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1. Introduction: Heavy Fermions and the Kondo Lattice. 

2. BCS meets Kondo: mean-field approach to the Kondo Lattice. 

3. Glue vs Fabric: Good, Bad and Ugly Heavy Fermion Superconductors.  

4. Composite vs AFM induced pairing.
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Lecture 1 Introduction to Heavy Fermions and the Kondo Lattice. 
!
1. Magnetism and SC: a remarkable converegence. 

2. Electrons on the Brink of Localization. 

3. Cartoon introduction to Heavy Fermions. 

4. Lev Landau versus Ken Wilson:  Criticality as a driver of Superconductivity. 

5. Anderson, Kondo and Doniach. 



Magnetism and Superconductivity:

A remarkable convergence
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an increase in effective moment should go hand
in hand with a decrease of the superconducting
transition temperature does not work at all. In-
stead, the depression of the superconductivity
seems to be correlated only with the spin of the
solute atoms. (The anomalous behavior of ce-
rium is probably caused by the rather easy shift
of part of the 4f electron into the 5d band; this
occurs in the pure metal at low temperature or
under pressure. )

The change in the superconducting transition
temperature of lanthanum caused by varying the
dissolved amounts of gadolinium was investigat-
ed in more detail and the results are shown in
Fig. 3. The superconducting transition tempera-

0:.
La Ce Pr Nd

aP
Prn Srn Eu Gd Tb Dy Ho Er Trn Yb Lu

FIG. l. Effective magnetic moments and spins of the
rare earth elements (see reference 2).

The effective magnetic moments of the rare
earth elements follow Van Vleck's well-known
curve, ' Fig. 1. These moments, which originate
in the low-lying 4f shell, are usually assumed
to remain undisturbed in almost all chemi. cal
compounds which include these elements. It was
therefore our hope that by dissolving small
amounts of the magnetic rare earth elements in
lanthanum, the superconducting transition would
be affected by the dipole field from the moment
of the rare earth atoms. In Fig. 2 we show the
superconducting transitions of lanthanum samples
in which 1 at.% of various rare earth elements
has been dissolved. It is immediately apparent
from. these data that the simple assumption that

LU

O

0
La Ce Pr Nd Pm Sm Eu Gd Tb Dg Ho Er Trn Yb Lu

FIG. 2. Superconducting transition temperatures of
1 at 90 rare earth solid solutions in lanthanum.

—SUPERCONDUCTI NG
TRA N SIT I ON

FERROMAGNETIC
CURIEPOINT

~
00 4 5 6

PER CENT Gd

FIG. 3. Ferromagnetic and superconducting tran-
sition temperatures of solid solutions of gadolinium
in lanthanum.

ture seems to be a strictly linear function of the
amounts of dissolved gadolinium. 2.5 at.% or
more of gadolinium in lanthanum causes this
solid solution to become ferromagnetic above
1'K. The Curie points within this range are an
approximately linear function of the percentage
of gadolinium. This suggests the presence of a
coupling which aligns the moments spontaneous-
ly in these materials and which is different from
overlap exchange forces usually considered
since the coupling extends over several lattice
spacings and is proportional in magnitude to the
amount of gadolinium added. By dissolving ga-
dolinium in yttrium, a nonsuperconducting metal,
only moderate paramagnetism was observed and
solid solutions with even as much as 10 at.$
gadolinium did not show any ferromagnetism. On
the other hand, solid solutions of gadolinium in
thorium, another superconductor, were again
ferromagnetic.

These data suggest that an exchange over con-
duction electrons' leading to ferromagnetism is
easy to bring about in an element which by itself

93
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from the data. The results are given in Table I.

Table I. Electron spin resonance results for NH,
and ND~

Radical A (Mc/sec) B (Mc/sec)

NH2
ND2

67.03(20)
10.27 (20)

28.90(20)
33.28(20)

2.00481 (8)
2.00466 (8)

l I I
5240 52SO 3260

OERSTEDS

NH~ ~
I

t I
I I
I I

I I I

5280 5290 5500

THEORETICAL
PA TTERN

~ND2

FIG. 2. Electron spin resonance spectrum of ND
in an argon matrix at 4. 2 K. Also present are
spectra of D and NH2 and weak traces of NHD.

The ratio of the hydrogenic coupling constants,
/A = 6.526, is in excellent agreement with

the predicted ratio, gi(H)/gr(D) = 6.514. The
difference between the values for the nitrogen
coupling constants is unexpected, indicating that
the electronic wave functions for the two radi-
cals are somewhat different. It is clear that the
inclusion of higher-order terms in the solution
of the spin Hamiltonian would not bring the B
values into closer agreement. Apparently, the
hyperfine interaction with the nitrogen atom is
rather sensitive to some small perturbation in
the electronic state. Thus far, we have been un-
able to account for the discrepancy by consider-
ing zero-point vibration and the differences in
the rotational states of these molecules.

coupling constants were evaluated, as discussed
later, and the complete spectrum calculated.
The predicted positions of the spectral lines are
indicated in the bottom of the figure. Eleven of
the lines are clearly recognized in the record-
ing. The others are too close to other lines to be
resolved. In addition, one sees the center deu-
terium atom line, slight traces of NHD, and
several lines from NH, arising from some re-
manent NH, in the system. The lines of NH, and
ND, were recorded individually on expanded
sweeps to determine their field positions with
high precision.

If one solves the spin Hamiltonian for the mag-
netic energy, 8', to the first order approxima-
tion, one obtain, s

W=M g p, ,H+AM Zm. + BM M (N)J z z J I
+p, H g gm. +g (N)M (N)I g z I

where m. is the nuclear magnetic quantum num-
ber of hydrogen (+ 1/2) in the case of NH, or ofz

deuterium (1,0, -1) in the case of ND„and the
other symbols have their usual significance.
The hyperfine coupling constants A and B and
the electronic g -factor, g, can be calculated

+ This work supported by Bureau of Ordnance, De-
partment of the Navy.

Jen, Foner, Cochran, and Bowers, Phys. Hev.
104, 846 (1956).

2 Foner, Jen, Cochran, and Bowers, J. Chem. Phys.
28, 851 (1958).

' Jen, Foner, Cochran, and Bowers, (to be publish-
ed) .

SPIN EXCHANGE IN SUPERCONDUCTORS

B. T. Matthias, H. Suhl, and E. Corenzwit
Bell Telephone Laboratories,

Murray Hill, New Jersey
(Received July 15, 1958)

The only known superconductor among the rare
earth elements is lanthanum. The elements fol-
lowing lanthanum in the periodic system are
either strongly paramagnetic or ferromagnetic,
with magnetic moments which are due to their
4f electrons. In lutetium, 14 electrons have
filled this 4f shell entirely and the element does
not show pronounced paramagnetism. Lutetium,
however, is not superconducting above 1.02'K
because its metallic radius has become much
smaller and at the same time it is much heavier
than lanthanum.
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We tried to detect any possible magnetic ordering

below 1K. Instead we found a sharp superconducting

transition at 0.97K, which was reduced by about

0.3K only in a field of 60kOe. 

!
                   	 	            Bell Labs, NJ 1973
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after annealing to 20 K, lnR- T ' ' was found.
These films did not exhibit superconductivity as
measured resistively down to the lowest temper-
atures attainable (T- 1.5 K).

The above-described behavior suggests that
the Hg-Xe system exhibits a metal-nonmetal
transition which occurs with a dependence on con-
centration and with a critical concentration close
to that of continuous percolation in 3D. Beyond
the percolation threshold, the systems acquire a
negative TCR but are still superconductors. With
further increase in Xe concentration, a regime
in which the conductivity is dominated by hopping
is entered. The approach to an insulating config-
uration beyond the percolation threshold is prob-
ably the Mott-Anderson transition of Refs. 2-4
and is accompanied by the eventual disappearance
of superconductivity as determined resistively.

The authors would like to thank R. Mikkelson
for many helpful discussions. This work was
supported by the U. S. Department of Energy un-
der Contract No. EY-V6-S-02-1569-A002.
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interest has shifted to materials in which ferro-
magnetism and superconductivity occur at differ-
ent temperatures, either because of the addition

A comparison was made between four low-temperature properties of LaCu2Si2 and
CeCu&Si&. Whereas LaCu&Si& behaves like a normal metal, CeCu&Si& shows (i) low-tem-
perature anomalies typical of "unstable 4f shell" behavior and (io a transition into a
superconducting state at T, ~ 0.5 K. Our experiments demonstrate for the first time
that superconductivity can exist in a metal in which many-body interactions, probably
magnetic in origin, have strongly renormalized the properties of the conduction-elec-
tron gas.

The relationship between different collective
phenomena in metals has continued to interest
both experimentalists and theorists. Recent
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after annealing to 20 K, lnR- T ' ' was found.
These films did not exhibit superconductivity as
measured resistively down to the lowest temper-
atures attainable (T- 1.5 K).

