

Piers Coleman Center for Materials Theory, Rutgers.

Piers Coleman Center for Materials Theory, Rutgers.

Boulder School 2014: Modern Aspects of Superconductivity June 30-July 25, 2014

14-17 July 2014

Piers Coleman Center for Materials Theory, Rutgers.

Boulder School 2014: Modern Aspects of Superconductivity June 30-July 25, 2014

14-17 July 2014

Lecture I. Introduction: Heavy Fermions and the Kondo Lattice.

Piers Coleman Center for Materials Theory, Rutgers.

Boulder School 2014: Modern Aspects of Superconductivity June 30-July 25, 2014

14-17 July 2014

- 1. Introduction: Heavy Fermions and the Kondo Lattice.
- 2. BCS meets Kondo: mean-field approach to the Kondo Lattice.
- 3. Glue vs Fabric: Good, Bad and Ugly Heavy Fermion Superconductors.
- 4. Composite vs AFM induced pairing.

Notes:

"Many Body Physics: an introduction", Ch 8,15-16", PC, CUP to be published (2014). <u>http://www.physics.rutgers.edu/~coleman</u>. Password on request.

"Heavy Fermions: electrons at the edge of magnetism." Wiley encyclopedia of magnetism. PC. cond-mat/0612006.

"I2CAM-FAPERJ Lectures on Heavy Fermion Physics", (X=I, II, III) http://physics.rutgers.edu/~coleman/talks/RIO13_X.pdf

<u>General reading:</u>

A. Hewson, "Kondo effect to heavy fermions", CUP, (1993). "The Theory of Quantum Liquids", Nozieres and Pines (Perseus 1999).

P. Coleman and N. Andrei, J. Phys. Cond. Matt C1, 4057-4080, (1989).
P. Coleman, A. M. Tsvelik, N. Andrei and H. Y. Kee, PRB 60, 3605 (1999).
R. Flint and P. Coleman, Nature Physics 4, 643 (2008).
R. Flint and P. Coleman PRL, 105, 246404 (2010)
R. Flint, A. Nevidomskyy and P. Coleman PRB 84, 064514 (2011).

Lecture 1 Introduction to Heavy Fermions and the Kondo Lattice.

- 1. Magnetism and SC: a remarkable converegence.
- 2. Electrons on the Brink of Localization.
- 3. Cartoon introduction to Heavy Fermions.
- 4. Lev Landau versus Ken Wilson: Criticality as a driver of Superconductivity.
- 5. Anderson, Kondo and Doniach.

Magnetism and Superconductivity: A remarkable convergence

After K. Miyake

Bohr-van Leeuwen Theorem (1911,1921)

After K. Miyake

Bohr-van Leeuwen Theorem (1911,1921)

p' = p - eA

$$H[p, A] = H[p', A = 0]$$

1911 Onnes Hg Discovery of SC CLASSICAL PHYSICS IS UNABLE TO ACCOUNT FOR <u>ANY</u> FORM OF MAGNETISM DIA- FERRO- OR PARA- MAGNETISM.

After K. Miyake

1911 Onnes Hg Discovery of SC CLASSICAL PHYSICS IS UNABLE TO ACCOUNT FOR <u>ANY</u> FORM OF MAGNETISM DIA- FERRO- OR PARA- MAGNETISM.

After K. Miyake

(1882-1974)

London 1937

Rigidity of wavefunction -> DIAMAGNETISM

London 1937 Rigidity of wavefunction -> DIAMAGNETISM $|\Psi\rangle = \prod (u_{\mathbf{k}} + v_{\mathbf{k}}c^{\dagger}_{-\mathbf{k}\downarrow}c^{\dagger}_{\mathbf{k}\uparrow})|0\rangle$

After K. Miyake

Year-

After K. Miyake

London 1937 Rigidity of wavefunction -> DIAMAGNETISM

 $|\Psi\rangle = \prod (u_{\mathbf{k}} + v_{\mathbf{k}} c^{\dagger}_{-\mathbf{k}\downarrow} c^{\dagger}_{\mathbf{k}\uparrow})|0\rangle$

FIG. 3. Ferromagnetic and superconducting transition temperatures of solid solutions of gadolinium in lanthanum.

