating +Q|e| charge density per unit cell provided by the Kondo singlets formed
at each site, as illustrated in Fig. 18.10.

• We can construct the mean-field ground-state from the quasiparticle operators as follows:

|MF⟩ =
∏

|k|<kFσ

b†kσ|0⟩ =
∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩. (18.120)

However, this state only satisfies the constraint on the average. We can improve it by imposing the
constraint, forming a “Gutzwiller” wavefunction[?, ?, ?]

|GW⟩ = PQ

∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩, (18.121)

where, using (18.48)

PQ =
∏

j

PQ( j) =
∫ 2π

0

∏

j

dα j

2π
ei

∑
j α j(n̂ f j−Q). (18.122)

The action of the constraint gives rise to a highly incompressible Fermi liquid, in which the compress-
ibility is far smaller than the density of states.

18.6.2 Mean Field Free Energy and Saddle point

Let us now use the results of the last section to calculate the mean-field free energy FMFT and determine,
self-consistently the parameters λ and V which set the scales of the Kondo lattice. Using 18.69 we obtain

FMF = −NT
∑

k,iωr

Tr ln
[

−G−1
k (iωr)︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷

−iωr +

(
ϵk V
V λ

)]
+Ns

(
N|V |2

J
− λQ

)
, (18.123)

whereNs is the number of sites in the lattice. Note that translational invariance means that momentum is con-
served and the Green’s function is diagonal in momentum, so we can re-write the trace over the momentum as
a sum over k. Let us remind ourselves of the steps taken between (18.69) and (18.70 ). We begin by re-writing
the trace of the logarithm as a determinant, which we then factorize in terms of the energy eigenvalues,

Tr ln
[
−iωr1 +

(
ϵk V
V λ

)]
= ln det

[
−z1 +

(
ϵk V
V λ

)]
= ln

[ (Ek+−iωr)(Ek−−iωr)︷!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!︷
(ϵk − iωr)(λ − iωr) − V2

]

=
∑

n=±
ln(Ekn − iωr). (18.124)

30 Heavy electrons

enlarged Fermi surface volume now counts the total number of occupied quasiparticle states

Ntot = ⟨
∑

kλσ

nkλσ⟩ = ⟨n̂ f + n̂c⟩ (18.118)

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total number of
conduction electrons. This means

Ntot = N
VFS a3

(2π)3 = Q + nc, (18.119)

where a3 is the volume of the unit cell. This is rather remarkable, for the expansion of the Fermi surface
implies an increased charge density in the Fermi sea. Since charge is conserved, we are forced to con-
clude there is a compensating +Q|e| charge density per unit cell provided by the Kondo singlets formed
at each site, as illustrated in Fig. 18.10.

• We can construct the mean-field ground-state from the quasiparticle operators as follows:

|MF⟩ =
∏

|k|<kFσ

b†kσ|0⟩ =
∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩. (18.120)

However, this state only satisfies the constraint on the average. We can improve it by imposing the
constraint, forming a “Gutzwiller” wavefunction[?, ?, ?]

|GW⟩ = PQ

∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩, (18.121)

where, using (18.48)

PQ =
∏

j

PQ( j) =
∫ 2π

0

∏

j

dα j

2π
ei

∑
j α j(n̂ f j−Q). (18.122)

The action of the constraint gives rise to a highly incompressible Fermi liquid, in which the compress-
ibility is far smaller than the density of states.

18.6.2 Mean Field Free Energy and Saddle point

Let us now use the results of the last section to calculate the mean-field free energy FMFT and determine,
self-consistently the parameters λ and V which set the scales of the Kondo lattice. Using 18.69 we obtain

FMF = −NT
∑

k,iωr

Tr ln
[

−G−1
k (iωr)︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷

−iωr +

(
ϵk V
V λ

)]
+Ns

(
N|V |2

J
− λQ

)
, (18.123)

whereNs is the number of sites in the lattice. Note that translational invariance means that momentum is con-
served and the Green’s function is diagonal in momentum, so we can re-write the trace over the momentum as
a sum over k. Let us remind ourselves of the steps taken between (18.69) and (18.70 ). We begin by re-writing
the trace of the logarithm as a determinant, which we then factorize in terms of the energy eigenvalues,

Tr ln
[
−iωr1 +

(
ϵk V
V λ

)]
= ln det

[
−z1 +

(
ϵk V
V λ

)]
= ln

[ (Ek+−iωr)(Ek−−iωr)︷!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!︷
(ϵk − iωr)(λ − iωr) − V2

]

=
∑

n=±
ln(Ekn − iωr). (18.124)

28 Heavy electrons

18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
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Here, f †kσ =
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j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the
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)
, ψ†kσ =
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)
, h(k) =
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. (18.112)

We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
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)
. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues

Det
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and eigenvectors taking the BCS form
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Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues
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30 Heavy electrons

enlarged Fermi surface volume now counts the total number of occupied quasiparticle states

Ntot = ⟨
∑

kλσ

nkλσ⟩ = ⟨n̂ f + n̂c⟩ (18.118)

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total number of
conduction electrons. This means

Ntot = N
VFS a3

(2π)3 = Q + nc, (18.119)

where a3 is the volume of the unit cell. This is rather remarkable, for the expansion of the Fermi surface
implies an increased charge density in the Fermi sea. Since charge is conserved, we are forced to con-
clude there is a compensating +Q|e| charge density per unit cell provided by the Kondo singlets formed
at each site, as illustrated in Fig. 18.10.

• We can construct the mean-field ground-state from the quasiparticle operators as follows:

|MF⟩ =
∏

|k|<kFσ

b†kσ|0⟩ =
∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩. (18.120)

However, this state only satisfies the constraint on the average. We can improve it by imposing the
constraint, forming a “Gutzwiller” wavefunction[?, ?, ?]

|GW⟩ = PQ

∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩, (18.121)

where, using (18.48)

PQ =
∏

j

PQ( j) =
∫ 2π

0

∏

j

dα j

2π
ei

∑
j α j(n̂ f j−Q). (18.122)

The action of the constraint gives rise to a highly incompressible Fermi liquid, in which the compress-
ibility is far smaller than the density of states.

18.6.2 Mean Field Free Energy and Saddle point

Let us now use the results of the last section to calculate the mean-field free energy FMFT and determine,
self-consistently the parameters λ and V which set the scales of the Kondo lattice. Using 18.69 we obtain

FMF = −NT
∑

k,iωr

Tr ln
[

−G−1
k (iωr)︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷

−iωr +

(
ϵk V
V λ

)]
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(
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J
− λQ

)
, (18.123)

whereNs is the number of sites in the lattice. Note that translational invariance means that momentum is con-
served and the Green’s function is diagonal in momentum, so we can re-write the trace over the momentum as
a sum over k. Let us remind ourselves of the steps taken between (18.69) and (18.70 ). We begin by re-writing
the trace of the logarithm as a determinant, which we then factorize in terms of the energy eigenvalues,

Tr ln
[
−iωr1 +

(
ϵk V
V λ

)]
= ln det

[
−z1 +
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ϵk V
V λ

)]
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(ϵk − iωr)(λ − iωr) − V2

]

=
∑

n=±
ln(Ekn − iωr). (18.124)
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18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
h(k)︷!!!︸︸!!!︷(

ϵk V
V̄ λ

) (
ckσ
fkσ
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( |V |2
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)
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=
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)
.

Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation

ψkσ =

(
ckσ
fkσ

)
, ψ†kσ =

(
c†kσ, f †,kσ

)
, h(k) =

(
ϵk V
V̄ λ

)
. (18.112)

We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
− λq

)
. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues
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and eigenvectors taking the BCS form

{
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enlarged Fermi surface volume now counts the total number of occupied quasiparticle states

Ntot = ⟨
∑

kλσ

nkλσ⟩ = ⟨n̂ f + n̂c⟩ (18.118)

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total number of
conduction electrons. This means

Ntot = N
VFS a3

(2π)3 = Q + nc, (18.119)

where a3 is the volume of the unit cell. This is rather remarkable, for the expansion of the Fermi surface
implies an increased charge density in the Fermi sea. Since charge is conserved, we are forced to con-
clude there is a compensating +Q|e| charge density per unit cell provided by the Kondo singlets formed
at each site, as illustrated in Fig. 18.10.

• We can construct the mean-field ground-state from the quasiparticle operators as follows:

|MF⟩ =
∏

|k|<kFσ

b†kσ|0⟩ =
∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩. (18.120)

However, this state only satisfies the constraint on the average. We can improve it by imposing the
constraint, forming a “Gutzwiller” wavefunction[?, ?, ?]

|GW⟩ = PQ

∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩, (18.121)

where, using (18.48)
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The action of the constraint gives rise to a highly incompressible Fermi liquid, in which the compress-
ibility is far smaller than the density of states.

18.6.2 Mean Field Free Energy and Saddle point

Let us now use the results of the last section to calculate the mean-field free energy FMFT and determine,
self-consistently the parameters λ and V which set the scales of the Kondo lattice. Using 18.69 we obtain
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whereNs is the number of sites in the lattice. Note that translational invariance means that momentum is con-
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18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
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Here, f †kσ =
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j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation
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)
, ψ†kσ =
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)
, h(k) =

(
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V̄ λ

)
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We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑
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(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
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)
. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues
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!Fig. 18.10 (a) High temperature state: small Fermi surface with a background of spins; (b)Low
temperature state where large Fermi surface develops against a background of
positive charge. Each spin “ionizes” into Q heavy electrons, leaving behind a
background of Kondo singlets, each with charge +Qe.

Next, by carrying out the summation over Matsubara frequencies, using the result −T
∑

iωr ln(Ekn − iωr) =
−T ln(1 + e−βEkn ), we obtain

F
N
= −T
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. (18.125)

Let us discuss the ground-state, in which only the lower-band contributes to the Free energy. As T → 0,
we can replace −T ln(1+ e−βEk )→ θ(−Ek)Ek, so the ground-state energy E0 = F(T = 0) involves an integral
over the occupied states of the lower band:

Eo

NNs
=

∫ 0

−∞
dEρ∗(E)E +

(
V2

J
− λq

)
(18.126)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k,± δ(E −E(±)
k ). Now by (18.114) the

relationship between the energy E of the heavy electrons and the energy ϵ of the conduction electrons is

E = ϵ +
V2

E − λ .

As we sum over momenta k within a given energy shell, there is a one-to-one correspondence between each
conduction electron state and each quasiparticle state, so we can write ρ∗(E)dE = ρ(ϵ)dϵ, where the density
of heavy electron states

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
. (18.127)

Here we have approximated the underlying conduction electron density of states by a constant ρ = 1/(2D).
The originally flat conduction electron density of states is now replaced by a “hybridization gap”, flanked by
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enlarged Fermi surface volume now counts the total number of occupied quasiparticle states

Ntot = ⟨
∑

kλσ

nkλσ⟩ = ⟨n̂ f + n̂c⟩ (18.118)

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total number of
conduction electrons. This means

Ntot = N
VFS a3

(2π)3 = Q + nc, (18.119)

where a3 is the volume of the unit cell. This is rather remarkable, for the expansion of the Fermi surface
implies an increased charge density in the Fermi sea. Since charge is conserved, we are forced to con-
clude there is a compensating +Q|e| charge density per unit cell provided by the Kondo singlets formed
at each site, as illustrated in Fig. 18.10.

• We can construct the mean-field ground-state from the quasiparticle operators as follows:

|MF⟩ =
∏

|k|<kFσ

b†kσ|0⟩ =
∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩. (18.120)

However, this state only satisfies the constraint on the average. We can improve it by imposing the
constraint, forming a “Gutzwiller” wavefunction[?, ?, ?]

|GW⟩ = PQ

∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩, (18.121)

where, using (18.48)
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The action of the constraint gives rise to a highly incompressible Fermi liquid, in which the compress-
ibility is far smaller than the density of states.

18.6.2 Mean Field Free Energy and Saddle point

Let us now use the results of the last section to calculate the mean-field free energy FMFT and determine,
self-consistently the parameters λ and V which set the scales of the Kondo lattice. Using 18.69 we obtain
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whereNs is the number of sites in the lattice. Note that translational invariance means that momentum is con-
served and the Green’s function is diagonal in momentum, so we can re-write the trace over the momentum as
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The action of the constraint gives rise to a highly incompressible Fermi liquid, in which the compress-
ibility is far smaller than the density of states.

18.6.2 Mean Field Free Energy and Saddle point

Let us now use the results of the last section to calculate the mean-field free energy FMFT and determine,
self-consistently the parameters λ and V which set the scales of the Kondo lattice. Using 18.69 we obtain
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whereNs is the number of sites in the lattice. Note that translational invariance means that momentum is con-
served and the Green’s function is diagonal in momentum, so we can re-write the trace over the momentum as
a sum over k. Let us remind ourselves of the steps taken between (18.69) and (18.70 ). We begin by re-writing
the trace of the logarithm as a determinant, which we then factorize in terms of the energy eigenvalues,
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18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
h(k)︷!!!︸︸!!!︷(
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V̄ λ

) (
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fkσ
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J
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(18.111)

=
∑

kσ
ψ†kσ h(k) ψkσ + NNs
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J
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.

Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation

ψkσ =

(
ckσ
fkσ

)
, ψ†kσ =

(
c†kσ, f †,kσ

)
, h(k) =

(
ϵk V
V̄ λ

)
. (18.112)

We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
− λq

)
. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues

Det
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E±k 1 −

(
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)]
= (Ek± − ϵk)(Ek± − λ) − |V |2 = 0, (18.114)

or
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and eigenvectors taking the BCS form

{
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}
=
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!Fig. 18.10 (a) High temperature state: small Fermi surface with a background of spins; (b)Low
temperature state where large Fermi surface develops against a background of
positive charge. Each spin “ionizes” into Q heavy electrons, leaving behind a
background of Kondo singlets, each with charge +Qe.

Next, by carrying out the summation over Matsubara frequencies, using the result −T
∑

iωr ln(Ekn − iωr) =
−T ln(1 + e−βEkn ), we obtain

F
N
= −T

∑

k,±
ln

[
1 + e−βEk±

]
+Ns

(
V2

J
− λq

)
. (18.125)

Let us discuss the ground-state, in which only the lower-band contributes to the Free energy. As T → 0,
we can replace −T ln(1+ e−βEk )→ θ(−Ek)Ek, so the ground-state energy E0 = F(T = 0) involves an integral
over the occupied states of the lower band:

Eo

NNs
=

∫ 0

−∞
dEρ∗(E)E +

(
V2

J
− λq

)
(18.126)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k,± δ(E −E(±)
k ). Now by (18.114) the

relationship between the energy E of the heavy electrons and the energy ϵ of the conduction electrons is

E = ϵ +
V2

E − λ .