The above-described behavior suggests that
the Hg-Xe system exhibits a metal-nonmetal
transition which occurs with a dependence on con-
centration and with a critical concentration close
to that of continuous percolation in 3D. Beyond
the percolation threshold, the systems acquire a
negative TCR but are still superconductors. With
further increase in Xe concentration, a regime
in which the conductivity is dominated by hopping
is entered. The approach to an insulating config-
uration beyond the percolation threshold is prob-
ably the Mott-Anderson transition of Refs. 2-4
and is accompanied by the eventual disappearance
of superconductivity as determined resistively.
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of magnetic impurities to a superconducting host'
or because the magnetism is intrinsic to the loca-
lized 4f electrons of a rare-earth constituent,
such as Er, in a superconducting compound. '
There is also much interest in materials in which
either superconductivity or magnetism interferes
with a third kind of collective phenomenon, i.e.,
the Kondo or intermediate-valence phenomenon,
which occurs in metals containing rare earths
with less localized 4f electrons, such as Ce. It
results from an "instability of the 4f shell" (name-
ly, of the 4f magnetic moment and sometimes
also of the 4f occupation number) and is charac-
terized by distinct low-temperature anomalies in
the magnetic and electronic transport properties.
%hile Ce impurities can strongly influence the
intrinsic properties of a superconducting host, '
in certain Ce compounds, e.g. , CeAl„a Kondo-
type phenomenon seems to coexist with long-
range antiferromagnetism. '

In this Letter, we report low-temperature ob-
servations of the resistivity, specific heat, low-
field ac susceptibility, and dc magnetization of
CeCu, Si, and LaCu, Si,. Whereas LaCu, Si, shows
rather normal metallic behavior, we conclude
that in CeCu, Si„a compound with "unstable 4f
shell" behavior, the low-temperature anomalies
reported before by Franz et al. ' have their origin,
in our somewhat more carefully prepared sam-
ples, in a transition into a novel superconducting
state. We conclude that a large fraction (up to
30 vol %) of the bulk of our CeCu, Si, samples is

0
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exhibiting the Meissner effect. A preliminary re-
port on some of our results has been given else-
where. '

The polycrystalline samples were prepared in
an induction furnance, while kept under an argon
pressure of 5 atm. %hile most results reported
here were obtained with unannealed samples, one
sample was reinvestigated after annealing in an
ultrahigh vacuum (900'C, 100 h). X-ray analysis
indicated that both compounds had the proper
structure (tetragonal, ThCr, Si,); microprobe
analysis, however, revealed the existence of a
small amount of precipitations (varying from
sample to sample between 1 and 4 vol %) of both
a Si-rich phase and a Cu-Si phase with a Cu con-
tent of 80—90 at. '/l~ Upon annealing, no significant
change either of the x-ray pattern or the micro-
probe result was detected.

The experimental results of the resistivity, ac
susceptibility, and specific heat for an unannealed
CeCu, Si, sample are presented in Figs. 1 and 2
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FIG. 1. Resistivity (main part) and low-field ac sus-
ceptibility (inset) of CeCu2Si2 as function of temperature.
Arrows give transition temperatures T, ~ ~0.60 + 0.03
K and T, '~ =0.54+ 0.03 K. Transition widths are taken
between 10% and 90% points of the transition curves.
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FIG. 2. Molar specific heat of CeCuqSi2 at B=0 as
function of temperature on logarithmic scale. Arrow
marks transition temperature T, ~'=0.51+0.04 K.
Transition width determined as in Fig. 1. Inset shows
in a C/T vs T plot the specific-heat jumps of two other
CeCu2Si2 samples.
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0.76 as found when the experiment was repeated
after about two months during which the samp1. e
was kept under argon atmosphere. These obser-
vations indicate that presently the metallurgy of
our samples is delicate and needs to be improved
in the future.

Recently, we have prepared two CeCu, Si, sam-
ples of the same quality as indicated before,
which show a somewhat reduced coefficient y and
a specific-heat jump of BCS size, i.e., AC/C„(T, )
=1.4 (inset of Fig. 2). So far, one of these sam-
ples was studied by dc magnetization; a net vol-
ume of =30%%uz was found to exhibit the Meissner
effect. With this same sample we have checked
the influence of annealing on the specific-heat
jump and found an increase of both the transition
temperature (by 30 mK) and the transition width
(by 50%) as well as a slight (=10%) reduction of
the jump height. Although our preliminary re-
sults with these new samples form a quite con-
vincing case, we mould welcome a confirmation
by other ~orkers of our conclusion that CeCu, Si,
is an intrinsic superconductor.

To summarize, CeCu, Si, shows unstable-4f-
shell behavior. Well below 7*=10K, a large yT
term predominates the specific heat. We inter-
pret this term as being due to very heavy fermion
quasiparticles with degeneracy temperature TF
=7"*. Below 0.5 K, a large fraction of CeCu, Si,
becomes supercanducting, in contrast to LaCu, Si,
which remains in the normal state at least down
to 50 mK. The size of the specific-heat jump at
T„ in proportion to yT„suggests that Cooper-
pair states are formed by these heavy fermions.
Since the Debye temperature, e, is of the order
of 200 K, ' we find T, & T F & 8 with T, /T F

= T F/6
=0.05. This suggests that CeCu, Si (i) behaves
as a "high-temperature superconductor" and
(ii) cannot be described by conventional theory of
superconductivity which assumes a typical phonon
frequency kze/h «k BTz/h, the characteristic
frequency of the fermions.

It is a great pleasure to thank the many people
who have assisted with this work: V. Klink for
preparing the samples, W. Assmus (Universita', t
Frankfurt am Main) and G. Weimann (Femmelde-
technische Zentralamt, Darmstadt) for perform-
ing the microprobe analyses, S. Horn and the
ZCH/Kernforschungsanlage Julich for perform-
ing the x-ray analysis, A. C. Mota for advising
us on the dc magnetization measurements, F. M.
Mueller, D. Rainer, and K. D. Schotte for read-
ing the manus. cript and contributing many useful
suggestions, P. F. de Chatel, B. Elschner,

E. MGller-Hartmann, E. Umlauf, and D. Wohl-
leben for stimulating and critical discussions.
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after annealing to 20 K, lnR- T ' ' was found.
These films did not exhibit superconductivity as
measured resistively down to the lowest temper-
atures attainable (T- 1.5 K).

The above-described behavior suggests that
the Hg-Xe system exhibits a metal-nonmetal
transition which occurs with a dependence on con-
centration and with a critical concentration close
to that of continuous percolation in 3D. Beyond
the percolation threshold, the systems acquire a
negative TCR but are still superconductors. With
further increase in Xe concentration, a regime
in which the conductivity is dominated by hopping
is entered. The approach to an insulating config-
uration beyond the percolation threshold is prob-
ably the Mott-Anderson transition of Refs. 2-4
and is accompanied by the eventual disappearance
of superconductivity as determined resistively.
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interest has shifted to materials in which ferro-
magnetism and superconductivity occur at differ-
ent temperatures, either because of the addition

A comparison was made between four low-temperature properties of LaCu2Si2 and
CeCu&Si&. Whereas LaCu&Si& behaves like a normal metal, CeCu&Si& shows (i) low-tem-
perature anomalies typical of "unstable 4f shell" behavior and (io a transition into a
superconducting state at T, ~ 0.5 K. Our experiments demonstrate for the first time
that superconductivity can exist in a metal in which many-body interactions, probably
magnetic in origin, have strongly renormalized the properties of the conduction-elec-
tron gas.

The relationship between different collective
phenomena in metals has continued to interest
both experimentalists and theorists. Recent
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of magnetic impurities to a superconducting host'
or because the magnetism is intrinsic to the loca-
lized 4f electrons of a rare-earth constituent,
such as Er, in a superconducting compound. '
There is also much interest in materials in which
either superconductivity or magnetism interferes
with a third kind of collective phenomenon, i.e.,
the Kondo or intermediate-valence phenomenon,
which occurs in metals containing rare earths
with less localized 4f electrons, such as Ce. It
results from an "instability of the 4f shell" (name-
ly, of the 4f magnetic moment and sometimes
also of the 4f occupation number) and is charac-
terized by distinct low-temperature anomalies in
the magnetic and electronic transport properties.
%hile Ce impurities can strongly influence the
intrinsic properties of a superconducting host, '
in certain Ce compounds, e.g. , CeAl„a Kondo-
type phenomenon seems to coexist with long-
range antiferromagnetism. '

In this Letter, we report low-temperature ob-
servations of the resistivity, specific heat, low-
field ac susceptibility, and dc magnetization of
CeCu, Si, and LaCu, Si,. Whereas LaCu, Si, shows
rather normal metallic behavior, we conclude
that in CeCu, Si„a compound with "unstable 4f
shell" behavior, the low-temperature anomalies
reported before by Franz et al. ' have their origin,
in our somewhat more carefully prepared sam-
ples, in a transition into a novel superconducting
state. We conclude that a large fraction (up to
30 vol %) of the bulk of our CeCu, Si, samples is
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exhibiting the Meissner effect. A preliminary re-
port on some of our results has been given else-
where. '

The polycrystalline samples were prepared in
an induction furnance, while kept under an argon
pressure of 5 atm. %hile most results reported
here were obtained with unannealed samples, one
sample was reinvestigated after annealing in an
ultrahigh vacuum (900'C, 100 h). X-ray analysis
indicated that both compounds had the proper
structure (tetragonal, ThCr, Si,); microprobe
analysis, however, revealed the existence of a
small amount of precipitations (varying from
sample to sample between 1 and 4 vol %) of both
a Si-rich phase and a Cu-Si phase with a Cu con-
tent of 80—90 at. '/l~ Upon annealing, no significant
change either of the x-ray pattern or the micro-
probe result was detected.