After K. Miyake

After K. Miyake

After K. Miyake

We tried to detect any possible magnetic ordering below 1K. Instead we found a sharp superconducting transition at 0.97K, which was reduced by about 0.3K only in a field of 60kOe.

Bell Labs, NJ 1973

PHYSICAL REVIEW B

VOLUME 11, NUMBER 1

1 JANUARY 1975

Electronic properties of beryllides of the rare earth and some actinides

We tried to detect any possible magnetic ordering below 1K. Instead we found a sharp superconducting transition at 0.97K, which was reduced by about 0.3K only in a field of 60kOe. This suggests that the superconductivity is not an intrinsic property of UBe13. Bell Labs, NJ 1973

PHYSICAL REVIEW B

VOLUME 11, NUMBER 1

1 JANUARY 1975

Electronic properties of beryllides of the rare earth and some actinides

We tried to detect any possible magnetic ordering below 1K. Instead we found a sharp superconducting transition at 0.97K, which was reduced by about 0.3K only in a field of 60kOe. This suggests that the superconductivity is not an intrinsic property of UBe13. Bell Labs, NJ 1973

Steglich 1979

PHYSICAL REVIEW B

VOLUME 11, NUMBER 1

1 JANUARY 1975

Electronic properties of beryllides of the rare earth and some actinides

Volume 43, Number 25

PHYSICAL REVIEW LETTERS

17 December 1979

Superconductivity in the Presence of Strong Pauli Paramagnetism: CeCu₂Si₂

F. Steglich Institut für Festkörperphysik, Technische Hochschule Darmstadt, D-6100 Darmstadt, West Germany

and

J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, and W. Franz II. Physikalisches Institut, Universität zu Köln, D-5000 Köln 41, West Germany

and

H. Schäfer Eduard-Zintl-Institut, Technische Hochschule Darmstadt, D-6100 Darmstadt, West Germany (Received 10 August 1979; revised manuscript received 7 November 1979)

Steglich 1979

Volume 43, Number 25

PHYSICAL REVIEW LETTERS

17 December 1979

Superconductivity in the Presence of Strong Pauli Paramagnetism: CeCu₂Si₂

F. Steglich Institut für Festkörperphysik, Technische Hochschule Darmstadt, D-6100 Darmstadt, West Germany

and

J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, and W. Franz II. Physikalisches Institut, Universität zu Köln, D-5000 Köln 41, West Germany

and

H. Schäfer Eduard-Zintl-Institut, Technische Hochschule Darmstadt, D-6100 Darmstadt, West Germany (Received 10 August 1979; revised manuscript received 7 November 1979)

Steglich 1979

Since the Debye temperature, Θ , is of the order of 200 K,⁵ we find $T_c < T_F < \Theta$ with $T_c / T_F \simeq T_F / \Theta$ $\simeq 0.05$. This suggests that CeCu₂Si (i) behaves as a "high-temperature superconductor" and (ii) cannot be described by conventional theory of superconductivity which assumes a typical phonon frequency $k_B \Theta / h \ll k_B T_F / h$, the characteristic frequency of the fermions.