As we sum over momenta k within a given energy shell, there is a one-to-one correspondence between each
conduction electron state and each quasiparticle state, so we can write ρ∗(E)dE = ρ(ϵ)dϵ, where the density
of heavy electron states

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
. (18.127)

Here we have approximated the underlying conduction electron density of states by a constant ρ = 1/(2D).
The originally flat conduction electron density of states is now replaced by a “hybridization gap”, flanked by
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is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows
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(
c†kσ, f †kσ

)
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Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation

ψkσ =
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ckσ
fkσ
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, ψ†kσ =
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c†kσ, f †,kσ
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We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
− λq
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. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues

Det
[
E±k 1 −

(
ϵk V
V̄ λ

)]
= (Ek± − ϵk)(Ek± − λ) − |V |2 = 0, (18.114)
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Ek± =
ϵk + λ

2
±
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and eigenvectors taking the BCS form

{
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!Fig. 18.10 (a) High temperature state: small Fermi surface with a background of spins; (b)Low
temperature state where large Fermi surface develops against a background of
positive charge. Each spin “ionizes” into Q heavy electrons, leaving behind a
background of Kondo singlets, each with charge +Qe.

Next, by carrying out the summation over Matsubara frequencies, using the result −T
∑

iωr ln(Ekn − iωr) =
−T ln(1 + e−βEkn ), we obtain

F
N
= −T

∑

k,±
ln

[
1 + e−βEk±

]
+Ns

(
V2

J
− λq

)
. (18.125)

Let us discuss the ground-state, in which only the lower-band contributes to the Free energy. As T → 0,
we can replace −T ln(1+ e−βEk )→ θ(−Ek)Ek, so the ground-state energy E0 = F(T = 0) involves an integral
over the occupied states of the lower band:

Eo

NNs
=

∫ 0

−∞
dEρ∗(E)E +

(
V2

J
− λq

)
(18.126)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k,± δ(E −E(±)
k ). Now by (18.114) the

relationship between the energy E of the heavy electrons and the energy ϵ of the conduction electrons is

E = ϵ +
V2

E − λ .

As we sum over momenta k within a given energy shell, there is a one-to-one correspondence between each
conduction electron state and each quasiparticle state, so we can write ρ∗(E)dE = ρ(ϵ)dϵ, where the density
of heavy electron states

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
. (18.127)

Here we have approximated the underlying conduction electron density of states by a constant ρ = 1/(2D).
The originally flat conduction electron density of states is now replaced by a “hybridization gap”, flanked by
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bands. The new Fermi surface volume now counts the total number of particles. To see this
note that

Ntot = ⟨
∑

kλσ
nkλσ⟩ = ⟨n̂ f + nc⟩

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total
number of conduction electrons. This means

Ntot = N
VFS

(2π)3 = Q + nc.

This expansion of the Fermi surface is a direct manifestation of the creation of new states by
the Kondo effect. It is perhaps worth stressing that these new states would form, even if the local moments were nuclear
In other words, they are electronic states that have only depend on the rotational degrees of
freedom of the local moments.

The Free energy of this system is then

F
N
= −T

∑

k⃗,±

ln
[
1 + e−βEk⃗±

]
+ ns

(
V̄V
J
− λq
)

Let us discuss the ground-state energy, Eo- the limiting T → 0 of this expression. We can write this
in the form

Eo

Nns
=

∫ 0

−∞
ρ∗(E)E +

(
V̄V
J
− λq
)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k⃗,± δ(E − E(±)
k⃗

). Now
the relationship between the energy of the heavy electrons (E) and the energy of the conduction
electrons (ϵ) is given by

E = ϵ +
V2

E − λ
so that the density of heavy electron states related to the conduction electron density of states ρ by

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
(17.46)

The originally flat conduction electron density of states is now replaced by a “hybridization
gap”, flanked by two sharp peaks of width approximately πρV2 ∼ TK . With this information, we
can carry out the integral over the energies, to obtain

Eo

Nns
=

D2ρ

2
+

∫ 0

−D
dEρV̄V

E
(E − λ)2 +

(
V̄V
J
− λq
)

(17.47)

where we have assumed that the upper band is empty, and the lower band is partially filled. If we
impose the constraint ∂F∂λ = ⟨n f ⟩ − Q = 0 we obtain

∆

πλ
− q = 0
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bands. The new Fermi surface volume now counts the total number of particles. To see this
note that

Ntot = ⟨
∑

kλσ
nkλσ⟩ = ⟨n̂ f + nc⟩

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total
number of conduction electrons. This means

Ntot = N
VFS

(2π)3 = Q + nc.

This expansion of the Fermi surface is a direct manifestation of the creation of new states by
the Kondo effect. It is perhaps worth stressing that these new states would form, even if the local moments were nuclear
In other words, they are electronic states that have only depend on the rotational degrees of
freedom of the local moments.

The Free energy of this system is then

F
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= −T

∑

k⃗,±

ln
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Let us discuss the ground-state energy, Eo- the limiting T → 0 of this expression. We can write this
in the form
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=
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V̄V
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where we have introduced the density of heavy electron states ρ∗(E) =
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). Now
the relationship between the energy of the heavy electrons (E) and the energy of the conduction
electrons (ϵ) is given by

E = ϵ +
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so that the density of heavy electron states related to the conduction electron density of states ρ by
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The originally flat conduction electron density of states is now replaced by a “hybridization
gap”, flanked by two sharp peaks of width approximately πρV2 ∼ TK . With this information, we
can carry out the integral over the energies, to obtain
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where we have assumed that the upper band is empty, and the lower band is partially filled. If we
impose the constraint ∂F∂λ = ⟨n f ⟩ − Q = 0 we obtain

∆

πλ
− q = 0
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Let us discuss the ground-state, in which only the lower-band contributes to the Free energy. As T → 0,
we can replace −T ln(1+ e−βEk )→ θ(−Ek)Ek, so the ground-state energy E0 = F(T = 0) involves an integral
over the occupied states of the lower band:
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relationship between the energy E of the heavy electrons and the energy ϵ of the conduction electrons is

E = ϵ +
V2

E − λ .

As we sum over momenta k within a given energy shell, there is a one-to-one correspondence between each
conduction electron state and each quasiparticle state, so we can write ρ∗(E)dE = ρ(ϵ)dϵ, where the density
of heavy electron states
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Here we have approximated the underlying conduction electron density of states by a constant ρ = 1/(2D).
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28 Heavy electrons

18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
h(k)︷!!!︸︸!!!︷(

ϵk V
V̄ λ

) (
ckσ
fkσ

)
+ NNs

( |V |2
J
− λq

)
(18.111)

=
∑

kσ
ψ†kσ h(k) ψkσ + NNs

( |V |2
J
− λq

)
.

Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation

ψkσ =

(
ckσ
fkσ

)
, ψ†kσ =

(
c†kσ, f †,kσ

)
, h(k) =

(
ϵk V
V̄ λ

)
. (18.112)

We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
− λq

)
. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues

Det
[
E±k 1 −

(
ϵk V
V̄ λ

)]
= (Ek± − ϵk)(Ek± − λ) − |V |2 = 0, (18.114)

or

Ek± =
ϵk + λ

2
±

[( ϵk − λ
2

)2
+ |V |2

] 1
2

, (18.115)

and eigenvectors taking the BCS form

{
uk
vk

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
2
± (ϵk − λ)/2

2
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ϵk−λ
2

)2
+ |V |2

⎤
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2
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bands. The new Fermi surface volume now counts the total number of particles. To see this
note that

Ntot = ⟨
∑

kλσ
nkλσ⟩ = ⟨n̂ f + nc⟩

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total
number of conduction electrons. This means

Ntot = N
VFS

(2π)3 = Q + nc.

This expansion of the Fermi surface is a direct manifestation of the creation of new states by
the Kondo effect. It is perhaps worth stressing that these new states would form, even if the local moments were nuclear
In other words, they are electronic states that have only depend on the rotational degrees of
freedom of the local moments.

The Free energy of this system is then

F
N
= −T

∑

k⃗,±

ln
[
1 + e−βEk⃗±

]
+ ns

(
V̄V
J
− λq
)

Let us discuss the ground-state energy, Eo- the limiting T → 0 of this expression. We can write this
in the form

Eo

Nns
=

∫ 0

−∞
ρ∗(E)E +

(
V̄V
J
− λq
)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k⃗,± δ(E − E(±)
k⃗

). Now
the relationship between the energy of the heavy electrons (E) and the energy of the conduction
electrons (ϵ) is given by

E = ϵ +
V2

E − λ
so that the density of heavy electron states related to the conduction electron density of states ρ by

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
(17.46)

The originally flat conduction electron density of states is now replaced by a “hybridization
gap”, flanked by two sharp peaks of width approximately πρV2 ∼ TK . With this information, we
can carry out the integral over the energies, to obtain

Eo

Nns
=

D2ρ

2
+

∫ 0

−D
dEρV̄V

E
(E − λ)2 +

(
V̄V
J
− λq
)

(17.47)

where we have assumed that the upper band is empty, and the lower band is partially filled. If we
impose the constraint ∂F∂λ = ⟨n f ⟩ − Q = 0 we obtain

∆

πλ
− q = 0
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31 Mean-field theory of the Kondo Lattice

!Fig. 18.10 (a) High temperature state: small Fermi surface with a background of spins; (b)Low
temperature state where large Fermi surface develops against a background of
positive charge. Each spin “ionizes” into Q heavy electrons, leaving behind a
background of Kondo singlets, each with charge +Qe.

Next, by carrying out the summation over Matsubara frequencies, using the result −T
∑

iωr ln(Ekn − iωr) =
−T ln(1 + e−βEkn ), we obtain

F
N
= −T

∑

k,±
ln

[
1 + e−βEk±

]
+Ns
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J
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)
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Let us discuss the ground-state, in which only the lower-band contributes to the Free energy. As T → 0,
we can replace −T ln(1+ e−βEk )→ θ(−Ek)Ek, so the ground-state energy E0 = F(T = 0) involves an integral
over the occupied states of the lower band:

Eo

NNs
=

∫ 0

−∞
dEρ∗(E)E +

(
V2

J
− λq

)
(18.126)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k,± δ(E −E(±)
k ). Now by (18.114) the

relationship between the energy E of the heavy electrons and the energy ϵ of the conduction electrons is

E = ϵ +
V2

E − λ .

As we sum over momenta k within a given energy shell, there is a one-to-one correspondence between each
conduction electron state and each quasiparticle state, so we can write ρ∗(E)dE = ρ(ϵ)dϵ, where the density
of heavy electron states

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
. (18.127)

Here we have approximated the underlying conduction electron density of states by a constant ρ = 1/(2D).
The originally flat conduction electron density of states is now replaced by a “hybridization gap”, flanked by
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18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
h(k)︷!!!︸︸!!!︷(
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V̄ λ

) (
ckσ
fkσ
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+ NNs

( |V |2
J
− λq
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=
∑

kσ
ψ†kσ h(k) ψkσ + NNs

( |V |2
J
− λq

)
.

Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation

ψkσ =

(
ckσ
fkσ

)
, ψ†kσ =

(
c†kσ, f †,kσ

)
, h(k) =

(
ϵk V
V̄ λ

)
. (18.112)

We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
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)
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Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues

Det
[
E±k 1 −

(
ϵk V
V̄ λ

)]
= (Ek± − ϵk)(Ek± − λ) − |V |2 = 0, (18.114)
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and eigenvectors taking the BCS form

{
uk
vk

}
=

⎡
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2
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two sharp peaks of width approximately πρV2 ∼ TK (Fig. 18.9). Note that the lower band-width is lowered
by an amount −V2/D. With this information, we can carry out the integral over the energies, to obtain

Eo

NNs
= ρ

∫ 0

−D−V2/D
dEE

(
1 +

V2

(E − λ)2

)
+

(
V2

J
− λq

)
(18.128)

where we have assumed that the upper band is empty, and the lower band is partially filled. Carrying out the
integral we obtain

Eo

NNs
= −ρ

2

(
D +

V2

D

)2

+
∆

π

∫ 0

−D
dE

(
1

E − λ +
λ

(E − λ)2

)
+

(
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J
− λq

)

= −D2ρ

2
+
∆

π
ln

( λ
D

)
+

(
V2

J
− λq

)
(18.129)

where we have replaced ∆ = πρV2 and have dropped terms of order O(∆2/D). We can rearrange this expres-
sion, absorbing the band-width D and Kondo coupling constant into a single Kondo temperature TK = De−

1
Jρ

as follows
E0

NNs
= −D2ρ

2
+
∆

π
ln

( λ
D

)
+

(
πρV2

πρJ
− λq

)

= −D2ρ

2
+
∆

π
ln
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(
∆

πρJ
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)

= −D2ρ
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∆

π
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(
λ

De−
1
Jρ

)
− λq

= −D2ρ

2
+
∆

π
ln

(
λ
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)
− λq. (18.130)

This describes the energy of a whole scaling trajectory of Kondo lattice models with different J(D) and cuttoff
D, but fixed Kondo temperature. If we impose the constraint ∂E0

∂λ = ⟨n f ⟩ − Q = 0 we obtain ∆
πλ − q = 0, so

Eo(V)
NNs

=
∆

π
ln

(
∆

πqeTK

)
− D2ρ

2
, (∆ = πρ|V |2) (18.131)

Let us pause for a moment to consider this energy functional qualitatively. There are two points to be made

!Fig. 18.11 Mexican hat potential for the Kondo Lattice, evaluated at constant ⟨n f ⟩ = Q as a
function of a complex hybridization V = |V |eiφ
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bands. The new Fermi surface volume now counts the total number of particles. To see this
note that

Ntot = ⟨
∑

kλσ
nkλσ⟩ = ⟨n̂ f + nc⟩

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total
number of conduction electrons. This means

Ntot = N
VFS

(2π)3 = Q + nc.

This expansion of the Fermi surface is a direct manifestation of the creation of new states by
the Kondo effect. It is perhaps worth stressing that these new states would form, even if the local moments were nuclear
In other words, they are electronic states that have only depend on the rotational degrees of
freedom of the local moments.