The experimental results of the resistivity, ac
susceptibility, and specific heat for an unannealed
CeCu, Si, sample are presented in Figs. 1 and 2
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FIG. 1. Resistivity (main part) and low-field ac sus-
ceptibility (inset) of CeCu2Si2 as function of temperature.
Arrows give transition temperatures T, ~ ~0.60 + 0.03
K and T, '~ =0.54+ 0.03 K. Transition widths are taken
between 10% and 90% points of the transition curves.
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FIG. 2. Molar specific heat of CeCuqSi2 at B=0 as
function of temperature on logarithmic scale. Arrow
marks transition temperature T, ~'=0.51+0.04 K.
Transition width determined as in Fig. 1. Inset shows
in a C/T vs T plot the specific-heat jumps of two other
CeCu2Si2 samples.
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0.76 as found when the experiment was repeated
after about two months during which the samp1. e
was kept under argon atmosphere. These obser-
vations indicate that presently the metallurgy of
our samples is delicate and needs to be improved
in the future.

Recently, we have prepared two CeCu, Si, sam-
ples of the same quality as indicated before,
which show a somewhat reduced coefficient y and
a specific-heat jump of BCS size, i.e., AC/C„(T, )
=1.4 (inset of Fig. 2). So far, one of these sam-
ples was studied by dc magnetization; a net vol-
ume of =30%%uz was found to exhibit the Meissner
effect. With this same sample we have checked
the influence of annealing on the specific-heat
jump and found an increase of both the transition
temperature (by 30 mK) and the transition width
(by 50%) as well as a slight (=10%) reduction of
the jump height. Although our preliminary re-
sults with these new samples form a quite con-
vincing case, we mould welcome a confirmation
by other ~orkers of our conclusion that CeCu, Si,
is an intrinsic superconductor.

To summarize, CeCu, Si, shows unstable-4f-
shell behavior. Well below 7*=10K, a large yT
term predominates the specific heat. We inter-
pret this term as being due to very heavy fermion
quasiparticles with degeneracy temperature TF
=7"*. Below 0.5 K, a large fraction of CeCu, Si,
becomes supercanducting, in contrast to LaCu, Si,
which remains in the normal state at least down
to 50 mK. The size of the specific-heat jump at
T„ in proportion to yT„suggests that Cooper-
pair states are formed by these heavy fermions.
Since the Debye temperature, e, is of the order
of 200 K, ' we find T, & T F & 8 with T, /T F

= T F/6
=0.05. This suggests that CeCu, Si (i) behaves
as a "high-temperature superconductor" and
(ii) cannot be described by conventional theory of
superconductivity which assumes a typical phonon
frequency kze/h «k BTz/h, the characteristic
frequency of the fermions.

It is a great pleasure to thank the many people
who have assisted with this work: V. Klink for
preparing the samples, W. Assmus (Universita', t
Frankfurt am Main) and G. Weimann (Femmelde-
technische Zentralamt, Darmstadt) for perform-
ing the microprobe analyses, S. Horn and the
ZCH/Kernforschungsanlage Julich for perform-
ing the x-ray analysis, A. C. Mota for advising
us on the dc magnetization measurements, F. M.
Mueller, D. Rainer, and K. D. Schotte for read-
ing the manus. cript and contributing many useful
suggestions, P. F. de Chatel, B. Elschner,

E. MGller-Hartmann, E. Umlauf, and D. Wohl-
leben for stimulating and critical discussions.

This work was supported by the Deutsche
Forschungsgemeinschaft under the auspices of
Sonderforschungsbereich 65 Frankfurt am Main-
Darmstadt and Sonderforschungsbereich 125
Aachen- JGlich-Koln.

B.T. Matthias, H. Suhl, and E. Corenzwit, Phys.
Rev. Lett. 1, 449 (1958); L. P. Gor' kov and A. I. Rusi-
nov, Zh. Eksp. Teor Fiz. 46, 1363 (1964) [Sov. Phys.
JETP 19, 922 (1964)l; J. E. Crow, R. P. Guertin, and
R. D. Parks, Phys. Rev. Lett. 19, 77 (1967); M. Peter,
P. Donzh, 9. Fischer, A. Junod, J.Ortelli, A. Trey-
vaud, E. Walker, M. Wilhelm, and B. Hildenbrand,
Helv. Phys. Acta 44, 345 (1971).

M. Ishikawa and Ql. Fischer, Solid State Commun. 23,
37 (1977), and 24, 747 (1977); R. W. McCallum, D. C.
Johnston, R. N. Shelton, W. A. Fertig, and M. B. Maple,
Solid State Commun. 24, 501 (1977); W. A Fertig, D. C.
Johnston, L. E. DeLong, R. W. McCallum, M. B. Maple,
and B.T. Matthias, Phys. Rev. Lett. 38, 987 (1977);
D. E. Moncton, D. B. McWhan, E. Corenzwit, J. Eckert,
G. Shirane, and W. Thomalinson, Phys. Rev. Lett. 39,
1164 (1977); H. R. Ott, W. A. Fertig, D. C. Johnston,
M. B. Maple, and B.T. Matthias, J. Low. Temp. Phys.
33, 159 (1978).

3E. Muller-Hartmann and J. Zittartz, Phys. Rev. Lett.
26, 428 (1971); G. Riblet and K. Winzer, Solid State
Commun. 9, 1663 (1971), and Solid State Commun. 11,
175 (1971); M. B. Maple, W. A. Fertig, A. C. Mota,
D. Wohlleben and R. Fitzgerald, Solid State Commun.
11, 829 (1972); F. Steglich and H. Armbruster, Solid
State Commun. 14, 903 (1974); S. D. Bader, N. E. Phil-
lips, M. B. Maple, and C. A. Luengo, Solid State Com-
mun. 16, 1263 (1975); K. Winzer, Solid State Commun.
24, 551 (197'7).

4B. Barbara, J.X. Boucherie, J. L. Buevoz, M. F.
Rossignol, and J. Schweizer, Solid State Commun. 24,
481 (1977); A. Benoit, J. Flouquet, and M. Ribault,
J. Phys. (Paris), Lett. 39, L63 (1978); A. Benoit,
J. Flouquet, M. Ribault, F. Flouquet, G. Chouteau, and
R. Tournier, J. Phys. (Paris), Lett. 39, L94 (1978);
C. D. Bredl, F. Steglich, and K. D. Schotte, Z. Phys.
B 29, 327 (1978); H. Armbriister, F. Steglich, Solid
State Commun. 27, 873 (1978); F. Steglich, C. D. Bredl,
M. Loewenhaupt, and K. D. Schotte, J. Phys. (Paris),
Colloq. 40, C5-301 (1979).

~W. Franz, A. Qriessel, F. Steglich, and D. Wohlleben,
Z. Phys. B 31, 7 (1978).

F. Steglich, in Proceedings of the Topical Meeting
on Unusual Conditions of Superconductivity and Itinerant
Magnetism in d-Materials, Bad Honnef, Germany, May,
1979 (unpublished) .

VK. Andres, J. E. Graebner, and H. R. Ott, Phys. Rev.
Lett. 27, 1779 (1975).

This is also inferred from high-temperature meas-
urements on CeCuqSi2 of both susceptibility I.B.C, Sales
and R. Viswanathan, J. Low Temp. Phys. 23, 449

1895

Steglich

1979



PL
AN

C
K 

EI
N

ST
EI

N
 Q

U
AN

TU
M

 

1906 Weiss

 FM

Re
se

ar
ch

 A
re

a

\

1931

Resistance Minimum

Year

Magnetism and Superconductivity

Magnetism

1963

Kondo Theory

1911

   Hg

Discovery of SC

1933

Meissner 

Effect

1957 BCS 

Theory

1933 Landau Neel

AFM1925 Pauli


SPIN

1911/21

Bohr 

van Leeuwen

1972

He-3


(Superfluid)

After K. Miyake

UBe13

Superconductivity

!
!
We tried to detect any possible magnetic ordering

below 1K. Instead we found a sharp superconducting

transition at 0.97K, which was reduced by about

0.3K only in a field of 60kOe. This suggests that the

superconductivity is not an intrinsic property of

UBe13.                                           Bell Labs, NJ 1973



PL
AN

C
K 

EI
N

ST
EI

N
 Q

U
AN

TU
M

 

1906 Weiss

 FM

Re
se

ar
ch

 A
re

a

\

1931

Resistance Minimum

Year

Magnetism and Superconductivity

Magnetism

1963

Kondo Theory

1911

   Hg

Discovery of SC

1933

Meissner 

Effect

1957 BCS 

Theory

1933 Landau Neel

AFM1925 Pauli


SPIN

1911/21

Bohr 

van Leeuwen

1972

He-3


(Superfluid)

After K. Miyake

UBe13

Superconductivity

!
!
We tried to detect any possible magnetic ordering

below 1K. Instead we found a sharp superconducting

transition at 0.97K, which was reduced by about

0.3K only in a field of 60kOe. This suggests that the

superconductivity is not an intrinsic property of

UBe13.                                           Bell Labs, NJ 1973

Ott 

1976

Steglich

1979

Fisk

1983



PL
AN

C
K 

EI
N

ST
EI

N
 Q

U
AN

TU
M

 

1906 Weiss

 FM

Re
se

ar
ch

 A
re

a

\

1931

Resistance Minimum

Magnetism and Superconductivity

Magnetism

1963

Kondo Theory

1911

   Hg

Discovery of SC

1933

Meissner 

Effect

1957 BCS 

Theory

1933 Landau Neel

AFM1925 Pauli


SPIN

1911/21

Bohr 

van Leeuwen

1972

He-3


(Superfluid)

UBe13

VOr. UMZ 50, NUMSZR 20 PHYSICAL REVIEW LETTERS 16 Mwv 1983

240—

[p,Q, cm] ~

200 '—

l60—

l20 -2oo-

80—

40—

0
0 40

~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I I I I I I I I

80 l 20 l 60 200 240 280
T [K] p~, „=(2l + 1)c(2Iz/e'kFz), (2)

where N(Ez) is the density of electronic states
per spin direction at the Fermi energy EF, p, &

is the Bohr magneton, and k& is Boltzmann's
constant. If we insert the above-quoted value for
y = 1.1 J/mole K' into Eq. (1), we obtain X =1.51
x10 ' emu/mole, in extremely good agreement
with our experimental. vat. ue of X at about 1 K,
again confirming the claim above, that we are
dealing with an electronic system that can be
described as a Fermi liquid.