We tried to detect any possible magnetic ordering below 1K. Instead we found a sharp superconducting transition at 0.97K, which was reduced by about 0.3K only in a field of 60kOe. This suggests that the superconductivity is not an intrinsic property of UBe13. Bell Labs, NJ 1973

PHYSICAL REVIEW B

VOLUME 11, NUMBER 1

1 JANUARY 1975

Electronic properties of beryllides of the rare earth and some actinides

We tried to detect any possible magnetic ordering below 1K. Instead we found a sharp superconducting transition at 0.97K, which was reduced by about 0.3K only in a field of 60kOe. This suggests that the superconductivity is not an intrinsic property of UBe13. Bell Labs, NJ 1973

PHYSICAL REVIEW B

VOLUME 11, NUMBER 1

1 JANUARY 1975

Ott

Electronic properties of beryllides of the rare earth and some actinides

E. Bucher,*J. P. Maita, G. W. Hull, R. C. Fulton, and A. S. Cooper Bell Laboratories, Murray Hill, New Jersey 07974 (Received 14 March 1974)

Steglich Fisk 1979 1983 1976

We tried to detect any possible magnetic ordering below 1K. Instead we found a sharp superconducting transition at 0.97K, which was reduced by about 0.3K only in a field of 60kOe. This suggests that the superconductivity is not an intrinsic property of UBe13. Bell Labs, NJ 1973

Ott

1976

PHYSICAL REVIEW B

VOLUME 11, NUMBER 1

1 JANUARY 1975

Electronic properties of beryllides of the rare earth and some actinides

E. Bucher, *J. P. Maita, G. W. Hull, R. C. Fulton, and A. S. Cooper Bell Laboratories, Murray Hill, New Jersey 07974 (Received 14 March 1974) Steglich Fisk 1979 1983

Magnetism and Supercond

Ott

1976

Steglich Fisk 1979 1983

Electrons on the brink of localization

Smith and Kmetko (1983)

Diversity of new ground-states on the brink of localization.

HF 115s Tc=0.2 -18.5 K

Diversity of new ground-states on the brink of localization.

f-electron systems: 4f Ce, Yb systems 5f U, Np, Pu systems.

T_c=0.2 -18.5 K

 $T_c = 6 - 53 + + ? K$

Diversity of new ground-states on the brink of localization.

f-electron systems: 4f Ce, Yb systems 5f U, Np, Pu systems.

d-electron systems: e.g Pnictides, Cuprate SC.

HF 115s T_c=0.2 -18.5 K Iron based sc T_c= 6 - 53 ++ ? K Cuprates $T_c=11-92K$

A new era of mysteries

Cartoon Introduction to Heavy Fermions

Spin (4f,5f): basic fabric of heavy electron physics.

Scales to Strong Coupling

 $H = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + J \vec{S} \cdot \vec{\sigma}(0)$ $\mathbf{k}\sigma$ J. Kondo, 1962

Electron sea

2j+1

χ $\chi \sim 1/T$ Curie T

Spin (4f,5f): basic fabric of heavy electron physics.

Scales to Strong Coupling

 $H = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + J \vec{S} \cdot \vec{\sigma}(0)$ $\mathbf{k}\sigma$ J. Kondo, 1962

Electron sea

Spin screened by conduction electrons: <u>entangled</u>

$$\uparrow \downarrow - \downarrow \uparrow$$

Electron sea

Spin screened by conduction electrons: <u>entangled</u>

$$\uparrow \downarrow - \downarrow \uparrow$$

$$S(T) = \int_0^T \frac{C_V}{T'} dT'$$

Spin entanglement entropy

Electron sea

 \overline{T}_K

T

Spin screened by conduction electrons: <u>entangled</u>

$$\uparrow \downarrow - \downarrow \uparrow$$

$$S(T) = \int_0^T \frac{C_V}{T'} dT'$$

Spin entanglement entropy

 $\left| H = \sum \varepsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + J \sum (\psi^{\dagger}_{j} \vec{\sigma} \psi_{j}) \cdot \vec{S}_{j} \right|$

 $H = \sum \varepsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + J \sum (\psi^{\dagger}_{j} \vec{\sigma} \psi_{j}) \cdot \vec{S}_{j}$