The Free energy of this system is then

F
N
= −T

∑

k⃗,±

ln
[
1 + e−βEk⃗±

]
+ ns

(
V̄V
J
− λq
)

Let us discuss the ground-state energy, Eo- the limiting T → 0 of this expression. We can write this
in the form

Eo

Nns
=

∫ 0

−∞
ρ∗(E)E +

(
V̄V
J
− λq
)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k⃗,± δ(E − E(±)
k⃗

). Now
the relationship between the energy of the heavy electrons (E) and the energy of the conduction
electrons (ϵ) is given by

E = ϵ +
V2

E − λ
so that the density of heavy electron states related to the conduction electron density of states ρ by

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
(17.46)

The originally flat conduction electron density of states is now replaced by a “hybridization
gap”, flanked by two sharp peaks of width approximately πρV2 ∼ TK . With this information, we
can carry out the integral over the energies, to obtain

Eo

Nns
=

D2ρ

2
+

∫ 0

−D
dEρV̄V

E
(E − λ)2 +

(
V̄V
J
− λq
)

(17.47)

where we have assumed that the upper band is empty, and the lower band is partially filled. If we
impose the constraint ∂F∂λ = ⟨n f ⟩ − Q = 0 we obtain

∆

πλ
− q = 0
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The originally flat conduction electron density of states is now replaced by a “hybridization
gap”, flanked by two sharp peaks of width approximately πρV2 ∼ TK . With this information, we
can carry out the integral over the energies, to obtain

Eo

Nns
=

D2ρ

2
+

∫ 0

−D
dEρV̄V

E
(E − λ)2 +

(
V̄V
J
− λq
)

(17.47)

where we have assumed that the upper band is empty, and the lower band is partially filled. If we
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31 Mean-field theory of the Kondo Lattice

!Fig. 18.10 (a) High temperature state: small Fermi surface with a background of spins; (b)Low
temperature state where large Fermi surface develops against a background of
positive charge. Each spin “ionizes” into Q heavy electrons, leaving behind a
background of Kondo singlets, each with charge +Qe.

Next, by carrying out the summation over Matsubara frequencies, using the result −T
∑

iωr ln(Ekn − iωr) =
−T ln(1 + e−βEkn ), we obtain
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Let us discuss the ground-state, in which only the lower-band contributes to the Free energy. As T → 0,
we can replace −T ln(1+ e−βEk )→ θ(−Ek)Ek, so the ground-state energy E0 = F(T = 0) involves an integral
over the occupied states of the lower band:
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where we have introduced the density of heavy electron states ρ∗(E) =
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k ). Now by (18.114) the

relationship between the energy E of the heavy electrons and the energy ϵ of the conduction electrons is

E = ϵ +
V2

E − λ .

As we sum over momenta k within a given energy shell, there is a one-to-one correspondence between each
conduction electron state and each quasiparticle state, so we can write ρ∗(E)dE = ρ(ϵ)dϵ, where the density
of heavy electron states

ρ∗(E) = ρ
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Here we have approximated the underlying conduction electron density of states by a constant ρ = 1/(2D).
The originally flat conduction electron density of states is now replaced by a “hybridization gap”, flanked by
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Let us discuss the ground-state, in which only the lower-band contributes to the Free energy. As T → 0,
we can replace −T ln(1+ e−βEk )→ θ(−Ek)Ek, so the ground-state energy E0 = F(T = 0) involves an integral
over the occupied states of the lower band:
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where we have introduced the density of heavy electron states ρ∗(E) =
∑

k,± δ(E −E(±)
k ). Now by (18.114) the

relationship between the energy E of the heavy electrons and the energy ϵ of the conduction electrons is

E = ϵ +
V2

E − λ .

As we sum over momenta k within a given energy shell, there is a one-to-one correspondence between each
conduction electron state and each quasiparticle state, so we can write ρ∗(E)dE = ρ(ϵ)dϵ, where the density
of heavy electron states

ρ∗(E) = ρ
dϵ
dE
= ρ

(
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)
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Here we have approximated the underlying conduction electron density of states by a constant ρ = 1/(2D).
The originally flat conduction electron density of states is now replaced by a “hybridization gap”, flanked by

28 Heavy electrons

18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
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Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation
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)
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We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑
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(
a†kσ, b†kσ

) (Ek+ 0
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) (
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)
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Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues
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and eigenvectors taking the BCS form
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two sharp peaks of width approximately πρV2 ∼ TK (Fig. 18.9). Note that the lower band-width is lowered
by an amount −V2/D. With this information, we can carry out the integral over the energies, to obtain
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where we have assumed that the upper band is empty, and the lower band is partially filled. Carrying out the
integral we obtain
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where we have replaced ∆ = πρV2 and have dropped terms of order O(∆2/D). We can rearrange this expres-
sion, absorbing the band-width D and Kondo coupling constant into a single Kondo temperature TK = De−
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as follows
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This describes the energy of a whole scaling trajectory of Kondo lattice models with different J(D) and cuttoff
D, but fixed Kondo temperature. If we impose the constraint ∂E0

∂λ = ⟨n f ⟩ − Q = 0 we obtain ∆
πλ − q = 0, so

Eo(V)
NNs

=
∆

π
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(
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πqeTK

)
− D2ρ

2
, (∆ = πρ|V |2) (18.131)

Let us pause for a moment to consider this energy functional qualitatively. There are two points to be made

!Fig. 18.11 Mexican hat potential for the Kondo Lattice, evaluated at constant ⟨n f ⟩ = Q as a
function of a complex hybridization V = |V |eiφ
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bands. The new Fermi surface volume now counts the total number of particles. To see this
note that

Ntot = ⟨
∑

kλσ
nkλσ⟩ = ⟨n̂ f + nc⟩

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total
number of conduction electrons. This means

Ntot = N
VFS

(2π)3 = Q + nc.

This expansion of the Fermi surface is a direct manifestation of the creation of new states by
the Kondo effect. It is perhaps worth stressing that these new states would form, even if the local moments were nuclear
In other words, they are electronic states that have only depend on the rotational degrees of
freedom of the local moments.

The Free energy of this system is then

F
N
= −T

∑

k⃗,±

ln
[
1 + e−βEk⃗±

]
+ ns

(
V̄V
J
− λq
)

Let us discuss the ground-state energy, Eo- the limiting T → 0 of this expression. We can write this
in the form

Eo

Nns
=

∫ 0

−∞
ρ∗(E)E +

(
V̄V
J
− λq
)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k⃗,± δ(E − E(±)
k⃗

). Now
the relationship between the energy of the heavy electrons (E) and the energy of the conduction
electrons (ϵ) is given by

E = ϵ +
V2

E − λ
so that the density of heavy electron states related to the conduction electron density of states ρ by

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
(17.46)

The originally flat conduction electron density of states is now replaced by a “hybridization
gap”, flanked by two sharp peaks of width approximately πρV2 ∼ TK . With this information, we
can carry out the integral over the energies, to obtain

Eo
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=

D2ρ

2
+

∫ 0

−D
dEρV̄V

E
(E − λ)2 +

(
V̄V
J
− λq
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(17.47)

where we have assumed that the upper band is empty, and the lower band is partially filled. If we
impose the constraint ∂F∂λ = ⟨n f ⟩ − Q = 0 we obtain

∆

πλ
− q = 0
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31 Mean-field theory of the Kondo Lattice

!Fig. 18.10 (a) High temperature state: small Fermi surface with a background of spins; (b)Low
temperature state where large Fermi surface develops against a background of
positive charge. Each spin “ionizes” into Q heavy electrons, leaving behind a
background of Kondo singlets, each with charge +Qe.

Next, by carrying out the summation over Matsubara frequencies, using the result −T
∑

iωr ln(Ekn − iωr) =
−T ln(1 + e−βEkn ), we obtain

F
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Let us discuss the ground-state, in which only the lower-band contributes to the Free energy. As T → 0,
we can replace −T ln(1+ e−βEk )→ θ(−Ek)Ek, so the ground-state energy E0 = F(T = 0) involves an integral
over the occupied states of the lower band:

Eo

NNs
=

∫ 0

−∞
dEρ∗(E)E +

(
V2

J
− λq

)
(18.126)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k,± δ(E −E(±)
k ). Now by (18.114) the

relationship between the energy E of the heavy electrons and the energy ϵ of the conduction electrons is

E = ϵ +
V2

E − λ .

As we sum over momenta k within a given energy shell, there is a one-to-one correspondence between each
conduction electron state and each quasiparticle state, so we can write ρ∗(E)dE = ρ(ϵ)dϵ, where the density
of heavy electron states

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
. (18.127)

Here we have approximated the underlying conduction electron density of states by a constant ρ = 1/(2D).
The originally flat conduction electron density of states is now replaced by a “hybridization gap”, flanked by
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18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows
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We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.
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where we have assumed that the upper band is empty, and the lower band is partially filled. Carrying out the
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This describes the energy of a whole scaling trajectory of Kondo lattice models with different J(D) and cuttoff
D, but fixed Kondo temperature. If we impose the constraint ∂E0
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bands. The new Fermi surface volume now counts the total number of particles. To see this
note that

Ntot = ⟨
∑

kλσ
nkλσ⟩ = ⟨n̂ f + nc⟩

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total
number of conduction electrons. This means

Ntot = N
VFS

(2π)3 = Q + nc.

This expansion of the Fermi surface is a direct manifestation of the creation of new states by
the Kondo effect. It is perhaps worth stressing that these new states would form, even if the local moments were nuclear
In other words, they are electronic states that have only depend on the rotational degrees of
freedom of the local moments.

The Free energy of this system is then
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Let us discuss the ground-state energy, Eo- the limiting T → 0 of this expression. We can write this
in the form
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where we have introduced the density of heavy electron states ρ∗(E) =
∑

k⃗,± δ(E − E(±)
k⃗

). Now
the relationship between the energy of the heavy electrons (E) and the energy of the conduction
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The originally flat conduction electron density of states is now replaced by a “hybridization
gap”, flanked by two sharp peaks of width approximately πρV2 ∼ TK . With this information, we
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where we have assumed that the upper band is empty, and the lower band is partially filled. If we
impose the constraint ∂F∂λ = ⟨n f ⟩ − Q = 0 we obtain
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− q = 0
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bands. The new Fermi surface volume now counts the total number of particles. To see this
note that

Ntot = ⟨
∑

kλσ
nkλσ⟩ = ⟨n̂ f + nc⟩

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total
number of conduction electrons. This means

Ntot = N
VFS

(2π)3 = Q + nc.

This expansion of the Fermi surface is a direct manifestation of the creation of new states by
the Kondo effect. It is perhaps worth stressing that these new states would form, even if the local moments were nuclear
In other words, they are electronic states that have only depend on the rotational degrees of
freedom of the local moments.

The Free energy of this system is then
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Let us discuss the ground-state energy, Eo- the limiting T → 0 of this expression. We can write this
in the form
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). Now
the relationship between the energy of the heavy electrons (E) and the energy of the conduction
electrons (ϵ) is given by
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The originally flat conduction electron density of states is now replaced by a “hybridization
gap”, flanked by two sharp peaks of width approximately πρV2 ∼ TK . With this information, we
can carry out the integral over the energies, to obtain
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where we have assumed that the upper band is empty, and the lower band is partially filled. If we
impose the constraint ∂F∂λ = ⟨n f ⟩ − Q = 0 we obtain

∆

πλ
− q = 0
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This describes the energy of a whole scaling trajectory of Kondo lattice models with different J(D) and cuttoff
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bands. The new Fermi surface volume now counts the total number of particles. To see this
note that

Ntot = ⟨
∑

kλσ
nkλσ⟩ = ⟨n̂ f + nc⟩

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total
number of conduction electrons. This means

Ntot = N
VFS

(2π)3 = Q + nc.

This expansion of the Fermi surface is a direct manifestation of the creation of new states by
the Kondo effect. It is perhaps worth stressing that these new states would form, even if the local moments were nuclear
In other words, they are electronic states that have only depend on the rotational degrees of
freedom of the local moments.

The Free energy of this system is then

F
N
= −T

∑

k⃗,±

ln
[
1 + e−βEk⃗±

]
+ ns

(
V̄V
J
− λq
)

Let us discuss the ground-state energy, Eo- the limiting T → 0 of this expression. We can write this
in the form

Eo

Nns
=

∫ 0

−∞
ρ∗(E)E +

(
V̄V
J
− λq
)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k⃗,± δ(E − E(±)
k⃗

). Now
the relationship between the energy of the heavy electrons (E) and the energy of the conduction
electrons (ϵ) is given by

E = ϵ +
V2

E − λ
so that the density of heavy electron states related to the conduction electron density of states ρ by

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
(17.46)

The originally flat conduction electron density of states is now replaced by a “hybridization
gap”, flanked by two sharp peaks of width approximately πρV2 ∼ TK . With this information, we
can carry out the integral over the energies, to obtain

Eo

Nns
=

D2ρ

2
+

∫ 0

−D
dEρV̄V

E
(E − λ)2 +

(
V̄V
J
− λq
)

(17.47)

where we have assumed that the upper band is empty, and the lower band is partially filled. If we
impose the constraint ∂F∂λ = ⟨n f ⟩ − Q = 0 we obtain

∆

πλ
− q = 0
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so that the ground-state energy can be written

Eo

Nns
=
∆

π
ln
(
∆e
πqTK

)
(17.48)

where TK = De−
1
Jρ as before.

Let us pause for a moment to consider this energy functional qualitatively. The Free energy
surface has the form of “Mexican Hat” at low temperatures. The minimum of this functional will
then determine a familiy of saddle point values V = Voeiθ, where θ can have any value. If we
differentiate the ground-state energy with respect to V2, we obtain

0 =
1
π

ln
(
∆e2

πqTK

)

or
∆ =
πq
e2 TK

confirming that ∆ ∼ TK .

Composite Nature of the heavy quasiparticle in the Kondo lattice.