The maximum resistivity is thought to be due
to incoherent scattering of conduction electrons
at the U ions and may, according to Friedel, "
be described by

FIG. 2. Temperature dependence of the electrical
resistivity of single-crystalline UBe&3. Inset: The low-
temperature part on an extended temperature scale.

superconducting transition at 0.86 K. As may be
seen from the inset in Fig. 2, the resistive tran-
siti.on to the superconducting state is much more
narrow in temperature than the transitions shown
in Fig. 1. These features are probably due to
residual inhomogeneities in the not yet optimized
samples.

For the room-temperature lattice constant of
the UBe» single crystal. s used in the present in-
vestigation we obtained 10.2607 A, resulting in a
nearest U-U distance of 5.130A in this compound.
According to Hil. l. 's earlier arguments" it may
therefore be expected that the 5f electrons of
the U ' ions are fairly well localized and with
any conventional view, certainly no occurrence
of superconductivity in such a system is antici-
pated. On the contrary, the common enhanced
increase of c~/T and X (not shown explicitly here),
as well as of p, with decreasing temperature be-
low 10 K rather indicate precursor effects to a
possibl. e magnetic phase transition.

This pronounced temperature dependence of all.
these properties just above T, makes a clear-cut
interpretation of the experimental. data somewhat
difficult. Nevertheless it is interesting to quote
some val. ues for physically important parameters
which we calculate from our experimental data.
If, as indicated above, the specific heat up to
about 1 K is interpreted as being of electronic
origin we can calculate the corresponding mag-
netic susceptibility of that electronic system us-
ing

X =2p B &(EF)= 3|zan y/" tza

where l =3 for f electrons, c=~z is the concen-
tration of scattering centers, Z is the number
of conduction electrons per atom, and kz = (3zz'Z/
0)' ' with 0 as the mean volume per atom. From
it we can calcul. ate Z and subsequently k F through

Z = [2(2 l+ 1)tzc/e2p ] ~4[@/3&2]z~4 (3)

From the experimental. value of p „we obtain
Z =0.81 per atom and k F=1.36&&10 em . Wi,thi, n
the Fermi-1. iquid model. we then deduce an effec-
tive mass of the fermions of m*= 192m, . The
still. rather high el.ectrieal resistivity at T, in-
dicates that superconducting parameters of the
present material should be cal.cul.ated in the dirty
limit. According to Hake, '~ (BH,2/&T)r is then
given by

(&H 2/&T)r = —4.48&104py, (4)

wherey is given in cgs units and p in 0 cm. In-
serting our experimental values for y and (BH„/
&T)r we obtain p =42 p,Q cm, the expected value
of the residual resistivity for T-0. Once ongoing
additional experiments give more information on
other supercondueting parameters of UBe» we
shall discuss them by comparing them with the
presently available normal- state properties.

In conclusion we feel. that the experimental. data
presented and described above show convincingly
that, as was anticipated, CeCu, Si, is not a singu-
larity of nature. " It seems again quite cl.ear that
the presence of f electrons is essential for the
occurrence of superconductivity in UBe», since
no traces of superconductivity were found in
LaBe», LuBe», and ThBe» down to 0.45 K.'
Since UBe» shows al. l. the interesting features
not onl.y in polycrystalline but also in its single-
crystal. line form at zero pressure, "this mater-
ial. is very well suited to investigation of the mi-
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FIGURE 1. Depicting localized 4 f , 5 f and 3d atomic wavefunctions.

represented by a single, neutral spin operator

�S =
h̄

2
�σ

where �σ denotes the Pauli matrices of the localized electron. Localized moments de-
velop within highly localized atomic wavefunctions. The most severely localized wave-
functions in nature occur inside the partially filled 4 f shell of rare earth compounds
(Fig. 1) such as cerium (Ce) or Ytterbium (Yb). Local moment formation also occurs
in the localized 5 f levels of actinide atoms as uranium and the slightly more delocal-
ized 3d levels of first row transition metals(Fig. 1). Localized moments are the origin
of magnetism in insulators, and in metals their interaction with the mobile charge car-
riers profoundly changes the nature of the metallic state via a mechanism known as the
“Kondo effect”.

In the past decade, the physics of local moment formation has also reappeared in
connection with quantum dots, where it gives rise to the Coulomb blockade phenomenon
and the non-equilibrium Kondo effect.
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Lev Landau vs Ken Wilson: 
!

Criticality as a driver of new States of Matter
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Heavy fermions: electrons at the edge of magnetism 113
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Figure 15. Doniach diagram, illustrating the antiferromagnetic
regime, where TK < TRKKY and the heavy-fermion regime, where
TK > TRKKY. Experiment has told us in recent times that the tran-
sition between these two regimes is a quantum critical point. The
effective Fermi temperature of the heavy Fermi liquid is indicated
as a solid line. Circumstantial experimental evidence suggests that
this scale drops to zero at the antiferromagnetic quantum critical
point, but this is still a matter of controversy.

Using topology, and certain basic assumptions about the
response of a Fermi liquid to a flux, Oshikawa (2000) was
able to short circuit this tortuous path of reasoning, proving
that the Luttinger relationship holds for the Kondo lattice
model without reference to its finite U origins.

There are, however, aspects to the Doniach argument that
leave cause for concern:

• It is purely a comparison of energy scales and does
not provide a detailed mechanism connecting the heavy-
fermion phase to the local moment AFM.

• Simple estimates of the value of Jρ required for heavy-
electron behavior give an artificially large value of the
coupling constant Jρ ∼ 1. This issue was later resolved
by the observation that large spin degeneracy 2j + 1 of
the spin-orbit coupled moments, which can be as large
as N = 8 in Yb materials, enhances the rate of scaling
to strong coupling, leading to a Kondo temperature
(Coleman, 1983)

TK = D(NJρ)
1
N exp

[
− 1

NJρ

]
(66)

Since the scaling enhancement effect stretches out across
decades of energy, it is largely robust against crystal
fields (Mekata et al., 1986).

• Nozières’ exhaustion paradox (Nozières, 1985). If one
considers each local moment to be magnetically screened
by a cloud of low-energy electrons within an energy
TK of the Fermi energy, one arrives at an ‘exhaus-
tion paradox’. In this interpretation, the number of
electrons available to screen each local moment is of
the order TK/D ≪ 1 per unit cell. Once the concen-
tration of magnetic impurities exceeds TK

D
∼ 0.1% for

(TK = 10 K, D = 104 K), the supply of screening elec-
trons would be exhausted, logically excluding any sort of
dense Kondo effect. Experimentally, features of single-
ion Kondo behavior persist to much higher densities.
The resolution to the exhaustion paradox lies in the more
modern perception that spin screening of local moments
extends up in energy, from the Kondo scale TK out to the
bandwidth. In this respect, Kondo screening is reminis-
cent of Cooper pair formation, which involves electron
states that extend upward from the gap energy to the
Debye cutoff. From this perspective, the Kondo length
scale ξ ∼ vF/TK is analogous to the coherence length of
a superconductor (Burdin, Georges and Grempel, 2000),
defining the length scale over which the conduction spin
and local moment magnetization are coherent without
setting any limit on the degree to which the correlation
clouds can overlap (Figure 16).

2.3 The large N Kondo lattice

2.3.1 Gauge theories, large N, and strong correlation

The ‘standard model’ for metals is built upon the expansion
to high orders in the strength of the interaction. This
approach, pioneered by Landau, and later formulated in the
language of finite temperature perturbation theory by Landau
(1957), Pitaevskii (1960), Luttinger and Ward (1960), and
Nozières and Luttinger (1962), provides the foundation for
our understanding of metallic behavior in most conventional
metals.

The development of a parallel formalism and approach
for strongly correlated electron systems is still in its infancy,
and there is no universally accepted approach. At the heart
of the problem are the large interactions, which effectively
remove large tracts of Hilbert space and impose strong
constraints on the low-energy electronic dynamics. One way
to describe these highly constrained Hilbert spaces is through
the use of gauge theories. When written as a field theory,
local constraints manifest themselves as locally conserved
quantities. General principles link these conserved quantities

Mott, 1973

Doniach 1976

Wilson 1975

New Fixed Points

Magnetism
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FIG. 1. The electrical resistivity p as a function of tem-
perature (a) and inverse temperature (b). (b) Q = 1 bar,
Q = 24 kbar, = 25 kbar, = 33 kbar, A = 45 kbar, and
A = 53 kbar. The solid lines in (b) are fits by the function
[p(T)] ' = [po(P)] ' + (p„,(P) exp[A(P)/k&T]) ', described
in the text.
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FIG. 2. The pressure dependences of the activation gap 5 (a)
and residual carrier density no = I/R (T =H0) (b). Dashed line
indicates approximate pressure for disappearance of A. Solid
lines are guides for the eye.

linearly -0.5 K/kbar from its ambient pressure value of
41 K. Above 45 kbar, the resistivity is metallic and it is
no longer possible to extract an activation gap.