 $T_K \sim D \exp\left[-\frac{1}{2J\rho}\right]$

 $T_{RKKY} \sim J^2 \rho$

 $H = \sum \varepsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + J \sum (\Psi^{\dagger}_{j} \vec{\sigma} \Psi_{j}) \cdot \vec{S}_{j}$

 $T_K \sim D \exp\left[-\frac{1}{2J\rho}\right]$

 $H = \sum \varepsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + J \sum (\Psi^{\dagger}_{j} \vec{\sigma} \Psi_{j}) \cdot \vec{S}_{j}$

 $T_K \sim D \exp\left[-\frac{1}{2J\rho}\right]$

Kondo Lattice Model (Kasuya, 1951)

 $T_{RKKY} < T_K$

 $T_{RKKY} \sim J^2 \rho$

 $H = \sum \varepsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + J \sum (\psi^{\dagger}_{j} \vec{\sigma} \psi_{j}) \cdot \vec{S}_{j}$ Kondo Lattice Model (Kasuya, 1951) $T_K \sim D \exp\left[-\frac{1}{2J\rho}\right]$

 $T_{RKKY} \sim J^2 \rho$

 $T_{RKKY} < T_K$

Large Fermi surface of composite Fermions

The main result ... is that there should be a secondorder transition at zero temperature, as the exchange is varied, between an antiferromagnetic ground state for weak J and a Kondo-like state in which the local moments are quenched.

 $T_K \sim D \exp \left| -\frac{1}{2J\rho} \right|$

 $T_{RKKY} \sim J^2 \rho$

 $T_{RKKY} < T_K$

Large Fermi surface of composite Fermions

The main result ... is that there should be a secondorder transition at zero temperature, as the exchange is varied, between an antiferromagnetic ground state for weak J and a Kondo-like state in which the local moments are quenched.

 $T_K \sim D \exp \left| -\frac{1}{2J\rho} \right|$

 $T_{RKKY} \sim J^2 \rho$

 $T_{RKKY} < T_K$

Large Fermi surface of composite Fermions

Heavy Fermion Primer

"Kondo Lattice"

"Kondo Lattice"

Entangled spins and electrons

→ <u>Heavy Fermion Metals</u>

Entangled spins and electrons → <u>Heavy Fermion Metals</u>

"Kondo Lattice"

Entangled spins and electrons → <u>Heavy Fermion Metals</u>

Coherent Heavy Fermions

Coherent Heavy Fermions

Lev Landau vs Ken Wilson:

Criticality as a driver of new States of Matter

"Quasiparticle" Interactions adiabatically $|e^-|$, $|qp^-|$ $\frac{m^*}{m} = \frac{N(0)^*}{N(0)} = 1 + \frac{F_1^s}{3}$

Landau, JETP 3, 920 (1957)

Landau, JETP 3, 920 (1957)

$$E_{\mathbf{p}} = \frac{p^2}{2m^*}, \qquad N^*(0) = \frac{m^* p_F}{\pi^2 \hbar^3}$$

10-1

$$E_{\mathbf{p}} = \frac{p^2}{2m^*}, \qquad N^*(0) = \frac{m^* p_F}{\pi^2 \hbar^3}$$

$$\gamma = \operatorname{Lim}_{T \to 0} \left(\frac{C_V}{T}\right) = \frac{\pi^2 k_B^2}{3} N(0)^*.$$

$$\stackrel{(\mathbf{k} \to \mathbf{k})}{\underset{\mathbf{k} \to \mathbf{k}}} N(0)^*.$$

 $\chi(0)$ (emu/mole f atom)

Cu

20. Moscow, 1956. Freeman Dyson (front, left),

chuk and Lev Landau.

Long range order

Fermi Liquid

What happens when the interaction becomes too large?

Peierls/Mott 1939

 X_{c}

Wigner/ Landau 1934/36

"Electrons order"

"Electrons localize"

What happens when the interaction becomes too large?