We now turn to discuss the nature of the heavy quasiparticles in the Kondo lattice. Clearly, at an
operational level, the composite f−electrons are formed in the same way as in the impurity model,
but at each site, i.e

1
N
Γαβ( j, t)ψ jα(t) −→

(
V̄
J

)
f jα(t)

This composite object admixes with conduction electrons at a single site- site j. The bound-state
amplitude in this expression can be written

−
Vo

J
=

1
N
⟨ f †βψβ⟩ (17.49)

To evaluate the contributions to this sum, it is useful to notice that the condition ∂E/∂V̄ = 0 can be
written

1
N
∂E
∂V̄o

= 0 =
Vo

J
+

1
N
⟨ f †βψβ⟩

=
Vo

J
+ Vo

∫ 0

−D
dEρ

E
(E − λ)2 (17.50)

where we have used (17.47) to evaluate the derivative. From this we see that we can write

Vo

J
= −Vo

∫ 0

−D
dEρ
(

1
E − λ

+
λ

(E − λ)2

)

= −Voρ ln
[λe

D

]
(17.51)
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two sharp peaks of width approximately πρV2 ∼ TK (Fig. 18.9). Note that the lower band-width is lowered
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where we have replaced ∆ = πρV2 and have dropped terms of order O(∆2/D). We can rearrange this expres-
sion, absorbing the band-width D and Kondo coupling constant into a single Kondo temperature TK = De−

1
Jρ

as follows
E0

NNs
= −D2ρ

2
+
∆

π
ln

( λ
D

)
+

(
πρV2

πρJ
− λq

)

= −D2ρ

2
+
∆

π
ln

( λ
D

)
+

(
∆

πρJ
− λq

)

= −D2ρ

2
+
∆

π
ln

(
λ

De−
1
Jρ

)
− λq

= −D2ρ

2
+
∆

π
ln

(
λ

TK

)
− λq. (18.130)
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!Fig. 18.11 Mexican hat potential for the Kondo Lattice, evaluated at constant ⟨n f ⟩ = Q as a
function of a complex hybridization V = |V |eiφ
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36 Heavy electrons

electrons that span decades of energy up to a cutoff, beit the Debye energy ωD in superconductivity or the
(much larger) bandwidth D in the Kondo effect [32, 33].

To follow this analogy in greater depth, recall that in the path integral the Kondo interaction factorizes as

J
N

c†βS αβcα −→ V̄
(
c†α fα

)
+

(
f †αcα

)
V + N

V̄V
J
, (18.143)

so by comparing the right and left hand side, we see that the composite operators S βαcβ and c†βS αβ behave
as a single fermion denoted by the contractions:

1
N

∑

β

S βαcβ =
(

V̄
J

)
fα,

1
N

∑

β

c†βS αβ =
(V

J

)
f †α, (18.144)

Composite Fermion

Physically, this means that the spins bind high energy electrons, transforming themselves into composites
which then hybridize with the conduction electrons. The resulting “heavy fermions” can be thought of as
moments ionized in the magnetically polar electron fluid to form mobile, negatively charged heavy electrons
while leaving behind a positively charged “Kondo singlet”.

Microscopically, the many body amplitude to scatter an electron off a local moment develops a bound-state
pole, which for large N we can denote by the diagrams:

Γ ≡
O(1)

V V̄
+

O(1/N)

The leading diagram describes a kind of “condensation” of the hybridization field; the second and higher
terms describe the smaller O(1/N) fluctuations around the mean-field theory.

The temporal correlations between spin-flips and conduction electrons extend over a finite time, described
by the contraction

1
N

∑

β

cβ(τ)S βα(τ′) = g(τ − τ′) f̂α(τ′). (18.145)

Here the spin-flip correlation function g(τ − τ′) is an analogue of the Gor’kov function, extending out to a
coherence time τK ∼ !/TK . Notice that in contrast to the Cooper pair, this composite object is a fermion and
thus requires a distinct operator f̂α for its expression. The Fourier (Laplace) decomposition of g(τ) describes
the Spectral distribution of electrons and spin-flips inside the composite f-electron which we may calculate
as follows:

1
N

∑

β

cβ(τ)S βα(τ′) =
1
N

∑

β

cβ(τ) f †β(τ′) fα(τ′)

=
1
N

∑

β

⟨Tcβ(τ) f †β(τ′)⟩ fα(τ′)
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= −Gc f (τ − τ′) fα(τ′). (18.146)

In this way, we can identify the spin-flip correlation function

g(τ − τ′) = ⟨Tcβ(τ) f †β(τ′)⟩ = −Gc f (τ − τ′) (18.147)

with the anomalous Green function between the f- and c- electrons at the same site.
A more calculation (see Example 18.5) shows that g(τ) is logarithimically correlated at short times, but

decays as 1
τ at times |τ| >> !

TK
:

g(τ) ∼
⎧⎪⎪⎨
⎪⎪⎩
ρV ln

(
TKτ
!

)
(!/D << τ << !/TK)

1
τ (τ >> !/TK)

(18.148)

The short time logarithimic correlations between the spin flip and electron (τ << !/TK) represent the weak-
coupling interior of the composite fermion, whereas the long-time power law correlations reflect the devel-
opment of the Fermi liquid correlations at long times.

By being built out of electron states that spread over several decades out to the band-width, the composite
f-state is essentially orthogonal to the low energy conduction electrons and thus behaves as an independent
electron field, injected into the low energy Fermi sea. The physical manifestation of this phenomenon, is an
expansion of the Fermi surface by the composite fermions. A particularly dramatic example of this expansion
is seen in the material CeRhIn5, which is an antiferromagnetic metal at ambient pressures, but becomes super-
conducting as the f-electrons delocalize at higher pressures (Fig. 18.12). De Haas van Alphen experiments on
the normal state show that the Fermi surface expands as the mobile f-electrons are formed. Similar effects are
also seen in Hall constant measurements. Most remarkably of all, in cases where the Fermi surface expands
to fill the entire Brillouin zone, the resulting system becomes an insulator, a “Kondo insulator”.

Example 18.5: Calculate the internal spin-flip correlation function of the composite f-electron

1
N

∑

β

cβ(τ)S βα(τ′) = g(τ − τ′) f̂α(τ′) (18.149)

in the large N expansion. Carry this out using a Fourier decomposition

g(τ) = −T
∑

k,iωn

Gc f (k, iωn)e−iωnτ (18.150)

where Gc f (k, τ) = −⟨ckσ(τ) fkσ(0)⟩ is the anomalous propagator between the conduction and f-state.

Solution: Transforming to Fourier space, we have

Gc f (k, iωn) =
f c

V
=

(
V

iωn − ϵk

)
1

iωn − λ − V2

iωn−ϵk

=
V

(iωn − ϵk)(iωn − λ) − V2 (18.151)

where the double dashed line is the full f-electron propagator. We can approximate the summation over
momentum in (18.150) as an integral over energy

Gc f (z) =
∑

k
Gc f (k, z) = ρ

∫ D

−D
dϵ

V
(z − ϵ)(z − λ) − V2 =

ρV
z − λ ln

[
(z + D)(z − λ) − V2

(z − D)(z − λ) − V2

]
(18.152)
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In this way, we can identify the spin-flip correlation function

g(τ − τ′) = ⟨Tcβ(τ) f †β(τ′)⟩ = −Gc f (τ − τ′) (18.147)

with the anomalous Green function between the f- and c- electrons at the same site.
A more calculation (see Example 18.5) shows that g(τ) is logarithimically correlated at short times, but

decays as 1
τ at times |τ| >> !

TK
:

g(τ) ∼
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⎪⎪⎩
ρV ln

(
TKτ
!
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1
τ (τ >> !/TK)
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The short time logarithimic correlations between the spin flip and electron (τ << !/TK) represent the weak-
coupling interior of the composite fermion, whereas the long-time power law correlations reflect the devel-
opment of the Fermi liquid correlations at long times.

By being built out of electron states that spread over several decades out to the band-width, the composite
f-state is essentially orthogonal to the low energy conduction electrons and thus behaves as an independent
electron field, injected into the low energy Fermi sea. The physical manifestation of this phenomenon, is an
expansion of the Fermi surface by the composite fermions. A particularly dramatic example of this expansion
is seen in the material CeRhIn5, which is an antiferromagnetic metal at ambient pressures, but becomes super-
conducting as the f-electrons delocalize at higher pressures (Fig. 18.12). De Haas van Alphen experiments on
the normal state show that the Fermi surface expands as the mobile f-electrons are formed. Similar effects are
also seen in Hall constant measurements. Most remarkably of all, in cases where the Fermi surface expands
to fill the entire Brillouin zone, the resulting system becomes an insulator, a “Kondo insulator”.
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g(τ) = −T
∑

k,iωn

Gc f (k, iωn)e−iωnτ (18.150)

where Gc f (k, τ) = −⟨ckσ(τ) fkσ(0)⟩ is the anomalous propagator between the conduction and f-state.

Solution: Transforming to Fourier space, we have

Gc f (k, iωn) =
f c

V
=

(
V

iωn − ϵk

)
1

iωn − λ − V2

iωn−ϵk

=
V

(iωn − ϵk)(iωn − λ) − V2 (18.151)

where the double dashed line is the full f-electron propagator. We can approximate the summation over
momentum in (18.150) as an integral over energy

Gc f (z) =
∑

k
Gc f (k, z) = ρ

∫ D

−D
dϵ

V
(z − ϵ)(z − λ) − V2 =

ρV
z − λ ln

[
(z + D)(z − λ) − V2

(z − D)(z − λ) − V2

]
(18.152)
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electrons that span decades of energy up to a cutoff, beit the Debye energy ωD in superconductivity or the
(much larger) bandwidth D in the Kondo effect [32, 33].

To follow this analogy in greater depth, recall that in the path integral the Kondo interaction factorizes as

J
N

c†βS αβcα −→ V̄
(
c†α fα

)
+

(
f †αcα

)
V + N

V̄V
J
, (18.143)

so by comparing the right and left hand side, we see that the composite operators S βαcβ and c†βS αβ behave
as a single fermion denoted by the contractions:

1
N

∑

β

S βαcβ =
(

V̄
J

)
fα,

1
N

∑

β

c†βS αβ =
(V

J

)
f †α, (18.144)

Composite Fermion

Physically, this means that the spins bind high energy electrons, transforming themselves into composites
which then hybridize with the conduction electrons. The resulting “heavy fermions” can be thought of as
moments ionized in the magnetically polar electron fluid to form mobile, negatively charged heavy electrons
while leaving behind a positively charged “Kondo singlet”.

Microscopically, the many body amplitude to scatter an electron off a local moment develops a bound-state
pole, which for large N we can denote by the diagrams:

Γ ≡
O(1)

V V̄
+

O(1/N)

The leading diagram describes a kind of “condensation” of the hybridization field; the second and higher
terms describe the smaller O(1/N) fluctuations around the mean-field theory.

The temporal correlations between spin-flips and conduction electrons extend over a finite time, described
by the contraction

1
N

∑

β

cβ(τ)S βα(τ′) = g(τ − τ′) f̂α(τ′). (18.145)

Here the spin-flip correlation function g(τ − τ′) is an analogue of the Gor’kov function, extending out to a
coherence time τK ∼ !/TK . Notice that in contrast to the Cooper pair, this composite object is a fermion and
thus requires a distinct operator f̂α for its expression. The Fourier (Laplace) decomposition of g(τ) describes
the Spectral distribution of electrons and spin-flips inside the composite f-electron which we may calculate
as follows:

1
N

∑

β

cβ(τ)S βα(τ′) =
1
N

∑

β

cβ(τ) f †β(τ′) fα(τ′)

=
1
N

∑

β

⟨Tcβ(τ) f †β(τ′)⟩ fα(τ′)
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37 The composite nature of the f-electron

= −Gc f (τ − τ′) fα(τ′). (18.146)

In this way, we can identify the spin-flip correlation function

g(τ − τ′) = ⟨Tcβ(τ) f †β(τ′)⟩ = −Gc f (τ − τ′) (18.147)

with the anomalous Green function between the f- and c- electrons at the same site.
A more calculation (see Example 18.5) shows that g(τ) is logarithimically correlated at short times, but

decays as 1
τ at times |τ| >> !

TK
:

g(τ) ∼
⎧⎪⎪⎨
⎪⎪⎩
ρV ln

(
TKτ
!

)
(!/D << τ << !/TK)

1
τ (τ >> !/TK)

(18.148)

The short time logarithimic correlations between the spin flip and electron (τ << !/TK) represent the weak-
coupling interior of the composite fermion, whereas the long-time power law correlations reflect the devel-
opment of the Fermi liquid correlations at long times.

By being built out of electron states that spread over several decades out to the band-width, the composite
f-state is essentially orthogonal to the low energy conduction electrons and thus behaves as an independent
electron field, injected into the low energy Fermi sea. The physical manifestation of this phenomenon, is an
expansion of the Fermi surface by the composite fermions. A particularly dramatic example of this expansion
is seen in the material CeRhIn5, which is an antiferromagnetic metal at ambient pressures, but becomes super-
conducting as the f-electrons delocalize at higher pressures (Fig. 18.12). De Haas van Alphen experiments on
the normal state show that the Fermi surface expands as the mobile f-electrons are formed. Similar effects are
also seen in Hall constant measurements. Most remarkably of all, in cases where the Fermi surface expands
to fill the entire Brillouin zone, the resulting system becomes an insulator, a “Kondo insulator”.

Example 18.5: Calculate the internal spin-flip correlation function of the composite f-electron

1
N

∑

β

cβ(τ)S βα(τ′) = g(τ − τ′) f̂α(τ′) (18.149)

in the large N expansion. Carry this out using a Fourier decomposition

g(τ) = −T
∑

k,iωn

Gc f (k, iωn)e−iωnτ (18.150)

where Gc f (k, τ) = −⟨ckσ(τ) fkσ(0)⟩ is the anomalous propagator between the conduction and f-state.

Solution: Transforming to Fourier space, we have

Gc f (k, iωn) =
f c

V
=

(
V

iωn − ϵk

)
1

iωn − λ − V2

iωn−ϵk

=
V

(iωn − ϵk)(iωn − λ) − V2 (18.151)

where the double dashed line is the full f-electron propagator. We can approximate the summation over
momentum in (18.150) as an integral over energy

Gc f (z) =
∑

k
Gc f (k, z) = ρ

∫ D

−D
dϵ

V
(z − ϵ)(z − λ) − V2 =

ρV
z − λ ln

[
(z + D)(z − λ) − V2

(z − D)(z − λ) − V2

]
(18.152)
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Bound-state built from electrons

spanning decades of energy out

to the Band-Width.
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Large N Approach.
Read and Newns ’83.

31 Mean-field theory of the Kondo Lattice

!Fig. 18.10 (a) High temperature state: small Fermi surface with a background of spins; (b)Low
temperature state where large Fermi surface develops against a background of
positive charge. Each spin “ionizes” into Q heavy electrons, leaving behind a
background of Kondo singlets, each with charge +Qe.