Our measurements indicate a gap instability at a critical
pressure P,. between 45 and 53 kbar, in disagreement with
the conclusions of previous workers [5,6], who found
that 5 vanished continuously near 60 kbar. In one of
these studies [5] the sample was of demonstrably lower
quality than our own, with a significantly smaller ambient
pressure 6 = 33 K and a much smaller po —10 mA cm,
both symptomatic of Sm vacancies or defects introduced
in powdering [8]. Our measurements suggest that the gap
instability is a feature only of the highest quality samples,
as P,. increases markedly with reduced sample quality,
passing out of our experimental pressure window of
180 kbar for po ~ 0.1 A cm. We further believe that the
simple activation fits used to determine 6 in both earlier
experiments were overly weighted by the temperature
independent resistivity below -3.5 K, particularly near
P, . Figure 1(b) demonstrates that near P, the range
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FIG. 3. The absolute value of the Hall constant RH of SmB6
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of temperatures over which simple activation fits are
linear becomes increasingly limited and problematic to
define with increased pressure. In contrast, our parallel
resistor formulation provides uniformly good fits over this
pressure range, and consequently yield a more accurate
determination of A.

Since there is no evidence in SmB6 for a discontinuous
structural change at or below 60 kbar [9], the sudden dis-
appearance of 5 suggests that it is not a simple hybridiza-
tion gap, for in that case the insulator-metal transition
occurs by band crossing and the gap is suppressed con-
tinuously to zero. A valence instability can be similarly
discounted, as high pressure x-ray absorption measure-
ments [10] find that the Sm valence increases smoothly
from +2.6 to +2.75 between 1 bar and 60 kbar.

We have used Hall effect measurements to study the
evolution of the camers in the vicinity of P, The Hall
constant RH is plotted as a function of 1/T in Fig. 3 for
pressures ranging from 1 bar to 66 kbar. We find that
RH is negative for temperatures T between 1.2 and 40 K
and at all pressures, as well as independent of magnetic
fields as large as 18 T. As has been previously noted at
1 bar [11], RH is both large and extremely temperature
dependent with a maximum at 4 K, at each pressure
becoming temperature independent below -3 K. It has
been proposed [12] that this temperature dependence
for RH is characteristic of Kondo lattices, rejecting
a crossover from high temperature incoherent to low
temperature coherent skew scattering. However, similar
maxima in RH(T) occur in doped semiconductors as in-
gap impurity states dominate intrinsic activated processes
with reduced temperature [13].

We do not address the full temperature dependence
of RH here, instead limiting our discussion to the
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FIG. 3: Fermi surface and dispersion maps of SmB6. (a) Fermi surface plot of SmB6

measured by 7 eV LASER source at temperature of 7 K. A small � pocket and a large X pocket

are observed. A big elliptical and a small circular shaped black dash lines around X and � points

are guide for the eyes. Inset shows a schematic plot of Fermi surface in the first Brillouin zone. (b)

Electronic dispersion map (left) and its energy distribution curves (EDCs) for � pocket. (c) same

as (b) for X band. (d) Comparison of integrated EDC for � and X band. A gap value of about 15

meV is observed in both cases.
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indicates approximate pressure for disappearance of A. Solid
lines are guides for the eye.

linearly -0.5 K/kbar from its ambient pressure value of
41 K. Above 45 kbar, the resistivity is metallic and it is
no longer possible to extract an activation gap.

Our measurements indicate a gap instability at a critical
pressure P,. between 45 and 53 kbar, in disagreement with
the conclusions of previous workers [5,6], who found
that 5 vanished continuously near 60 kbar. In one of
these studies [5] the sample was of demonstrably lower
quality than our own, with a significantly smaller ambient
pressure 6 = 33 K and a much smaller po —10 mA cm,
both symptomatic of Sm vacancies or defects introduced
in powdering [8]. Our measurements suggest that the gap
instability is a feature only of the highest quality samples,
as P,. increases markedly with reduced sample quality,
passing out of our experimental pressure window of
180 kbar for po ~ 0.1 A cm. We further believe that the
simple activation fits used to determine 6 in both earlier
experiments were overly weighted by the temperature
independent resistivity below -3.5 K, particularly near
P, . Figure 1(b) demonstrates that near P, the range
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of temperatures over which simple activation fits are
linear becomes increasingly limited and problematic to
define with increased pressure. In contrast, our parallel
resistor formulation provides uniformly good fits over this
pressure range, and consequently yield a more accurate
determination of A.

Since there is no evidence in SmB6 for a discontinuous
structural change at or below 60 kbar [9], the sudden dis-
appearance of 5 suggests that it is not a simple hybridiza-
tion gap, for in that case the insulator-metal transition
occurs by band crossing and the gap is suppressed con-
tinuously to zero. A valence instability can be similarly
discounted, as high pressure x-ray absorption measure-
ments [10] find that the Sm valence increases smoothly
from +2.6 to +2.75 between 1 bar and 60 kbar.

We have used Hall effect measurements to study the
evolution of the camers in the vicinity of P, The Hall
constant RH is plotted as a function of 1/T in Fig. 3 for
pressures ranging from 1 bar to 66 kbar. We find that
RH is negative for temperatures T between 1.2 and 40 K
and at all pressures, as well as independent of magnetic
fields as large as 18 T. As has been previously noted at
1 bar [11], RH is both large and extremely temperature
dependent with a maximum at 4 K, at each pressure
becoming temperature independent below -3 K. It has
been proposed [12] that this temperature dependence
for RH is characteristic of Kondo lattices, rejecting
a crossover from high temperature incoherent to low
temperature coherent skew scattering. However, similar
maxima in RH(T) occur in doped semiconductors as in-
gap impurity states dominate intrinsic activated processes
with reduced temperature [13].

We do not address the full temperature dependence
of RH here, instead limiting our discussion to the
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FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
µ

2
B
2

(g2
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sin ✓)H alongH =
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H defines an e↵ective
g-factor
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that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c
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=

�
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ga
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2

.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a

�b
=

�
gc

ga

�
2

made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu

2

Si
2

. The finding of a large
anisotropic impurity susceptibility (�c

�a
⇠ 140) in the di-
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FIG. 3: Fermi surface and dispersion maps of SmB6. (a) Fermi surface plot of SmB6

measured by 7 eV LASER source at temperature of 7 K. A small � pocket and a large X pocket

are observed. A big elliptical and a small circular shaped black dash lines around X and � points

are guide for the eyes. Inset shows a schematic plot of Fermi surface in the first Brillouin zone. (b)

Electronic dispersion map (left) and its energy distribution curves (EDCs) for � pocket. (c) same

as (b) for X band. (d) Comparison of integrated EDC for � and X band. A gap value of about 15

meV is observed in both cases.
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indicates approximate pressure for disappearance of A. Solid
lines are guides for the eye.

linearly -0.5 K/kbar from its ambient pressure value of
41 K. Above 45 kbar, the resistivity is metallic and it is
no longer possible to extract an activation gap.

Our measurements indicate a gap instability at a critical
pressure P,. between 45 and 53 kbar, in disagreement with
the conclusions of previous workers [5,6], who found
that 5 vanished continuously near 60 kbar. In one of
these studies [5] the sample was of demonstrably lower
quality than our own, with a significantly smaller ambient
pressure 6 = 33 K and a much smaller po —10 mA cm,
both symptomatic of Sm vacancies or defects introduced
in powdering [8]. Our measurements suggest that the gap
instability is a feature only of the highest quality samples,
as P,. increases markedly with reduced sample quality,
passing out of our experimental pressure window of
180 kbar for po ~ 0.1 A cm. We further believe that the
simple activation fits used to determine 6 in both earlier
experiments were overly weighted by the temperature
independent resistivity below -3.5 K, particularly near
P, . Figure 1(b) demonstrates that near P, the range
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as a function of inverse temperature.

of temperatures over which simple activation fits are
linear becomes increasingly limited and problematic to
define with increased pressure. In contrast, our parallel
resistor formulation provides uniformly good fits over this
pressure range, and consequently yield a more accurate
determination of A.

Since there is no evidence in SmB6 for a discontinuous
structural change at or below 60 kbar [9], the sudden dis-
appearance of 5 suggests that it is not a simple hybridiza-
tion gap, for in that case the insulator-metal transition
occurs by band crossing and the gap is suppressed con-
tinuously to zero. A valence instability can be similarly
discounted, as high pressure x-ray absorption measure-
ments [10] find that the Sm valence increases smoothly
from +2.6 to +2.75 between 1 bar and 60 kbar.

We have used Hall effect measurements to study the
evolution of the camers in the vicinity of P, The Hall
constant RH is plotted as a function of 1/T in Fig. 3 for
pressures ranging from 1 bar to 66 kbar. We find that
RH is negative for temperatures T between 1.2 and 40 K
and at all pressures, as well as independent of magnetic
fields as large as 18 T. As has been previously noted at
1 bar [11], RH is both large and extremely temperature
dependent with a maximum at 4 K, at each pressure
becoming temperature independent below -3 K. It has
been proposed [12] that this temperature dependence
for RH is characteristic of Kondo lattices, rejecting
a crossover from high temperature incoherent to low
temperature coherent skew scattering. However, similar
maxima in RH(T) occur in doped semiconductors as in-
gap impurity states dominate intrinsic activated processes
with reduced temperature [13].