Wigner/ Landau 1934/36

"Electrons order"

Peierls/Mott 1939

"Electrons localize"

Anderson 1961

"Moments form"

What happens when the interaction becomes too large?

Wigner/ Landau 1934/36

"Electrons order"

Peierls/Mott 1939

"Electrons localize"

Anderson 1961

"Moments form"

What happens when the interaction becomes too large?

Wigner/ Landau 1934/36

"Electrons order"

Peierls/Mott 1939

"Electrons localize"

Anderson 1961

"Moments form"

Kenneth Wilson 1936-2013

New Fixed Points

Mott, 1973 Doniach 1976

Wilson 1975

New Fixed Points

Mott, 1973 Doniach 1976

Wilson 1975

New Fixed Points

→ <u>New kinds of insulator</u>

Kondo Insulators

→ <u>New kinds of insulator</u>

Topological Kondo Insulators

10¹

10[°]

10⁻¹

(b)

Quantum Criticality

Composite Pairing

To whet your appetite.

"115" Family

"115" Family

. .

• Classic strongly correlated materials.

• Classic strongly correlated materials.

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.
- Many families of materials, intermetallics easily synthesized, continue to provide major surprises (eg Topological Kondo insulators).

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.
- Many families of materials, intermetallics easily synthesized, continue to provide major surprises (eg Topological Kondo insulators).

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.
- Many families of materials, intermetallics easily synthesized, continue to provide major surprises (eg Topological Kondo insulators).
- Highly tunable ("Fruit Fly" of correlated e systems)

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.
- Many families of materials, intermetallics easily synthesized, continue to provide major surprises (eg Topological Kondo insulators).
- Highly tunable ("Fruit Fly" of correlated e systems)

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.
- Many families of materials, intermetallics easily synthesized, continue to provide major surprises (eg Topological Kondo insulators).
- Highly tunable ("Fruit Fly" of correlated e systems)
- \bullet Share common behavior with high T_c materials (eg strange metals with linear resistivity)

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.
- Many families of materials, intermetallics easily synthesized, continue to provide major surprises (eg Topological Kondo insulators).
- Highly tunable ("Fruit Fly" of correlated e systems)
- \bullet Share common behavior with high T_c materials (eg strange metals with linear resistivity)

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.
- Many families of materials, intermetallics easily synthesized, continue to provide major surprises (eg Topological Kondo insulators).
- Highly tunable ("Fruit Fly" of correlated e systems)
- \bullet Share common behavior with high T_c materials (eg strange metals with linear resistivity)
- Clean separation between conduction and spin degrees of freedom

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.
- Many families of materials, intermetallics easily synthesized, continue to provide major surprises (eg Topological Kondo insulators).
- Highly tunable ("Fruit Fly" of correlated e systems)
- \bullet Share common behavior with high T_c materials (eg strange metals with linear resistivity)
- Clean separation between conduction and spin degrees of freedom

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.
- Many families of materials, intermetallics easily synthesized, continue to provide major surprises (eg Topological Kondo insulators).
- Highly tunable ("Fruit Fly" of correlated e systems)
- \bullet Share common behavior with high T_c materials (eg strange metals with linear resistivity)
- Clean separation between conduction and spin degrees of freedom
- System where gauge theory approach to strongly correlated electrons is reasonably well established.

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.
- Many families of materials, intermetallics easily synthesized, continue to provide major surprises (eg Topological Kondo insulators).
- Highly tunable ("Fruit Fly" of correlated e systems)
- \bullet Share common behavior with high T_c materials (eg strange metals with linear resistivity)
- Clean separation between conduction and spin degrees of freedom
- System where gauge theory approach to strongly correlated electrons is reasonably well established.

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.
- Many families of materials, intermetallics easily synthesized, continue to provide major surprises (eg Topological Kondo insulators).
- Highly tunable ("Fruit Fly" of correlated e systems)
- \bullet Share common behavior with high T_c materials (eg strange metals with linear resistivity)
- Clean separation between conduction and spin degrees of freedom
- System where gauge theory approach to strongly correlated electrons is reasonably well established.