Next, by carrying out the summation over Matsubara frequencies, using the result −T
∑

iωr ln(Ekn − iωr) =
−T ln(1 + e−βEkn ), we obtain

F
N
= −T

∑

k,±
ln

[
1 + e−βEk±

]
+Ns

(
V2

J
− λq

)
. (18.125)

Let us discuss the ground-state, in which only the lower-band contributes to the Free energy. As T → 0,
we can replace −T ln(1+ e−βEk )→ θ(−Ek)Ek, so the ground-state energy E0 = F(T = 0) involves an integral
over the occupied states of the lower band:

Eo

NNs
=

∫ 0

−∞
dEρ∗(E)E +

(
V2

J
− λq

)
(18.126)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k,± δ(E −E(±)
k ). Now by (18.114) the

relationship between the energy E of the heavy electrons and the energy ϵ of the conduction electrons is

E = ϵ +
V2

E − λ .

As we sum over momenta k within a given energy shell, there is a one-to-one correspondence between each
conduction electron state and each quasiparticle state, so we can write ρ∗(E)dE = ρ(ϵ)dϵ, where the density
of heavy electron states

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
. (18.127)

Here we have approximated the underlying conduction electron density of states by a constant ρ = 1/(2D).
The originally flat conduction electron density of states is now replaced by a “hybridization gap”, flanked by
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plasma frequency is related via a f-sum rule to the integrated
optical conductivity

∫ ∞

0

dω
π
σ (ω) = f1 = π

2

(
nce

2

m

)
(112)

where ne is the density of electrons [2]. In the absence of
local moments, this is the total spectral weight inside the
Drude peak of the optical conductivity.

When the heavy-electron fluid forms, we need to consider
the plasma oscillations of the enlarged Fermi surface. If the
original conduction sea was less than half filled, then the
renormalized heavy-electron band is more than half filled,
forming a partially filled hole band. The density of electrons
in a filled band is N/aD , so the effective density of hole
carriers is then

nHF = (N −Q−Nc)/a
D = (N −Q)/aD − nc (113)

The mass of the excitations is also renormalized, m→ m∗.
The two effects produce a low-frequency ‘quasiparticle’
Drude peak in the conductivity, with a small total weight

∫ ∼V

0
dωσ (ω) = f2 = π

2
nHFe

2

m∗
∼ f1

× m

m∗

(
nHF

nc

)
≪ f1 (114)

Optical conductivity probes the plasma excitations of the
electron fluid at low momenta. The direct gap between the
upper and lower bands of the Kondo lattice are separated by
a direct hybridization gap of the order 2V ∼

√
DTK. This

scale is substantially larger than the Kondo temperature, and
it defines the separation between the thin Drude peak of the
heavy electrons and the high-frequency contribution from the
conduction sea.

In other words, the total spectral weight is divided up into a
small ‘heavy fermion’ Drude peak, of total weight f2, where

σ (ω) = nHFe
2

m∗
1

(τ ∗)−1 − iω
(115)

separated off by an energy of the order V ∼
√

TKD from an
‘interband’ component associated with excitations between
the lower and upper Kondo bands (Millis and Lee, 1987a;
Degiorgi, Anders, Gruner and Society, 2001). This second
term carries the bulk ∼f1 of the spectral weight (Figure 20).

Simple calculations, based on the Kubo formula, confirm
this basic expectation, (Millis and Lee, 1987a; Degiorgi,
Anders, Gruner and Society, 2001) showing that the relation-
ship between the original relaxation rate of the conduction
sea and the heavy-electron relaxation rate τ ∗ is

(τ ∗)−1 = m

m∗
(τ )−1 (116)

ne
2 t

m

‘Interband’

w

pne2

2m∗f2 =

pne2

2m
f1 =

∆w~ V~ TKD

m∗(t∗)−1 = t−1 m

s
(w

)

TKD~

Figure 20. Separation of the optical sum rule in a heavy-fermion
system into a high-energy ‘interband’ component of weight f2 ∼
ne2/m and a low-energy Drude peak of weight f1 ∼ ne2/m∗.

Notice that this means that the residual resistivity

ρo = m∗

ne2τ ∗
= m

ne2τ
(117)

is unaffected by the effects of mass renormalization. This
can be understood by observing that the heavy-electron
Fermi velocity is also renormalized by the effective mass,
v∗F = m

m∗ , so that the mean-free path of the heavy-electron
quasiparticles is unaffected by the Kondo effect.

l∗ = v∗Fτ
∗ = vFτ (118)

The formation of a narrow Drude peak, and the presence
of a direct hybridization gap, have been seen in optical
measurements on heavy-electron systems (Schlessinger, Fisk,
Zhang and Maple, 1997; Beyerman, Gruner, Dlicheouch and
Maple, 1988; Dordevic et al., 2001). One of the interesting
features about the hybridization gap of size 2V is that the
mean-field theory predicts that the ratio of the direct to the

indirect hybridization gap is given by 2V
TK
∼ 1√

ρTK
∼
√

m∗
me

,
so that the effective mass of the heavy electrons should scale
as square of the ratio between the hybridization gap and the
characteristic scale T ∗ of the heavy Fermi liquid

m∗

me
∝
(

2V

TK

)2

(119)

In practical experiments, TK is replaced by the ‘coherence
temperature’ T ∗, where the resistivity reaches a maximum.
This scaling law is broadly followed (see Figure 21) in
measured optical data (Dordevic et al., 2001), and provides
further confirmation of the correctness of the Kondo lattice
picture.

Millis and Lee, 1987
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Notice that this means that the residual resistivity
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is unaffected by the effects of mass renormalization. This
can be understood by observing that the heavy-electron
Fermi velocity is also renormalized by the effective mass,
v∗F = m

m∗ , so that the mean-free path of the heavy-electron
quasiparticles is unaffected by the Kondo effect.

l∗ = v∗Fτ
∗ = vFτ (118)

The formation of a narrow Drude peak, and the presence
of a direct hybridization gap, have been seen in optical
measurements on heavy-electron systems (Schlessinger, Fisk,
Zhang and Maple, 1997; Beyerman, Gruner, Dlicheouch and
Maple, 1988; Dordevic et al., 2001). One of the interesting
features about the hybridization gap of size 2V is that the
mean-field theory predicts that the ratio of the direct to the

indirect hybridization gap is given by 2V
TK
∼ 1√

ρTK
∼
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me

,
so that the effective mass of the heavy electrons should scale
as square of the ratio between the hybridization gap and the
characteristic scale T ∗ of the heavy Fermi liquid
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In practical experiments, TK is replaced by the ‘coherence
temperature’ T ∗, where the resistivity reaches a maximum.
This scaling law is broadly followed (see Figure 21) in
measured optical data (Dordevic et al., 2001), and provides
further confirmation of the correctness of the Kondo lattice
picture.
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where ne is the density of electrons [2]. In the absence of
local moments, this is the total spectral weight inside the
Drude peak of the optical conductivity.

When the heavy-electron fluid forms, we need to consider
the plasma oscillations of the enlarged Fermi surface. If the
original conduction sea was less than half filled, then the
renormalized heavy-electron band is more than half filled,
forming a partially filled hole band. The density of electrons
in a filled band is N/aD , so the effective density of hole
carriers is then

nHF = (N −Q−Nc)/a
D = (N −Q)/aD − nc (113)

The mass of the excitations is also renormalized, m→ m∗.
The two effects produce a low-frequency ‘quasiparticle’
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Optical conductivity probes the plasma excitations of the
electron fluid at low momenta. The direct gap between the
upper and lower bands of the Kondo lattice are separated by
a direct hybridization gap of the order 2V ∼

√
DTK. This

scale is substantially larger than the Kondo temperature, and
it defines the separation between the thin Drude peak of the
heavy electrons and the high-frequency contribution from the
conduction sea.

In other words, the total spectral weight is divided up into a
small ‘heavy fermion’ Drude peak, of total weight f2, where
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separated off by an energy of the order V ∼
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‘interband’ component associated with excitations between
the lower and upper Kondo bands (Millis and Lee, 1987a;
Degiorgi, Anders, Gruner and Society, 2001). This second
term carries the bulk ∼f1 of the spectral weight (Figure 20).

Simple calculations, based on the Kubo formula, confirm
this basic expectation, (Millis and Lee, 1987a; Degiorgi,
Anders, Gruner and Society, 2001) showing that the relation-
ship between the original relaxation rate of the conduction
sea and the heavy-electron relaxation rate τ ∗ is
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In practical experiments, TK is replaced by the ‘coherence
temperature’ T ∗, where the resistivity reaches a maximum.
This scaling law is broadly followed (see Figure 21) in
measured optical data (Dordevic et al., 2001), and provides
further confirmation of the correctness of the Kondo lattice
picture.
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system into a high-energy ‘interband’ component of weight f2 ∼
ne2/m and a low-energy Drude peak of weight f1 ∼ ne2/m∗.
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is unaffected by the effects of mass renormalization. This
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m∗ , so that the mean-free path of the heavy-electron
quasiparticles is unaffected by the Kondo effect.
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The formation of a narrow Drude peak, and the presence
of a direct hybridization gap, have been seen in optical
measurements on heavy-electron systems (Schlessinger, Fisk,
Zhang and Maple, 1997; Beyerman, Gruner, Dlicheouch and
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features about the hybridization gap of size 2V is that the
mean-field theory predicts that the ratio of the direct to the
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In practical experiments, TK is replaced by the ‘coherence
temperature’ T ∗, where the resistivity reaches a maximum.
This scaling law is broadly followed (see Figure 21) in
measured optical data (Dordevic et al., 2001), and provides
further confirmation of the correctness of the Kondo lattice
picture.
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ne2/m and a low-energy Drude peak of weight f1 ∼ ne2/m∗.
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is unaffected by the effects of mass renormalization. This
can be understood by observing that the heavy-electron
Fermi velocity is also renormalized by the effective mass,
v∗F = m

m∗ , so that the mean-free path of the heavy-electron
quasiparticles is unaffected by the Kondo effect.

l∗ = v∗Fτ
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The formation of a narrow Drude peak, and the presence
of a direct hybridization gap, have been seen in optical
measurements on heavy-electron systems (Schlessinger, Fisk,
Zhang and Maple, 1997; Beyerman, Gruner, Dlicheouch and
Maple, 1988; Dordevic et al., 2001). One of the interesting
features about the hybridization gap of size 2V is that the
mean-field theory predicts that the ratio of the direct to the
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In practical experiments, TK is replaced by the ‘coherence
temperature’ T ∗, where the resistivity reaches a maximum.
This scaling law is broadly followed (see Figure 21) in
measured optical data (Dordevic et al., 2001), and provides
further confirmation of the correctness of the Kondo lattice
picture.
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system into a high-energy ‘interband’ component of weight f2 ∼
ne2/m and a low-energy Drude peak of weight f1 ∼ ne2/m∗.
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is unaffected by the effects of mass renormalization. This
can be understood by observing that the heavy-electron
Fermi velocity is also renormalized by the effective mass,
v∗F = m

m∗ , so that the mean-free path of the heavy-electron
quasiparticles is unaffected by the Kondo effect.

l∗ = v∗Fτ
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The formation of a narrow Drude peak, and the presence
of a direct hybridization gap, have been seen in optical
measurements on heavy-electron systems (Schlessinger, Fisk,
Zhang and Maple, 1997; Beyerman, Gruner, Dlicheouch and
Maple, 1988; Dordevic et al., 2001). One of the interesting
features about the hybridization gap of size 2V is that the
mean-field theory predicts that the ratio of the direct to the
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In practical experiments, TK is replaced by the ‘coherence
temperature’ T ∗, where the resistivity reaches a maximum.
This scaling law is broadly followed (see Figure 21) in
measured optical data (Dordevic et al., 2001), and provides
further confirmation of the correctness of the Kondo lattice
picture.
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Figure 20. Separation of the optical sum rule in a heavy-fermion
system into a high-energy ‘interband’ component of weight f2 ∼
ne2/m and a low-energy Drude peak of weight f1 ∼ ne2/m∗.
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is unaffected by the effects of mass renormalization. This
can be understood by observing that the heavy-electron
Fermi velocity is also renormalized by the effective mass,
v∗F = m

m∗ , so that the mean-free path of the heavy-electron
quasiparticles is unaffected by the Kondo effect.
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The formation of a narrow Drude peak, and the presence
of a direct hybridization gap, have been seen in optical
measurements on heavy-electron systems (Schlessinger, Fisk,
Zhang and Maple, 1997; Beyerman, Gruner, Dlicheouch and
Maple, 1988; Dordevic et al., 2001). One of the interesting
features about the hybridization gap of size 2V is that the
mean-field theory predicts that the ratio of the direct to the
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so that the effective mass of the heavy electrons should scale
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In practical experiments, TK is replaced by the ‘coherence
temperature’ T ∗, where the resistivity reaches a maximum.
This scaling law is broadly followed (see Figure 21) in
measured optical data (Dordevic et al., 2001), and provides
further confirmation of the correctness of the Kondo lattice
picture.
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47 Optical Conductivity of Heavy Electrons

If we take the model in which the bare f-states have no dispersion, then the current operator is given by

j⃗ = e
∑

kσ
∇⃗kϵkc†kσckσ (18.191)

Our calculation of the resistivity wil follow the lines of section (??), excepting now, the conduction electron
propagator is modified by the effects of hybridization. Using section (18.6.3), the hybridized conduction
electron propagator is

Gc(k, iωn) =
1

iω̃n − ϵk − Σc(iω̃n)
, Σc(z) =

V2

iωn − λ
(18.192)

where we have introduced

iω̃n = iωn + isgn(ωn)
Γ

2
(18.193)

to include an isotropic white noise scattering rate Γ acting on the conduction electrons. The conductivity is
then given by

σ(iνn)δab = −
e2

νn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

iνn

0

= −e2

νn

⎡
⎢⎢⎢⎢⎢⎢⎣T

∑

κ=(k,iωr)

(
∇aϵk∇bϵkGc(k, iωr + iνn)Gc(k, iωr)

)
− (iνn → 0)

⎤
⎥⎥⎥⎥⎥⎥⎦ . (18.194)

Our calculation will now follow the lines of (??), except that we now have to deal with the frequency depen-
dence of the self-energy. On the other hand, if we assume the scattering is isotropic, we can neglect the current
vertex corrections. We will assume that the hybridization is small enough compared with the band-width to
take the band-width cut-off to infinity, but in order to keep the interband physics, we need to be quite careful
with the internal frequency integrals. Our procedure is:

• Sum over the loop momentum k by replacing the momentum sum with an energy integral
∑

k → ρ
∫

dϵ,
the bounds of which can be taken to infinity.