We do not address the full temperature dependence
of RH here, instead limiting our discussion to the
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FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
µ

2
B
2

(g2
a

cos ✓, 0, g2
c

sin ✓)H alongH =
H(cos ✓, 0, sin ✓) [where ⇢ is the electronic density-of-

states], setting M · Ĥ = ⇢
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FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].
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Fig. 2) together with the prediction (lines) for di↵erent
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made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�
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& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g
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at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu
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FIG. 3: Fermi surface and dispersion maps of SmB6. (a) Fermi surface plot of SmB6

measured by 7 eV LASER source at temperature of 7 K. A small � pocket and a large X pocket

are observed. A big elliptical and a small circular shaped black dash lines around X and � points

are guide for the eyes. Inset shows a schematic plot of Fermi surface in the first Brillouin zone. (b)

Electronic dispersion map (left) and its energy distribution curves (EDCs) for � pocket. (c) same

as (b) for X band. (d) Comparison of integrated EDC for � and X band. A gap value of about 15

meV is observed in both cases.
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FIG. 2. The pressure dependences of the activation gap 5 (a)
and residual carrier density no = I/R (T =H0) (b). Dashed line
indicates approximate pressure for disappearance of A. Solid
lines are guides for the eye.

linearly -0.5 K/kbar from its ambient pressure value of
41 K. Above 45 kbar, the resistivity is metallic and it is
no longer possible to extract an activation gap.

Our measurements indicate a gap instability at a critical
pressure P,. between 45 and 53 kbar, in disagreement with
the conclusions of previous workers [5,6], who found
that 5 vanished continuously near 60 kbar. In one of
these studies [5] the sample was of demonstrably lower
quality than our own, with a significantly smaller ambient
pressure 6 = 33 K and a much smaller po —10 mA cm,
both symptomatic of Sm vacancies or defects introduced
in powdering [8]. Our measurements suggest that the gap
instability is a feature only of the highest quality samples,
as P,. increases markedly with reduced sample quality,
passing out of our experimental pressure window of
180 kbar for po ~ 0.1 A cm. We further believe that the
simple activation fits used to determine 6 in both earlier
experiments were overly weighted by the temperature
independent resistivity below -3.5 K, particularly near
P, . Figure 1(b) demonstrates that near P, the range
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of temperatures over which simple activation fits are
linear becomes increasingly limited and problematic to
define with increased pressure. In contrast, our parallel
resistor formulation provides uniformly good fits over this
pressure range, and consequently yield a more accurate
determination of A.

Since there is no evidence in SmB6 for a discontinuous
structural change at or below 60 kbar [9], the sudden dis-
appearance of 5 suggests that it is not a simple hybridiza-
tion gap, for in that case the insulator-metal transition
occurs by band crossing and the gap is suppressed con-
tinuously to zero. A valence instability can be similarly
discounted, as high pressure x-ray absorption measure-
ments [10] find that the Sm valence increases smoothly
from +2.6 to +2.75 between 1 bar and 60 kbar.

We have used Hall effect measurements to study the
evolution of the camers in the vicinity of P, The Hall
constant RH is plotted as a function of 1/T in Fig. 3 for
pressures ranging from 1 bar to 66 kbar. We find that
RH is negative for temperatures T between 1.2 and 40 K
and at all pressures, as well as independent of magnetic
fields as large as 18 T. As has been previously noted at
1 bar [11], RH is both large and extremely temperature
dependent with a maximum at 4 K, at each pressure
becoming temperature independent below -3 K. It has
been proposed [12] that this temperature dependence
for RH is characteristic of Kondo lattices, rejecting
a crossover from high temperature incoherent to low
temperature coherent skew scattering. However, similar
maxima in RH(T) occur in doped semiconductors as in-
gap impurity states dominate intrinsic activated processes
with reduced temperature [13].

We do not address the full temperature dependence
of RH here, instead limiting our discussion to the

1630

Kondo Insulators

Sm2.7+

B

SmB6

 Altarawneh et al., (2012)

2

FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu
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to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
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FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c
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.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent
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made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a
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& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu
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Si
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. The finding of a large
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FIG. 1. The electrical resistivity p as a function of tem-
perature (a) and inverse temperature (b). (b) Q = 1 bar,
Q = 24 kbar, = 25 kbar, = 33 kbar, A = 45 kbar, and
A = 53 kbar. The solid lines in (b) are fits by the function
[p(T)] ' = [po(P)] ' + (p„,(P) exp[A(P)/k&T]) ', described
in the text.
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FIG. 2. The pressure dependences of the activation gap 5 (a)
and residual carrier density no = I/R (T =H0) (b). Dashed line
indicates approximate pressure for disappearance of A. Solid
lines are guides for the eye.

linearly -0.5 K/kbar from its ambient pressure value of
41 K. Above 45 kbar, the resistivity is metallic and it is
no longer possible to extract an activation gap.

Our measurements indicate a gap instability at a critical
pressure P,. between 45 and 53 kbar, in disagreement with
the conclusions of previous workers [5,6], who found
that 5 vanished continuously near 60 kbar. In one of
these studies [5] the sample was of demonstrably lower
quality than our own, with a significantly smaller ambient
pressure 6 = 33 K and a much smaller po —10 mA cm,
both symptomatic of Sm vacancies or defects introduced
in powdering [8]. Our measurements suggest that the gap
instability is a feature only of the highest quality samples,
as P,. increases markedly with reduced sample quality,
passing out of our experimental pressure window of
180 kbar for po ~ 0.1 A cm. We further believe that the
simple activation fits used to determine 6 in both earlier
experiments were overly weighted by the temperature
independent resistivity below -3.5 K, particularly near
P, . Figure 1(b) demonstrates that near P, the range
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FIG. 3. The absolute value of the Hall constant RH of SmB6
as a function of inverse temperature.

of temperatures over which simple activation fits are
linear becomes increasingly limited and problematic to
define with increased pressure. In contrast, our parallel
resistor formulation provides uniformly good fits over this
pressure range, and consequently yield a more accurate
determination of A.

Since there is no evidence in SmB6 for a discontinuous
structural change at or below 60 kbar [9], the sudden dis-
appearance of 5 suggests that it is not a simple hybridiza-
tion gap, for in that case the insulator-metal transition
occurs by band crossing and the gap is suppressed con-
tinuously to zero. A valence instability can be similarly
discounted, as high pressure x-ray absorption measure-
ments [10] find that the Sm valence increases smoothly
from +2.6 to +2.75 between 1 bar and 60 kbar.

We have used Hall effect measurements to study the
evolution of the camers in the vicinity of P, The Hall
constant RH is plotted as a function of 1/T in Fig. 3 for
pressures ranging from 1 bar to 66 kbar. We find that
RH is negative for temperatures T between 1.2 and 40 K
and at all pressures, as well as independent of magnetic
fields as large as 18 T. As has been previously noted at
1 bar [11], RH is both large and extremely temperature
dependent with a maximum at 4 K, at each pressure
becoming temperature independent below -3 K. It has
been proposed [12] that this temperature dependence
for RH is characteristic of Kondo lattices, rejecting
a crossover from high temperature incoherent to low
temperature coherent skew scattering. However, similar
maxima in RH(T) occur in doped semiconductors as in-
gap impurity states dominate intrinsic activated processes
with reduced temperature [13].

We do not address the full temperature dependence
of RH here, instead limiting our discussion to the
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FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
µ
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B
2

(g2
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sin ✓)H alongH =
H(cos ✓, 0, sin ✓) [where ⇢ is the electronic density-of-
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⇤
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H defines an e↵ective
g-factor
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=
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sin2 ✓ + g2
a
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that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c
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�
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ga
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.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a
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=

�
gc
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�
2

made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu

2

Si
2

. The finding of a large
anisotropic impurity susceptibility (�c

�a
⇠ 140) in the di-
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FIG. 1. The electrical resistivity p as a function of tem-
perature (a) and inverse temperature (b). (b) Q = 1 bar,
Q = 24 kbar, = 25 kbar, = 33 kbar, A = 45 kbar, and
A = 53 kbar. The solid lines in (b) are fits by the function
[p(T)] ' = [po(P)] ' + (p„,(P) exp[A(P)/k&T]) ', described
in the text.
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FIG. 2. The pressure dependences of the activation gap 5 (a)
and residual carrier density no = I/R (T =H0) (b). Dashed line
indicates approximate pressure for disappearance of A. Solid
lines are guides for the eye.

linearly -0.5 K/kbar from its ambient pressure value of
41 K. Above 45 kbar, the resistivity is metallic and it is
no longer possible to extract an activation gap.

Our measurements indicate a gap instability at a critical
pressure P,. between 45 and 53 kbar, in disagreement with
the conclusions of previous workers [5,6], who found
that 5 vanished continuously near 60 kbar. In one of
these studies [5] the sample was of demonstrably lower
quality than our own, with a significantly smaller ambient
pressure 6 = 33 K and a much smaller po —10 mA cm,
both symptomatic of Sm vacancies or defects introduced
in powdering [8]. Our measurements suggest that the gap
instability is a feature only of the highest quality samples,
as P,. increases markedly with reduced sample quality,
passing out of our experimental pressure window of
180 kbar for po ~ 0.1 A cm. We further believe that the
simple activation fits used to determine 6 in both earlier
experiments were overly weighted by the temperature
independent resistivity below -3.5 K, particularly near
P, . Figure 1(b) demonstrates that near P, the range
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FIG. 3. The absolute value of the Hall constant RH of SmB6
as a function of inverse temperature.

of temperatures over which simple activation fits are
linear becomes increasingly limited and problematic to
define with increased pressure. In contrast, our parallel
resistor formulation provides uniformly good fits over this
pressure range, and consequently yield a more accurate
determination of A.