- Classic strongly correlated materials.
- Birth of many ideas gauge theory approach, d-wave driven by AFM.
- Many families of materials, intermetallics easily synthesized, continue to provide major surprises (eg Topological Kondo insulators).
- Highly tunable ("Fruit Fly" of correlated e systems)
- \bullet Share common behavior with high T_c materials (eg strange metals with linear resistivity)
- Clean separation between conduction and spin degrees of freedom
- System where gauge theory approach to strongly correlated electrons is reasonably well established.

Anderson, Kondo and Doniach.

$$f^{\dagger}_{\sigma} = \int_{\mathbf{r}} \Psi_f(\mathbf{r}) \hat{\psi}^{\dagger}_{\sigma}(r),$$

$H_{atomic} = E_f n_f + U n_{f\uparrow} n_{f\downarrow}.$

Valence Fluctuations

Virtual Valence fluctuations in the singlet channel, induced by hybridization

$$\begin{array}{ll} e_{\uparrow}^{-} + f_{\downarrow}^{1} \leftrightarrow f^{2} \leftrightarrow e_{\downarrow}^{-} + f_{\uparrow}^{1} & \Delta E_{I} \sim U + E_{f} \\ h_{\uparrow}^{+} + f_{\downarrow}^{1} \leftrightarrow f^{0} \leftrightarrow h_{\downarrow}^{+} + f_{\uparrow}^{1} & \Delta E_{II} \sim -E_{f} \end{array}$$

Virtual Valence fluctuations in the singlet channel, induced by hybridization

$$\begin{array}{ll} e^-_{\uparrow} + f^1_{\downarrow} \leftrightarrow f^2 \leftrightarrow e^-_{\downarrow} + f^1_{\uparrow} & \Delta E_I \sim U + E_f \\ h^+_{\uparrow} + f^1_{\downarrow} \leftrightarrow f^0 \leftrightarrow h^+_{\downarrow} + f^1_{\uparrow} & \Delta E_{II} \sim -E_f \end{array}$$

From second order perturbation theory, the energy of c-f singlets reduces by an amount 2J, where

$$J = V^2 \left[\frac{1}{\Delta E_1} + \frac{1}{\Delta E_2} \right]$$

Virtual Valence fluctuations in the singlet channel, induced by hybridization

$$\begin{array}{ll} e_{\uparrow}^{-} + f_{\downarrow}^{1} \leftrightarrow f^{2} \leftrightarrow e_{\downarrow}^{-} + f_{\uparrow}^{1} & \Delta E_{I} \sim U + E_{f} \\ h_{\uparrow}^{+} + f_{\downarrow}^{1} \leftrightarrow f^{0} \leftrightarrow h_{\downarrow}^{+} + f_{\uparrow}^{1} & \Delta E_{II} \sim -E_{f} \end{array}$$

From second order perturbation theory, the energy of c-f singlets reduces by an amount 2J, where

$$J = V^2 \left[\frac{1}{\Delta E_1} + \frac{1}{\Delta E_2} \right]$$

Antiferromagnetic Kondo interaction

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \frac{J}{N} \sum_{j} \vec{S}_{j} \cdot c_{\mathbf{k}\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{\mathbf{k}'\beta} e^{i(\mathbf{k}'-\mathbf{k})\cdot\mathbf{R}_{j}}$$

Conduction sea
$$E_{f} \longrightarrow f^{1}$$
$$H_{K} = -2JP_{S=0} = -2J \left[\frac{1}{4} - \frac{1}{2} \vec{\sigma}_{c}(0) \cdot \vec{S}_{f} \right] \rightarrow J \vec{\sigma}_{c}(0) \cdot \vec{S}_{f}$$