• Carry out the frequency sum at zero temperature, replacing T
∑

iωr →
∫

dz
2πi

Our first step is to replace the sum over k by an integral over energy,
∑

k ∇aϵk∇bϵb → 1
3ρv2

Fδab
∫

dϵ =
n
mδab

∫
dϵ, where vF is the conduction electron Fermi velocity and we have replaced ρv2

F/3 =
n
m where n

is the conduction electron density and m the conduction electron mass. Since the direct hybridization gap
(2V) of the Kondo lattice does not depend on the band-width of the conduction electrons, we can extend the
integration to infinity to obtain

σ(iνn) = −
(

ne2

m

)
1
νn

⎡
⎢⎢⎢⎢⎢⎢⎣T

∑

iωr

∫ ∞

−∞

dϵ
(iω̃+r − ϵ − Σc(iω+r ))(iω̃−r − ϵ − Σc(iω−r ))

− (iνn → 0)

⎤
⎥⎥⎥⎥⎥⎥⎦ (18.195)

where ω±r = ωr ± νn/2. If we carry out the energy integral as a contour integral, then the poles are at z± =
iω̃±r − Σc(iω±r ). Although these poles look a little complicated, please note that they lie on the same side of
the real axis as iω±r . Now iω±r and hence z± are on opposite sides of the real axis, providing |ωr | < |νn|/2.
This is precisely the same condition we obtained for an electron gas without hybridization, so that when we
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Our calculation of the resistivity wil follow the lines of section (??), excepting now, the conduction electron
propagator is modified by the effects of hybridization. Using section (18.6.3), the hybridized conduction
electron propagator is

Gc(k, iωn) =
1

iω̃n − ϵk − Σc(iω̃n)
, Σc(z) =
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where we have introduced
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to include an isotropic white noise scattering rate Γ acting on the conduction electrons. The conductivity is
then given by
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Our calculation will now follow the lines of (??), except that we now have to deal with the frequency depen-
dence of the self-energy. On the other hand, if we assume the scattering is isotropic, we can neglect the current
vertex corrections. We will assume that the hybridization is small enough compared with the band-width to
take the band-width cut-off to infinity, but in order to keep the interband physics, we need to be quite careful
with the internal frequency integrals. Our procedure is:
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the bounds of which can be taken to infinity.
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∫
dϵ, where vF is the conduction electron Fermi velocity and we have replaced ρv2

F/3 =
n
m where n

is the conduction electron density and m the conduction electron mass. Since the direct hybridization gap
(2V) of the Kondo lattice does not depend on the band-width of the conduction electrons, we can extend the
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where ω±r = ωr ± νn/2. If we carry out the energy integral as a contour integral, then the poles are at z± =
iω̃±r − Σc(iω±r ). Although these poles look a little complicated, please note that they lie on the same side of
the real axis as iω±r . Now iω±r and hence z± are on opposite sides of the real axis, providing |ωr | < |νn|/2.
This is precisely the same condition we obtained for an electron gas without hybridization, so that when we

47 Optical Conductivity of Heavy Electrons

If we take the model in which the bare f-states have no dispersion, then the current operator is given by

j⃗ = e
∑

kσ
∇⃗kϵkc†kσckσ (18.191)

Our calculation of the resistivity wil follow the lines of section (??), excepting now, the conduction electron
propagator is modified by the effects of hybridization. Using section (18.6.3), the hybridized conduction
electron propagator is

Gc(k, iωn) =
1

iω̃n − ϵk − Σc(iω̃n)
, Σc(z) =

V2

iωn − λ
(18.192)

where we have introduced

iω̃n = iωn + isgn(ωn)
Γ

2
(18.193)

to include an isotropic white noise scattering rate Γ acting on the conduction electrons. The conductivity is
then given by

σ(iνn)δab = −
e2

νn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

iνn

0

= −e2

νn

⎡
⎢⎢⎢⎢⎢⎢⎣T

∑

κ=(k,iωr)

(
∇aϵk∇bϵkGc(k, iωr + iνn)Gc(k, iωr)

)
− (iνn → 0)

⎤
⎥⎥⎥⎥⎥⎥⎦ . (18.194)

Our calculation will now follow the lines of (??), except that we now have to deal with the frequency depen-
dence of the self-energy. On the other hand, if we assume the scattering is isotropic, we can neglect the current
vertex corrections. We will assume that the hybridization is small enough compared with the band-width to
take the band-width cut-off to infinity, but in order to keep the interband physics, we need to be quite careful
with the internal frequency integrals. Our procedure is:

• Sum over the loop momentum k by replacing the momentum sum with an energy integral
∑

k → ρ
∫

dϵ,
the bounds of which can be taken to infinity.

• Carry out the frequency sum at zero temperature, replacing T
∑

iωr →
∫

dz
2πi

Our first step is to replace the sum over k by an integral over energy,
∑

k ∇aϵk∇bϵb → 1
3ρv2

Fδab
∫

dϵ =
n
mδab

∫
dϵ, where vF is the conduction electron Fermi velocity and we have replaced ρv2

F/3 =
n
m where n

is the conduction electron density and m the conduction electron mass. Since the direct hybridization gap
(2V) of the Kondo lattice does not depend on the band-width of the conduction electrons, we can extend the
integration to infinity to obtain

σ(iνn) = −
(

ne2

m

)
1
νn

⎡
⎢⎢⎢⎢⎢⎢⎣T

∑

iωr

∫ ∞

−∞

dϵ
(iω̃+r − ϵ − Σc(iω+r ))(iω̃−r − ϵ − Σc(iω−r ))

− (iνn → 0)

⎤
⎥⎥⎥⎥⎥⎥⎦ (18.195)

where ω±r = ωr ± νn/2. If we carry out the energy integral as a contour integral, then the poles are at z± =
iω̃±r − Σc(iω±r ). Although these poles look a little complicated, please note that they lie on the same side of
the real axis as iω±r . Now iω±r and hence z± are on opposite sides of the real axis, providing |ωr | < |νn|/2.
This is precisely the same condition we obtained for an electron gas without hybridization, so that when we



Drude Excitations

Interband 

Excitations

Optical Conductivity: Details

47 Optical Conductivity of Heavy Electrons

If we take the model in which the bare f-states have no dispersion, then the current operator is given by

j⃗ = e
∑

kσ
∇⃗kϵkc†kσckσ (18.191)

Our calculation of the resistivity wil follow the lines of section (??), excepting now, the conduction electron
propagator is modified by the effects of hybridization. Using section (18.6.3), the hybridized conduction
electron propagator is

Gc(k, iωn) =
1

iω̃n − ϵk − Σc(iω̃n)
, Σc(z) =

V2

iωn − λ
(18.192)

where we have introduced

iω̃n = iωn + isgn(ωn)
Γ

2
(18.193)

to include an isotropic white noise scattering rate Γ acting on the conduction electrons. The conductivity is
then given by

σ(iνn)δab = −
e2

νn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

iνn

0

= −e2

νn

⎡
⎢⎢⎢⎢⎢⎢⎣T

∑

κ=(k,iωr)

(
∇aϵk∇bϵkGc(k, iωr + iνn)Gc(k, iωr)

)
− (iνn → 0)

⎤
⎥⎥⎥⎥⎥⎥⎦ . (18.194)

Our calculation will now follow the lines of (??), except that we now have to deal with the frequency depen-
dence of the self-energy. On the other hand, if we assume the scattering is isotropic, we can neglect the current
vertex corrections. We will assume that the hybridization is small enough compared with the band-width to
take the band-width cut-off to infinity, but in order to keep the interband physics, we need to be quite careful
with the internal frequency integrals. Our procedure is:

• Sum over the loop momentum k by replacing the momentum sum with an energy integral
∑

k → ρ
∫

dϵ,
the bounds of which can be taken to infinity.

• Carry out the frequency sum at zero temperature, replacing T
∑

iωr →
∫

dz
2πi

Our first step is to replace the sum over k by an integral over energy,
∑

k ∇aϵk∇bϵb → 1
3ρv2

Fδab
∫

dϵ =
n
mδab

∫
dϵ, where vF is the conduction electron Fermi velocity and we have replaced ρv2

F/3 =
n
m where n

is the conduction electron density and m the conduction electron mass. Since the direct hybridization gap
(2V) of the Kondo lattice does not depend on the band-width of the conduction electrons, we can extend the
integration to infinity to obtain

σ(iνn) = −
(

ne2

m

)
1
νn

⎡
⎢⎢⎢⎢⎢⎢⎣T

∑

iωr

∫ ∞

−∞

dϵ
(iω̃+r − ϵ − Σc(iω+r ))(iω̃−r − ϵ − Σc(iω−r ))

− (iνn → 0)

⎤
⎥⎥⎥⎥⎥⎥⎦ (18.195)

where ω±r = ωr ± νn/2. If we carry out the energy integral as a contour integral, then the poles are at z± =
iω̃±r − Σc(iω±r ). Although these poles look a little complicated, please note that they lie on the same side of
the real axis as iω±r . Now iω±r and hence z± are on opposite sides of the real axis, providing |ωr | < |νn|/2.
This is precisely the same condition we obtained for an electron gas without hybridization, so that when we

47 Optical Conductivity of Heavy Electrons

If we take the model in which the bare f-states have no dispersion, then the current operator is given by

j⃗ = e
∑

kσ
∇⃗kϵkc†kσckσ (18.191)

Our calculation of the resistivity wil follow the lines of section (??), excepting now, the conduction electron
propagator is modified by the effects of hybridization. Using section (18.6.3), the hybridized conduction
electron propagator is

Gc(k, iωn) =
1

iω̃n − ϵk − Σc(iω̃n)
, Σc(z) =

V2

iωn − λ
(18.192)

where we have introduced

iω̃n = iωn + isgn(ωn)
Γ

2
(18.193)

to include an isotropic white noise scattering rate Γ acting on the conduction electrons. The conductivity is
then given by

σ(iνn)δab = −
e2

νn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

iνn

0

= −e2

νn

⎡
⎢⎢⎢⎢⎢⎢⎣T

∑

κ=(k,iωr)

(
∇aϵk∇bϵkGc(k, iωr + iνn)Gc(k, iωr)

)
− (iνn → 0)

⎤
⎥⎥⎥⎥⎥⎥⎦ . (18.194)

Our calculation will now follow the lines of (??), except that we now have to deal with the frequency depen-
dence of the self-energy. On the other hand, if we assume the scattering is isotropic, we can neglect the current
vertex corrections. We will assume that the hybridization is small enough compared with the band-width to
take the band-width cut-off to infinity, but in order to keep the interband physics, we need to be quite careful
with the internal frequency integrals. Our procedure is:

• Sum over the loop momentum k by replacing the momentum sum with an energy integral
∑

k → ρ
∫

dϵ,
the bounds of which can be taken to infinity.

• Carry out the frequency sum at zero temperature, replacing T
∑

iωr →
∫

dz
2πi

Our first step is to replace the sum over k by an integral over energy,
∑

k ∇aϵk∇bϵb → 1
3ρv2

Fδab
∫

dϵ =
n
mδab

∫
dϵ, where vF is the conduction electron Fermi velocity and we have replaced ρv2

F/3 =
n
m where n

is the conduction electron density and m the conduction electron mass. Since the direct hybridization gap
(2V) of the Kondo lattice does not depend on the band-width of the conduction electrons, we can extend the
integration to infinity to obtain

σ(iνn) = −
(

ne2

m

)
1
νn

⎡
⎢⎢⎢⎢⎢⎢⎣T

∑

iωr

∫ ∞

−∞

dϵ
(iω̃+r − ϵ − Σc(iω+r ))(iω̃−r − ϵ − Σc(iω−r ))

− (iνn → 0)

⎤
⎥⎥⎥⎥⎥⎥⎦ (18.195)
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iω̃±r − Σc(iω±r ). Although these poles look a little complicated, please note that they lie on the same side of
the real axis as iω±r . Now iω±r and hence z± are on opposite sides of the real axis, providing |ωr | < |νn|/2.
This is precisely the same condition we obtained for an electron gas without hybridization, so that when we

47 Optical Conductivity of Heavy Electrons

If we take the model in which the bare f-states have no dispersion, then the current operator is given by

j⃗ = e
∑

kσ
∇⃗kϵkc†kσckσ (18.191)

Our calculation of the resistivity wil follow the lines of section (??), excepting now, the conduction electron
propagator is modified by the effects of hybridization. Using section (18.6.3), the hybridized conduction
electron propagator is

Gc(k, iωn) =
1

iω̃n − ϵk − Σc(iω̃n)
, Σc(z) =

V2

iωn − λ
(18.192)

where we have introduced

iω̃n = iωn + isgn(ωn)
Γ

2
(18.193)

to include an isotropic white noise scattering rate Γ acting on the conduction electrons. The conductivity is
then given by

σ(iνn)δab = −
e2

νn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

iνn

0

= −e2

νn

⎡
⎢⎢⎢⎢⎢⎢⎣T

∑

κ=(k,iωr)

(
∇aϵk∇bϵkGc(k, iωr + iνn)Gc(k, iωr)

)
− (iνn → 0)

⎤
⎥⎥⎥⎥⎥⎥⎦ . (18.194)

Our calculation will now follow the lines of (??), except that we now have to deal with the frequency depen-
dence of the self-energy. On the other hand, if we assume the scattering is isotropic, we can neglect the current
vertex corrections. We will assume that the hybridization is small enough compared with the band-width to
take the band-width cut-off to infinity, but in order to keep the interband physics, we need to be quite careful
with the internal frequency integrals. Our procedure is:
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where ω±r = ωr ± νn/2. If we carry out the energy integral as a contour integral, then the poles are at z± =
iω̃±r − Σc(iω±r ). Although these poles look a little complicated, please note that they lie on the same side of
the real axis as iω±r . Now iω±r and hence z± are on opposite sides of the real axis, providing |ωr | < |νn|/2.
This is precisely the same condition we obtained for an electron gas without hybridization, so that when we
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complete the integral over energy as a contour around the upper half plane, we will only get a finite result if
this condition is satisfied. The result of this reasoning is
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m

)
1
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iνn + iΓ − (Σ+ − Σ−)

⎤
⎥⎥⎥⎥⎥⎥⎦ , (νn > 0) (18.196)
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To check that we are on the right track, let us look at the low frequency limit of this expression. In this limit,
we can replace

iν − (Σ(z + iν/2) − Σ(z − iν/2))→ iν
(
1 − ∂Σ(z)

∂z

)
= Z−1iν, (18.198)

where Z =
(
1 + V2
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)−1
is recognized as the quasiparticle weight, so the low frequency conductivity becomes

σ(ω) =
(
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)
1

Γ∗ − iν
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where m∗ = m/Z is the renormalized mass and Γ∗ = ZΓ is the renormalized Drude width, so we have
recovered the Drude peak with a overall weight reduced by the factor Z.