Since there is no evidence in SmB6 for a discontinuous
structural change at or below 60 kbar [9], the sudden dis-
appearance of 5 suggests that it is not a simple hybridiza-
tion gap, for in that case the insulator-metal transition
occurs by band crossing and the gap is suppressed con-
tinuously to zero. A valence instability can be similarly
discounted, as high pressure x-ray absorption measure-
ments [10] find that the Sm valence increases smoothly
from +2.6 to +2.75 between 1 bar and 60 kbar.

We have used Hall effect measurements to study the
evolution of the camers in the vicinity of P, The Hall
constant RH is plotted as a function of 1/T in Fig. 3 for
pressures ranging from 1 bar to 66 kbar. We find that
RH is negative for temperatures T between 1.2 and 40 K
and at all pressures, as well as independent of magnetic
fields as large as 18 T. As has been previously noted at
1 bar [11], RH is both large and extremely temperature
dependent with a maximum at 4 K, at each pressure
becoming temperature independent below -3 K. It has
been proposed [12] that this temperature dependence
for RH is characteristic of Kondo lattices, rejecting
a crossover from high temperature incoherent to low
temperature coherent skew scattering. However, similar
maxima in RH(T) occur in doped semiconductors as in-
gap impurity states dominate intrinsic activated processes
with reduced temperature [13].

We do not address the full temperature dependence
of RH here, instead limiting our discussion to the
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FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
µ
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(g2
a

cos ✓, 0, g2
c

sin ✓)H alongH =
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H defines an e↵ective
g-factor
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=
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that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c

�a
=

�
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ga
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.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a
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=

�
gc

ga

�
2

made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu

2

Si
2

. The finding of a large
anisotropic impurity susceptibility (�c
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FIG. 1. The electrical resistivity p as a function of tem-
perature (a) and inverse temperature (b). (b) Q = 1 bar,
Q = 24 kbar, = 25 kbar, = 33 kbar, A = 45 kbar, and
A = 53 kbar. The solid lines in (b) are fits by the function
[p(T)] ' = [po(P)] ' + (p„,(P) exp[A(P)/k&T]) ', described
in the text.
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FIG. 2. The pressure dependences of the activation gap 5 (a)
and residual carrier density no = I/R (T =H0) (b). Dashed line
indicates approximate pressure for disappearance of A. Solid
lines are guides for the eye.

linearly -0.5 K/kbar from its ambient pressure value of
41 K. Above 45 kbar, the resistivity is metallic and it is
no longer possible to extract an activation gap.

Our measurements indicate a gap instability at a critical
pressure P,. between 45 and 53 kbar, in disagreement with
the conclusions of previous workers [5,6], who found
that 5 vanished continuously near 60 kbar. In one of
these studies [5] the sample was of demonstrably lower
quality than our own, with a significantly smaller ambient
pressure 6 = 33 K and a much smaller po —10 mA cm,
both symptomatic of Sm vacancies or defects introduced
in powdering [8]. Our measurements suggest that the gap
instability is a feature only of the highest quality samples,
as P,. increases markedly with reduced sample quality,
passing out of our experimental pressure window of
180 kbar for po ~ 0.1 A cm. We further believe that the
simple activation fits used to determine 6 in both earlier
experiments were overly weighted by the temperature
independent resistivity below -3.5 K, particularly near
P, . Figure 1(b) demonstrates that near P, the range
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FIG. 3. The absolute value of the Hall constant RH of SmB6
as a function of inverse temperature.

of temperatures over which simple activation fits are
linear becomes increasingly limited and problematic to
define with increased pressure. In contrast, our parallel
resistor formulation provides uniformly good fits over this
pressure range, and consequently yield a more accurate
determination of A.

Since there is no evidence in SmB6 for a discontinuous
structural change at or below 60 kbar [9], the sudden dis-
appearance of 5 suggests that it is not a simple hybridiza-
tion gap, for in that case the insulator-metal transition
occurs by band crossing and the gap is suppressed con-
tinuously to zero. A valence instability can be similarly
discounted, as high pressure x-ray absorption measure-
ments [10] find that the Sm valence increases smoothly
from +2.6 to +2.75 between 1 bar and 60 kbar.

We have used Hall effect measurements to study the
evolution of the camers in the vicinity of P, The Hall
constant RH is plotted as a function of 1/T in Fig. 3 for
pressures ranging from 1 bar to 66 kbar. We find that
RH is negative for temperatures T between 1.2 and 40 K
and at all pressures, as well as independent of magnetic
fields as large as 18 T. As has been previously noted at
1 bar [11], RH is both large and extremely temperature
dependent with a maximum at 4 K, at each pressure
becoming temperature independent below -3 K. It has
been proposed [12] that this temperature dependence
for RH is characteristic of Kondo lattices, rejecting
a crossover from high temperature incoherent to low
temperature coherent skew scattering. However, similar
maxima in RH(T) occur in doped semiconductors as in-
gap impurity states dominate intrinsic activated processes
with reduced temperature [13].

We do not address the full temperature dependence
of RH here, instead limiting our discussion to the
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FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
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(g2
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that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c
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To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a
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=
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gc
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made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
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in good thermal contact with both the pressure cell and the sample
leads. To try to ensure adequate pressure and temperature homo-
geneity, a slow cooling rate from room temperature, typically
0.2 K min−1, was employed. Measurements were carried out from
room temperature to the millikelvin temperature range within a
pumped 4He cryostat, an adiabatic demagnetization refrigerator
and a top-loading dilution refrigerator.

Our key experimental results are summarized in Figs 2, 3. In the
materials studied, the antiferromagnetic ordering temperature TN,
at which there is a discontinuity in the gradient of the resistivity r
(not shown), was found to decrease slowly and monotonically with
increasing pressure, p. Over a wide region of the CePd2Si2 phase
diagram, TN is close to being linear in p, and extrapolation from this
regime to absolute zero allows us to define an effective critical
pressure pc of 28 kbar. In CeIn3, the variation of TN with p is more
rapid, and we estimate pc to be ,26 kbar. The behaviour of TN as it
falls below 1 K has not been resolved in these studies.

In the case of CePd2Si2, the resistivity r does not exhibit the
standard T 2 form expected of a Fermi liquid. Careful analysis shows
that near pc it in fact varies as T 1.260.1 over nearly two decades in
temperature down to the millikelvin range (Fig. 2, inset). Below
500 mK and in a narrow region near pc, we observe an abrupt drop
in r to below the detection limit, consistent with the occurrence of a
superconducting transition, as discovered during our initial obser-
vations in September 199437,38. At a given pressure, this transition
may be characterized by a temperature Tc, at which r falls to 50% of
its normal state value. The width of this transition grows markedly
as the pressure is varied away from pc. We stress that experimentally,
r is found to actually vanish only close to pc. By energizing a Nb–Ti
coil placed in our pressure cell, it was established that the upper
critical field Bc2 varies as dBc2ðpcÞ=dT, 2 6 T=K near Tc. This is a
high rate of change for such a small value of Tc—much higher than
the expected figure for a conventional superconductor. However,
it is the same order of magnitude as the value found in the
heavy fermion superconductor CeCu2Si2 (ref. 27). We note that in
a traditional analysis, the slope of Bc2(T ) at Tc implies a super-
conducting coherence length of 150 Å, a value which is below the
value of lmfp that we estimate for our best samples. No super-
conductivity has been observed in specimens with residual resistiv-
ities above several mQ cm, namely those with an estimated lmfp that is

substantially below y (for a similar example, see ref. 39).
In the case of cubic CeIn3, we find that very close to pc the normal

state resistivity assumes a non-Fermi liquid form, but this time40,41

varies as T 1.660.2. Thus, near their respective critical pressures, the
resistivity exponent in the cubic material is significantly higher than
it is in tetragonal CePd2Si2. In a very narrow region near pc, we again
see a sharp drop in r to below the detection limit, but at somewhat
lower temperatures than the transitions observed in CePd2Si2. This
is consistent with the occurrence of superconductivity in yet
another cerium compound on the edge of long-range magnetic
order40,41.

We stress that in each material studied, both the form of the
temperature dependence of the normal state resistivity, and the
nature and existence of the superconducting transition are sensitive
to sample quality. In particular, the superconducting transitions
appear only in samples with residual resistivities in the low mQ cm
range, as expected in the case of anisotropic pair states with
coherence lengths of the order of a few hundred ångströms.

Magnetic interactions
The observed temperature–pressure phase diagrams for both
CePd2Si2 and CeIn3 are at least qualitatively consistent with what
is expected in terms of the magnetic interactions model (Fig. 1). We
now consider a more quantitative comparison. In the following it is
assumed that the magnetic transition is continuous and that n is
close to nc. The incoherent scattering of quasiparticles via magnetic
interactions is then expected to lead to a resistivity of the form

r ¼ r0 þ ATx ð1Þ

where r0 and A are constants and the exponent x is smaller than two,
that is, smaller that it is in a conventional Fermi liquid at low T
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c

in pure samples is

expected to be a natural consequence of the same model.