Antiferromagnetic Kondo interaction

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \frac{J}{N} \sum_{j} \vec{S}_{j} \cdot c_{\mathbf{k}\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{\mathbf{k}'\beta} e^{i(\mathbf{k}'-\mathbf{k})\cdot\mathbf{R}_{j}}$$
Note: can also write Kondo interaction
in the "Coqblin Schrieffer" form
$$H_{K} = -J \sum_{j,\alpha,\beta} (c_{j\alpha}^{\dagger} f_{j\alpha})(f_{j\beta}^{\dagger} c_{j\beta})$$

$$E_{f} \longrightarrow f^{1}$$

$$H_{K} = -2JP_{S=0} = -2J \left[\frac{1}{4} - \frac{1}{2} \vec{\sigma}_{c}(0) \cdot \vec{S}_{f} \right] \rightarrow J \vec{\sigma}_{c}(0) \cdot \vec{S}_{f}$$
Antiferromagnetic Kondo interaction

THE KONDO LATTICE

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \frac{J}{\mathcal{N}} \sum_{j} \vec{S}_{j} \cdot c_{\mathbf{k}\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{\mathbf{k}'\beta} e^{i(\mathbf{k}'-\mathbf{k}) \cdot \mathbf{R}_{j}}$$
T. Kasuya (1951)

"Kondo Lattice"

Doniach Hypothesis.

$$H = J \sum_{\sigma} \vec{\sigma}(j) \cdot \vec{S}_j - t \sum_{(i,j)} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c})$$

$$H = J \sum_{\sigma} \vec{\sigma}(j) \cdot \vec{S}_j - t \sum_{(i,j)} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c})$$

 $n_e = n_{
m spins}$ Kondo insulator

$$H = J \sum_{\sigma} \vec{\sigma}(j) \cdot \vec{S}_j - t \sum_{(i,j)} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c})$$

 $n_e = n_{
m spins}$ Kondo insulator

Electron doping

$$H = J \sum_{\sigma} \vec{\sigma}(j) \cdot \vec{S}_j - t \sum_{(i,j)} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c})$$

 $n_e = n_{
m spins}$ Kondo insulator

Electron doping

$$H = J \sum_{\sigma} \vec{\sigma}(j) \cdot \vec{S}_j - t \sum_{(i,j)} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c})$$

 $n_e = n_{
m spins}$ Kondo insulator

Electron doping Mobile "Heavy Electrons"

$$H = J \sum_{\sigma} \vec{\sigma}(j) \cdot \vec{S}_j - t \sum_{(i,j)} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c})$$

 $n_e = n_{
m spins}$ Kondo insulator

$$H = J \sum_{\sigma} \vec{\sigma}(j) \cdot \vec{S}_j - t \sum_{(i,j)} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c})$$

Hole doping: mobile heavy holes $n_e = n_{\rm spins} - \delta$

 $\overline{n_{i,j}}$ $n_e = n_{
m spins}$ Kondo insulator

$$H = J \sum_{\sigma} \vec{\sigma}(j) \cdot \vec{S}_j - t \sum_{(i,j)} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c})$$

Hole doping: mobile heavy holes $n_e = n_{\rm spins} - \delta$

$$H = J \sum_{\sigma} \vec{\sigma}(j) \cdot \vec{S}_j - t \sum_{(i,j)} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c})$$

Hole doping: mobile heavy holes $n_e = n_{\rm spins} - \delta$

$$H = J \sum_{\sigma} \vec{\sigma}(j) \cdot \vec{S}_j - t \sum_{(i,j)} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c})$$

 $n_e = n_{
m spins}$ Kondo insulator

$$2\left(\frac{v_{\rm FS}}{(2\pi)^D}\right) = 2 - \delta = n_{\rm spins} + n_e$$

FS sum rule counts spins as charged qp.

Hole doping: mobile heavy holes $n_e = n_{\rm spins} - \delta$

Large Fermi surface and the charge of the f-electron