Let us now continue to see if we can capture the interband part of the conductivity. Fortunately, the argu-
ment of (18.145) simplifies into a two pole structure as follows

1
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=
1
iν̃

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣1 −

V2[iν]

(z − λ)2 +
(
ν
2

)2
+V2[iν]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
iν̃

[
1 − V2[iν]

(z − z+)(z − z−)

]
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where ν̃ = ν + Γ and
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− V2[iν], V2[iν] = V2 iν

iν + iΓ
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so that when we do the integral over z, we obtain
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Inserting this into (18.197), the optical conductivity is given by
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Finally, analytically continuing iν→ ω + iδ, we obtain

σ(ω + iδ) =
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Note that although it is tempting to combine the final logarithms into a single term, unfortunately the dan-
gerous identity ln f (z) + ln g(z) = ln[ f (z)g(z)] fails to preserve the branch-cut structure of the logarithms and
can’t be used here if one wants to preserve the full analytic structure of the conductivity. Fig (18.17) shows
a plot of the optical conductivity obtained with this function. Notice the formation of the Drude pek and the
direct gap of size 2V .

These basic features- the formation of a narrow Drude peak, the presence of a hybridization gap V ∼ √TK D
that scales as the square root of the Kondo temperature have been confirmed in optical measurements on heavy
electron systems[52, 53, 54, 51]. In particular, the relationship V ∼ √TK D implies that

(
V
TK

)2

∝ D
TK
∼ m∗

m
(18.205)

Experimentally, the characteristic scale TK can be determined from the specific heat measurements, while V
can be directly inferred from optical conductivity measurements. Fig. (18.18) shows that this relationship is
approximately followed by a wide range of materials.
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complete the integral over energy as a contour around the upper half plane, we will only get a finite result if
this condition is satisfied. The result of this reasoning is
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1
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iνn + iΓ − (Σ+ − Σ−)

⎤
⎥⎥⎥⎥⎥⎥⎦ , (νn > 0) (18.196)

where we have introduced Σ± = Σc(iω±n ). (Notice that the contribution from the term where we replace
iνn → 0 now disappears).
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To check that we are on the right track, let us look at the low frequency limit of this expression. In this limit,
we can replace

iν − (Σ(z + iν/2) − Σ(z − iν/2))→ iν
(
1 − ∂Σ(z)

∂z

)
= Z−1iν, (18.198)

where Z =
(
1 + V2

λ2

)−1
is recognized as the quasiparticle weight, so the low frequency conductivity becomes

σ(ω) =
(

ne2
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)
1

Γ∗ − iν
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where m∗ = m/Z is the renormalized mass and Γ∗ = ZΓ is the renormalized Drude width, so we have
recovered the Drude peak with a overall weight reduced by the factor Z.
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gerous identity ln f (z) + ln g(z) = ln[ f (z)g(z)] fails to preserve the branch-cut structure of the logarithms and
can’t be used here if one wants to preserve the full analytic structure of the conductivity. Fig (18.17) shows
a plot of the optical conductivity obtained with this function. Notice the formation of the Drude pek and the
direct gap of size 2V .

These basic features- the formation of a narrow Drude peak, the presence of a hybridization gap V ∼ √TK D
that scales as the square root of the Kondo temperature have been confirmed in optical measurements on heavy
electron systems[52, 53, 54, 51]. In particular, the relationship V ∼ √TK D implies that

(
V
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)2

∝ D
TK
∼ m∗

m
(18.205)

Experimentally, the characteristic scale TK can be determined from the specific heat measurements, while V
can be directly inferred from optical conductivity measurements. Fig. (18.18) shows that this relationship is
approximately followed by a wide range of materials.
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Experimentally, the characteristic scale TK can be determined from the specific heat measurements, while V
can be directly inferred from optical conductivity measurements. Fig. (18.18) shows that this relationship is
approximately followed by a wide range of materials.



Optical Conductivity: Details
48 Heavy electrons

complete the integral over energy as a contour around the upper half plane, we will only get a finite result if
this condition is satisfied. The result of this reasoning is
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⎤
⎥⎥⎥⎥⎥⎥⎦ , (νn > 0) (18.196)

where we have introduced Σ± = Σc(iω±n ). (Notice that the contribution from the term where we replace
iνn → 0 now disappears).

!Fig. 18.17 Plot of real and imaginary parts of optical conductivity obtained from equation
(18.204) using mean-field conduction electron propagators. Inset shows the
integrated spectral weight ne f f (ω) = 2m

e2

∫ ω

0 σ1(x) dx
π , showing contributions from Drude

and interband parts.

Next, we take the zero temperature limit, so that T
∑

iωr →
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dz
2πi to obtain
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To check that we are on the right track, let us look at the low frequency limit of this expression. In this limit,
we can replace

iν − (Σ(z + iν/2) − Σ(z − iν/2))→ iν
(
1 − ∂Σ(z)

∂z

)
= Z−1iν, (18.198)

where Z =
(
1 + V2

λ2

)−1
is recognized as the quasiparticle weight, so the low frequency conductivity becomes

σ(ω) =
(

ne2

m∗

)
1

Γ∗ − iν
(18.199)
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where m∗ = m/Z is the renormalized mass and Γ∗ = ZΓ is the renormalized Drude width, so we have
recovered the Drude peak with a overall weight reduced by the factor Z.

Let us now continue to see if we can capture the interband part of the conductivity. Fortunately, the argu-
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Note that although it is tempting to combine the final logarithms into a single term, unfortunately the dan-
gerous identity ln f (z) + ln g(z) = ln[ f (z)g(z)] fails to preserve the branch-cut structure of the logarithms and
can’t be used here if one wants to preserve the full analytic structure of the conductivity. Fig (18.17) shows
a plot of the optical conductivity obtained with this function. Notice the formation of the Drude pek and the
direct gap of size 2V .

These basic features- the formation of a narrow Drude peak, the presence of a hybridization gap V ∼ √TK D
that scales as the square root of the Kondo temperature have been confirmed in optical measurements on heavy
electron systems[52, 53, 54, 51]. In particular, the relationship V ∼ √TK D implies that

(
V
TK

)2

∝ D
TK
∼ m∗

m
(18.205)

Experimentally, the characteristic scale TK can be determined from the specific heat measurements, while V
can be directly inferred from optical conductivity measurements. Fig. (18.18) shows that this relationship is
approximately followed by a wide range of materials.
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Note that although it is tempting to combine the final logarithms into a single term, unfortunately the dan-
gerous identity ln f (z) + ln g(z) = ln[ f (z)g(z)] fails to preserve the branch-cut structure of the logarithms and
can’t be used here if one wants to preserve the full analytic structure of the conductivity. Fig (18.17) shows
a plot of the optical conductivity obtained with this function. Notice the formation of the Drude pek and the
direct gap of size 2V .

These basic features- the formation of a narrow Drude peak, the presence of a hybridization gap V ∼ √TK D
that scales as the square root of the Kondo temperature have been confirmed in optical measurements on heavy
electron systems[52, 53, 54, 51]. In particular, the relationship V ∼ √TK D implies that
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(18.205)

Experimentally, the characteristic scale TK can be determined from the specific heat measurements, while V
can be directly inferred from optical conductivity measurements. Fig. (18.18) shows that this relationship is
approximately followed by a wide range of materials.
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where m∗ = m/Z is the renormalized mass and Γ∗ = ZΓ is the renormalized Drude width, so we have
recovered the Drude peak with a overall weight reduced by the factor Z.

Let us now continue to see if we can capture the interband part of the conductivity. Fortunately, the argu-
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Note that although it is tempting to combine the final logarithms into a single term, unfortunately the dan-
gerous identity ln f (z) + ln g(z) = ln[ f (z)g(z)] fails to preserve the branch-cut structure of the logarithms and
can’t be used here if one wants to preserve the full analytic structure of the conductivity. Fig (18.17) shows
a plot of the optical conductivity obtained with this function. Notice the formation of the Drude pek and the
direct gap of size 2V .

These basic features- the formation of a narrow Drude peak, the presence of a hybridization gap V ∼ √TK D
that scales as the square root of the Kondo temperature have been confirmed in optical measurements on heavy
electron systems[52, 53, 54, 51]. In particular, the relationship V ∼ √TK D implies that
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Experimentally, the characteristic scale TK can be determined from the specific heat measurements, while V
can be directly inferred from optical conductivity measurements. Fig. (18.18) shows that this relationship is
approximately followed by a wide range of materials.
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where m∗ = m/Z is the renormalized mass and Γ∗ = ZΓ is the renormalized Drude width, so we have
recovered the Drude peak with a overall weight reduced by the factor Z.
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Note that although it is tempting to combine the final logarithms into a single term, unfortunately the dan-
gerous identity ln f (z) + ln g(z) = ln[ f (z)g(z)] fails to preserve the branch-cut structure of the logarithms and
can’t be used here if one wants to preserve the full analytic structure of the conductivity. Fig (18.17) shows
a plot of the optical conductivity obtained with this function. Notice the formation of the Drude pek and the
direct gap of size 2V .

These basic features- the formation of a narrow Drude peak, the presence of a hybridization gap V ∼ √TK D
that scales as the square root of the Kondo temperature have been confirmed in optical measurements on heavy
electron systems[52, 53, 54, 51]. In particular, the relationship V ∼ √TK D implies that
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Experimentally, the characteristic scale TK can be determined from the specific heat measurements, while V
can be directly inferred from optical conductivity measurements. Fig. (18.18) shows that this relationship is
approximately followed by a wide range of materials.

48 Heavy electrons

complete the integral over energy as a contour around the upper half plane, we will only get a finite result if
this condition is satisfied. The result of this reasoning is
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where we have introduced Σ± = Σc(iω±n ). (Notice that the contribution from the term where we replace
iνn → 0 now disappears).

!Fig. 18.17 Plot of real and imaginary parts of optical conductivity obtained from equation
(18.204) using mean-field conduction electron propagators. Inset shows the
integrated spectral weight ne f f (ω) = 2m
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and interband parts.

Next, we take the zero temperature limit, so that T
∑

iωr →
∫ i∞
−i∞

dz
2πi to obtain

σ(iν) =
(

ne2

m

)
1
νn

∫ iν/2

−iν/2
dz

(
1

iν + iΓ − (Σ(z + iν/2) − Σ(z − iν/2))

)
, (ν > 0). (18.197)

To check that we are on the right track, let us look at the low frequency limit of this expression. In this limit,
we can replace

iν − (Σ(z + iν/2) − Σ(z − iν/2))→ iν
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where m∗ = m/Z is the renormalized mass and Γ∗ = ZΓ is the renormalized Drude width, so we have
recovered the Drude peak with a overall weight reduced by the factor Z.

Let us now continue to see if we can capture the interband part of the conductivity. Fortunately, the argu-
ment of (18.145) simplifies into a two pole structure as follows
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Note that although it is tempting to combine the final logarithms into a single term, unfortunately the dan-
gerous identity ln f (z) + ln g(z) = ln[ f (z)g(z)] fails to preserve the branch-cut structure of the logarithms and
can’t be used here if one wants to preserve the full analytic structure of the conductivity. Fig (18.17) shows
a plot of the optical conductivity obtained with this function. Notice the formation of the Drude pek and the
direct gap of size 2V .

These basic features- the formation of a narrow Drude peak, the presence of a hybridization gap V ∼ √TK D
that scales as the square root of the Kondo temperature have been confirmed in optical measurements on heavy
electron systems[52, 53, 54, 51]. In particular, the relationship V ∼ √TK D implies that
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Experimentally, the characteristic scale TK can be determined from the specific heat measurements, while V
can be directly inferred from optical conductivity measurements. Fig. (18.18) shows that this relationship is
approximately followed by a wide range of materials.

48 Heavy electrons

complete the integral over energy as a contour around the upper half plane, we will only get a finite result if
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where we have introduced Σ± = Σc(iω±n ). (Notice that the contribution from the term where we replace
iνn → 0 now disappears).
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where m∗ = m/Z is the renormalized mass and Γ∗ = ZΓ is the renormalized Drude width, so we have
recovered the Drude peak with a overall weight reduced by the factor Z.

Let us now continue to see if we can capture the interband part of the conductivity. Fortunately, the argu-
ment of (18.145) simplifies into a two pole structure as follows
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Note that although it is tempting to combine the final logarithms into a single term, unfortunately the dan-
gerous identity ln f (z) + ln g(z) = ln[ f (z)g(z)] fails to preserve the branch-cut structure of the logarithms and
can’t be used here if one wants to preserve the full analytic structure of the conductivity. Fig (18.17) shows
a plot of the optical conductivity obtained with this function. Notice the formation of the Drude pek and the
direct gap of size 2V .

These basic features- the formation of a narrow Drude peak, the presence of a hybridization gap V ∼ √TK D
that scales as the square root of the Kondo temperature have been confirmed in optical measurements on heavy
electron systems[52, 53, 54, 51]. In particular, the relationship V ∼ √TK D implies that
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Experimentally, the characteristic scale TK can be determined from the specific heat measurements, while V
can be directly inferred from optical conductivity measurements. Fig. (18.18) shows that this relationship is
approximately followed by a wide range of materials.

48 Heavy electrons
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plasma frequency is related via a f-sum rule to the integrated
optical conductivity

∫ ∞

0

dω
π
σ (ω) = f1 = π

2

(
nce
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where ne is the density of electrons [2]. In the absence of
local moments, this is the total spectral weight inside the
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When the heavy-electron fluid forms, we need to consider
the plasma oscillations of the enlarged Fermi surface. If the
original conduction sea was less than half filled, then the
renormalized heavy-electron band is more than half filled,
forming a partially filled hole band. The density of electrons
in a filled band is N/aD , so the effective density of hole
carriers is then
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D = (N −Q)/aD − nc (113)

The mass of the excitations is also renormalized, m→ m∗.
The two effects produce a low-frequency ‘quasiparticle’
Drude peak in the conductivity, with a small total weight
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Optical conductivity probes the plasma excitations of the
electron fluid at low momenta. The direct gap between the
upper and lower bands of the Kondo lattice are separated by
a direct hybridization gap of the order 2V ∼

√
DTK. This

scale is substantially larger than the Kondo temperature, and
it defines the separation between the thin Drude peak of the
heavy electrons and the high-frequency contribution from the
conduction sea.

In other words, the total spectral weight is divided up into a
small ‘heavy fermion’ Drude peak, of total weight f2, where

σ (ω) = nHFe
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separated off by an energy of the order V ∼
√

TKD from an
‘interband’ component associated with excitations between
the lower and upper Kondo bands (Millis and Lee, 1987a;
Degiorgi, Anders, Gruner and Society, 2001). This second
term carries the bulk ∼f1 of the spectral weight (Figure 20).

Simple calculations, based on the Kubo formula, confirm
this basic expectation, (Millis and Lee, 1987a; Degiorgi,
Anders, Gruner and Society, 2001) showing that the relation-
ship between the original relaxation rate of the conduction
sea and the heavy-electron relaxation rate τ ∗ is

(τ ∗)−1 = m
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(τ )−1 (116)
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Figure 20. Separation of the optical sum rule in a heavy-fermion
system into a high-energy ‘interband’ component of weight f2 ∼
ne2/m and a low-energy Drude peak of weight f1 ∼ ne2/m∗.

Notice that this means that the residual resistivity

ρo = m∗

ne2τ ∗
= m

ne2τ
(117)

is unaffected by the effects of mass renormalization. This
can be understood by observing that the heavy-electron
Fermi velocity is also renormalized by the effective mass,
v∗F = m

m∗ , so that the mean-free path of the heavy-electron
quasiparticles is unaffected by the Kondo effect.

l∗ = v∗Fτ
∗ = vFτ (118)

The formation of a narrow Drude peak, and the presence
of a direct hybridization gap, have been seen in optical
measurements on heavy-electron systems (Schlessinger, Fisk,
Zhang and Maple, 1997; Beyerman, Gruner, Dlicheouch and
Maple, 1988; Dordevic et al., 2001). One of the interesting
features about the hybridization gap of size 2V is that the
mean-field theory predicts that the ratio of the direct to the

indirect hybridization gap is given by 2V
TK
∼ 1√

ρTK
∼
√

m∗
me

,
so that the effective mass of the heavy electrons should scale
as square of the ratio between the hybridization gap and the
characteristic scale T ∗ of the heavy Fermi liquid

m∗

me
∝
(

2V

TK

)2

(119)

In practical experiments, TK is replaced by the ‘coherence
temperature’ T ∗, where the resistivity reaches a maximum.
This scaling law is broadly followed (see Figure 21) in
measured optical data (Dordevic et al., 2001), and provides
further confirmation of the correctness of the Kondo lattice
picture.
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2.4 Dynamical mean-field theory

The fermionic large N approach to the Kondo lattice provides
an invaluable description of heavy-fermion physics, one that
can be improved upon beyond the mean-field level. For
example, the fluctuations around the mean-field theory can be
used to compute the interactions, the dynamical correlation
functions, and the optical conductivity (Coleman, 1987b;
Millis and Lee, 1987a). However, the method does face a
number of serious outstanding drawbacks:

• False phase transition: In the large N limit, the crossover
between the heavy Fermi liquid and the local moment
physics sharpens into a phase transition where the 1/N

expansion becomes singular. There is no known way of
eliminating this feature in the 1/N expansion.

• Absence of magnetism and superconductivity: The large
N approach, based on the SU(N) group, cannot form
a two-particle singlet for N > 2. The SU(N) group
is fine for particle physics, where baryons are bound-
states of N quarks, but, for condensed matter physics,
we sacrifice the possibility of forming two-particle
or two-spin singlets, such as Cooper pairs and spin-
singlets. Antiferromagnetism and superconductivity are
consequently absent from the mean-field theory.

Amongst the various alternative approaches currently
under consideration, one of particular note is the DMFT. The

idea of DMFT is to reduce the lattice problem to the physics
of a single magnetic ion embedded within a self-consistently
determined effective medium (Georges, Kotliar, Krauth and
Rozenberg, 1996; Kotliar et al., 2006). The effective medium
is determined self-consistently from the self-energies of the
electrons that scatter off the single impurity. In its more
advanced form, the single impurity is replaced by a cluster
of magnetic ions.

Early versions of the DMFT were considered by Kuramoto
and Watanabe (1987), and Cox and Grewe (1988), and others,
who used diagrammatic means to extract the physics of
a single impurity. The modern conceptual framework for
DMFT was developed by Metzner and Vollhardt (1989),
and Georges and Kotliar (1992). The basic idea behind
DMFT is linked to early work of Luttinger and Ward (1960),
and Kotliar et al. (2006), who found a way of writing the
free energy as a variational functional of the full electronic
Green’s function

Gij = −⟨Tψ i (τ )ψ
†
j (0)⟩ (120)

Luttinger and Ward showed that the free energy is a
variational functional of F [G] from which Dyson’s equation
relating the G to the bare Green’s function G0

[G−1
0 − G−1]ij = #ij [G] (121)
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functions, and the optical conductivity (Coleman, 1987b;
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advanced form, the single impurity is replaced by a cluster
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and Kotliar et al. (2006), who found a way of writing the
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Green’s function
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plasma frequency is related via a f-sum rule to the integrated
optical conductivity
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where ne is the density of electrons [2]. In the absence of
local moments, this is the total spectral weight inside the
Drude peak of the optical conductivity.

When the heavy-electron fluid forms, we need to consider
the plasma oscillations of the enlarged Fermi surface. If the
original conduction sea was less than half filled, then the
renormalized heavy-electron band is more than half filled,
forming a partially filled hole band. The density of electrons
in a filled band is N/aD , so the effective density of hole
carriers is then

nHF = (N −Q−Nc)/a
D = (N −Q)/aD − nc (113)

The mass of the excitations is also renormalized, m→ m∗.
The two effects produce a low-frequency ‘quasiparticle’
Drude peak in the conductivity, with a small total weight
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0
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2
nHFe

2
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)
≪ f1 (114)

Optical conductivity probes the plasma excitations of the
electron fluid at low momenta. The direct gap between the
upper and lower bands of the Kondo lattice are separated by
a direct hybridization gap of the order 2V ∼

√
DTK. This

scale is substantially larger than the Kondo temperature, and
it defines the separation between the thin Drude peak of the
heavy electrons and the high-frequency contribution from the
conduction sea.

In other words, the total spectral weight is divided up into a
small ‘heavy fermion’ Drude peak, of total weight f2, where

σ (ω) = nHFe
2

m∗
1

(τ ∗)−1 − iω
(115)

separated off by an energy of the order V ∼
√

TKD from an
‘interband’ component associated with excitations between
the lower and upper Kondo bands (Millis and Lee, 1987a;
Degiorgi, Anders, Gruner and Society, 2001). This second
term carries the bulk ∼f1 of the spectral weight (Figure 20).

Simple calculations, based on the Kubo formula, confirm
this basic expectation, (Millis and Lee, 1987a; Degiorgi,
Anders, Gruner and Society, 2001) showing that the relation-
ship between the original relaxation rate of the conduction
sea and the heavy-electron relaxation rate τ ∗ is

(τ ∗)−1 = m

m∗
(τ )−1 (116)
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Figure 20. Separation of the optical sum rule in a heavy-fermion
system into a high-energy ‘interband’ component of weight f2 ∼
ne2/m and a low-energy Drude peak of weight f1 ∼ ne2/m∗.

Notice that this means that the residual resistivity

ρo = m∗

ne2τ ∗
= m

ne2τ
(117)

is unaffected by the effects of mass renormalization. This
can be understood by observing that the heavy-electron
Fermi velocity is also renormalized by the effective mass,
v∗F = m

m∗ , so that the mean-free path of the heavy-electron
quasiparticles is unaffected by the Kondo effect.

l∗ = v∗Fτ
∗ = vFτ (118)

The formation of a narrow Drude peak, and the presence
of a direct hybridization gap, have been seen in optical
measurements on heavy-electron systems (Schlessinger, Fisk,
Zhang and Maple, 1997; Beyerman, Gruner, Dlicheouch and
Maple, 1988; Dordevic et al., 2001). One of the interesting
features about the hybridization gap of size 2V is that the
mean-field theory predicts that the ratio of the direct to the

indirect hybridization gap is given by 2V
TK
∼ 1√

ρTK
∼
√

m∗
me

,
so that the effective mass of the heavy electrons should scale
as square of the ratio between the hybridization gap and the
characteristic scale T ∗ of the heavy Fermi liquid

m∗

me
∝
(

2V

TK

)2

(119)

In practical experiments, TK is replaced by the ‘coherence
temperature’ T ∗, where the resistivity reaches a maximum.
This scaling law is broadly followed (see Figure 21) in
measured optical data (Dordevic et al., 2001), and provides
further confirmation of the correctness of the Kondo lattice
picture.
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measurements on heavy-electron systems (Schlessinger, Fisk,
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In practical experiments, TK is replaced by the ‘coherence
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Figure 17. (a) Dispersion produced by the injection of a composite fermion into the conduction sea. (b) Renormalized density of states,
showing ‘hybridization gap’ (!g).

• hybridization between the f-electron states and the con-
duction electrons builds an upper and lower Fermi band,
separated by an indirect ‘hybridization gap’ of width
!g = Eg(+) − Eg(−) ∼ TK, where

Eg(±) = λ ± V 2

D∓
(91)

and ±D± are the top and bottom of the conduction band.
The ‘direct’ gap between the upper and lower bands is
2|V |.

• From (89), the relationship between the energy of the
heavy electrons (E) and the energy of the conduc-
tion electrons (ϵ) is given by ϵ = E − |V |2/(E − λ),
so that the density of heavy-electron states ρ∗(E) =∑

k,± δ(E − E
(±)
k ) is related to the conduction electron

density of states ρ(ϵ) by

ρ∗(E) = ρ
dϵ

dE
= ρ(ϵ)

(
1 + |V |2

(E − λ)2

)

∼
{

ρ
(
1+ |V |2

(E−λ)2

)
outside hybridization gap,

0 inside hybridization gap,

(92)
so the ‘hybridization gap’ is flanked by two sharp peaks
of approximate width TK.

• The Fermi surface volume expands in response to the
injection of heavy electrons into the conduction sea,

NaD VFS

(2π)3 =
〈

1
Ns

∑

kσ

nkσ

〉

= Q + nc (93)

where aD is the unit cell volume, nkσ = a
†
kσakσ +

b†
kσbkσ is the quasiparticle number operator and nc is

the number of conduction electrons per unit cell. More

instructively, if ne = nc/a
D is the electron density,

e− density
︷︸︸︷
ne =

quasi particle density
︷ ︸︸ ︷
N

VFS

(2π)3 − Q

aD
︸︷︷︸

positive background

(94)

so the electron density nc divides into a contribution
carried by the enlarged Fermi sea, whose enlargement is
compensated by the development of a positively charged
background. Loosely speaking, each neutral spin in the
Kondo lattice has ‘ionized’ to produce Q negatively
charged heavy fermions, leaving behind a Kondo singlet
of charge +Qe (Figure 18).

To obtain V and λ, we must compute the free energy

F

N
= −T

∑

k,±
ln

[
1 + e−βEk±

]
+ Ns

( |V |2

J
− λq

)
(95)
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Figure 18. Schematic diagram from Coleman, Paul and Rech
(2005a). (a) High-temperature state: small Fermi surface with a
background of spins; (b) Low-temperature state, where large Fermi
surface develops against a background of positive charge. Each
spin ‘ionizes’ into Q heavy electrons, leaving behind a a Kondo
singlet with charge +Qe. (Reproduced from P. Coleman, I. Paul,
and J. Rech, Phys. Rev. B 72, 2005, 094430, copyright © 2005 by
the American Physical Society, with permission of the APS.)
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FIG. 1. The electrical resistivity p as a function of tem-
perature (a) and inverse temperature (b). (b) Q = 1 bar,
Q = 24 kbar, = 25 kbar, = 33 kbar, A = 45 kbar, and
A = 53 kbar. The solid lines in (b) are fits by the function
[p(T)] ' = [po(P)] ' + (p„,(P) exp[A(P)/k&T]) ', described
in the text.
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FIG. 2. The pressure dependences of the activation gap 5 (a)
and residual carrier density no = I/R (T =H0) (b). Dashed line
indicates approximate pressure for disappearance of A. Solid
lines are guides for the eye.

linearly -0.5 K/kbar from its ambient pressure value of
41 K. Above 45 kbar, the resistivity is metallic and it is
no longer possible to extract an activation gap.

Our measurements indicate a gap instability at a critical
pressure P,. between 45 and 53 kbar, in disagreement with
the conclusions of previous workers [5,6], who found
that 5 vanished continuously near 60 kbar. In one of
these studies [5] the sample was of demonstrably lower
quality than our own, with a significantly smaller ambient
pressure 6 = 33 K and a much smaller po —10 mA cm,
both symptomatic of Sm vacancies or defects introduced
in powdering [8]. Our measurements suggest that the gap
instability is a feature only of the highest quality samples,
as P,. increases markedly with reduced sample quality,
passing out of our experimental pressure window of
180 kbar for po ~ 0.1 A cm. We further believe that the
simple activation fits used to determine 6 in both earlier
experiments were overly weighted by the temperature
independent resistivity below -3.5 K, particularly near
P, . Figure 1(b) demonstrates that near P, the range
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FIG. 3. The absolute value of the Hall constant RH of SmB6
as a function of inverse temperature.

of temperatures over which simple activation fits are
linear becomes increasingly limited and problematic to
define with increased pressure. In contrast, our parallel
resistor formulation provides uniformly good fits over this
pressure range, and consequently yield a more accurate
determination of A.

Since there is no evidence in SmB6 for a discontinuous
structural change at or below 60 kbar [9], the sudden dis-
appearance of 5 suggests that it is not a simple hybridiza-
tion gap, for in that case the insulator-metal transition
occurs by band crossing and the gap is suppressed con-
tinuously to zero. A valence instability can be similarly
discounted, as high pressure x-ray absorption measure-
ments [10] find that the Sm valence increases smoothly
from +2.6 to +2.75 between 1 bar and 60 kbar.

We have used Hall effect measurements to study the
evolution of the camers in the vicinity of P, The Hall
constant RH is plotted as a function of 1/T in Fig. 3 for
pressures ranging from 1 bar to 66 kbar. We find that
RH is negative for temperatures T between 1.2 and 40 K
and at all pressures, as well as independent of magnetic
fields as large as 18 T. As has been previously noted at
1 bar [11], RH is both large and extremely temperature
dependent with a maximum at 4 K, at each pressure
becoming temperature independent below -3 K. It has
been proposed [12] that this temperature dependence
for RH is characteristic of Kondo lattices, rejecting
a crossover from high temperature incoherent to low
temperature coherent skew scattering. However, similar
maxima in RH(T) occur in doped semiconductors as in-
gap impurity states dominate intrinsic activated processes
with reduced temperature [13].

We do not address the full temperature dependence
of RH here, instead limiting our discussion to the
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