Mathur, Lonzarich  et al (1998)
 

10K AFM
CeIn3



“115” Family

0.1K 

1K 

10K 

CeRhIn5   (2K) 
CeCoIn5   (2.5K) 

NpAl2Pd5 (4.5K) 

PuCoGa5 (18.5K) 

PuRhGa5  (9K) 

Nature © Macmillan Publishers Ltd 1998

8

in good thermal contact with both the pressure cell and the sample
leads. To try to ensure adequate pressure and temperature homo-
geneity, a slow cooling rate from room temperature, typically
0.2 K min−1, was employed. Measurements were carried out from
room temperature to the millikelvin temperature range within a
pumped 4He cryostat, an adiabatic demagnetization refrigerator
and a top-loading dilution refrigerator.

Our key experimental results are summarized in Figs 2, 3. In the
materials studied, the antiferromagnetic ordering temperature TN,
at which there is a discontinuity in the gradient of the resistivity r
(not shown), was found to decrease slowly and monotonically with
increasing pressure, p. Over a wide region of the CePd2Si2 phase
diagram, TN is close to being linear in p, and extrapolation from this
regime to absolute zero allows us to define an effective critical
pressure pc of 28 kbar. In CeIn3, the variation of TN with p is more
rapid, and we estimate pc to be ,26 kbar. The behaviour of TN as it
falls below 1 K has not been resolved in these studies.

In the case of CePd2Si2, the resistivity r does not exhibit the
standard T 2 form expected of a Fermi liquid. Careful analysis shows
that near pc it in fact varies as T 1.260.1 over nearly two decades in
temperature down to the millikelvin range (Fig. 2, inset). Below
500 mK and in a narrow region near pc, we observe an abrupt drop
in r to below the detection limit, consistent with the occurrence of a
superconducting transition, as discovered during our initial obser-
vations in September 199437,38. At a given pressure, this transition
may be characterized by a temperature Tc, at which r falls to 50% of
its normal state value. The width of this transition grows markedly
as the pressure is varied away from pc. We stress that experimentally,
r is found to actually vanish only close to pc. By energizing a Nb–Ti
coil placed in our pressure cell, it was established that the upper
critical field Bc2 varies as dBc2ðpcÞ=dT, 2 6 T=K near Tc. This is a
high rate of change for such a small value of Tc—much higher than
the expected figure for a conventional superconductor. However,
it is the same order of magnitude as the value found in the
heavy fermion superconductor CeCu2Si2 (ref. 27). We note that in
a traditional analysis, the slope of Bc2(T ) at Tc implies a super-
conducting coherence length of 150 Å, a value which is below the
value of lmfp that we estimate for our best samples. No super-
conductivity has been observed in specimens with residual resistiv-
ities above several mQ cm, namely those with an estimated lmfp that is

substantially below y (for a similar example, see ref. 39).
In the case of cubic CeIn3, we find that very close to pc the normal

state resistivity assumes a non-Fermi liquid form, but this time40,41

varies as T 1.660.2. Thus, near their respective critical pressures, the
resistivity exponent in the cubic material is significantly higher than
it is in tetragonal CePd2Si2. In a very narrow region near pc, we again
see a sharp drop in r to below the detection limit, but at somewhat
lower temperatures than the transitions observed in CePd2Si2. This
is consistent with the occurrence of superconductivity in yet
another cerium compound on the edge of long-range magnetic
order40,41.

We stress that in each material studied, both the form of the
temperature dependence of the normal state resistivity, and the
nature and existence of the superconducting transition are sensitive
to sample quality. In particular, the superconducting transitions
appear only in samples with residual resistivities in the low mQ cm
range, as expected in the case of anisotropic pair states with
coherence lengths of the order of a few hundred ångströms.

Magnetic interactions
The observed temperature–pressure phase diagrams for both
CePd2Si2 and CeIn3 are at least qualitatively consistent with what
is expected in terms of the magnetic interactions model (Fig. 1). We
now consider a more quantitative comparison. In the following it is
assumed that the magnetic transition is continuous and that n is
close to nc. The incoherent scattering of quasiparticles via magnetic
interactions is then expected to lead to a resistivity of the form

r ¼ r0 þ ATx ð1Þ

where r0 and A are constants and the exponent x is smaller than two,
that is, smaller that it is in a conventional Fermi liquid at low T
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in good thermal contact with both the pressure cell and the sample
leads. To try to ensure adequate pressure and temperature homo-
geneity, a slow cooling rate from room temperature, typically
0.2 K min−1, was employed. Measurements were carried out from
room temperature to the millikelvin temperature range within a
pumped 4He cryostat, an adiabatic demagnetization refrigerator
and a top-loading dilution refrigerator.

Our key experimental results are summarized in Figs 2, 3. In the
materials studied, the antiferromagnetic ordering temperature TN,
at which there is a discontinuity in the gradient of the resistivity r
(not shown), was found to decrease slowly and monotonically with
increasing pressure, p. Over a wide region of the CePd2Si2 phase
diagram, TN is close to being linear in p, and extrapolation from this
regime to absolute zero allows us to define an effective critical
pressure pc of 28 kbar. In CeIn3, the variation of TN with p is more
rapid, and we estimate pc to be ,26 kbar. The behaviour of TN as it
falls below 1 K has not been resolved in these studies.

In the case of CePd2Si2, the resistivity r does not exhibit the
standard T 2 form expected of a Fermi liquid. Careful analysis shows
that near pc it in fact varies as T 1.260.1 over nearly two decades in
temperature down to the millikelvin range (Fig. 2, inset). Below
500 mK and in a narrow region near pc, we observe an abrupt drop
in r to below the detection limit, consistent with the occurrence of a
superconducting transition, as discovered during our initial obser-
vations in September 199437,38. At a given pressure, this transition
may be characterized by a temperature Tc, at which r falls to 50% of
its normal state value. The width of this transition grows markedly
as the pressure is varied away from pc. We stress that experimentally,
r is found to actually vanish only close to pc. By energizing a Nb–Ti
coil placed in our pressure cell, it was established that the upper
critical field Bc2 varies as dBc2ðpcÞ=dT, 2 6 T=K near Tc. This is a
high rate of change for such a small value of Tc—much higher than
the expected figure for a conventional superconductor. However,
it is the same order of magnitude as the value found in the
heavy fermion superconductor CeCu2Si2 (ref. 27). We note that in
a traditional analysis, the slope of Bc2(T ) at Tc implies a super-
conducting coherence length of 150 Å, a value which is below the
value of lmfp that we estimate for our best samples. No super-
conductivity has been observed in specimens with residual resistiv-
ities above several mQ cm, namely those with an estimated lmfp that is

substantially below y (for a similar example, see ref. 39).
In the case of cubic CeIn3, we find that very close to pc the normal

state resistivity assumes a non-Fermi liquid form, but this time40,41

varies as T 1.660.2. Thus, near their respective critical pressures, the
resistivity exponent in the cubic material is significantly higher than
it is in tetragonal CePd2Si2. In a very narrow region near pc, we again
see a sharp drop in r to below the detection limit, but at somewhat
lower temperatures than the transitions observed in CePd2Si2. This
is consistent with the occurrence of superconductivity in yet
another cerium compound on the edge of long-range magnetic
order40,41.

We stress that in each material studied, both the form of the
temperature dependence of the normal state resistivity, and the
nature and existence of the superconducting transition are sensitive
to sample quality. In particular, the superconducting transitions
appear only in samples with residual resistivities in the low mQ cm
range, as expected in the case of anisotropic pair states with
coherence lengths of the order of a few hundred ångströms.

Magnetic interactions
The observed temperature–pressure phase diagrams for both
CePd2Si2 and CeIn3 are at least qualitatively consistent with what
is expected in terms of the magnetic interactions model (Fig. 1). We
now consider a more quantitative comparison. In the following it is
assumed that the magnetic transition is continuous and that n is
close to nc. The incoherent scattering of quasiparticles via magnetic
interactions is then expected to lead to a resistivity of the form

r ¼ r0 þ ATx ð1Þ

where r0 and A are constants and the exponent x is smaller than two,
that is, smaller that it is in a conventional Fermi liquid at low T
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in good thermal contact with both the pressure cell and the sample
leads. To try to ensure adequate pressure and temperature homo-
geneity, a slow cooling rate from room temperature, typically
0.2 K min−1, was employed. Measurements were carried out from
room temperature to the millikelvin temperature range within a
pumped 4He cryostat, an adiabatic demagnetization refrigerator
and a top-loading dilution refrigerator.

Our key experimental results are summarized in Figs 2, 3. In the
materials studied, the antiferromagnetic ordering temperature TN,
at which there is a discontinuity in the gradient of the resistivity r
(not shown), was found to decrease slowly and monotonically with
increasing pressure, p. Over a wide region of the CePd2Si2 phase
diagram, TN is close to being linear in p, and extrapolation from this
regime to absolute zero allows us to define an effective critical
pressure pc of 28 kbar. In CeIn3, the variation of TN with p is more
rapid, and we estimate pc to be ,26 kbar. The behaviour of TN as it
falls below 1 K has not been resolved in these studies.

In the case of CePd2Si2, the resistivity r does not exhibit the
standard T 2 form expected of a Fermi liquid. Careful analysis shows
that near pc it in fact varies as T 1.260.1 over nearly two decades in
temperature down to the millikelvin range (Fig. 2, inset). Below
500 mK and in a narrow region near pc, we observe an abrupt drop
in r to below the detection limit, consistent with the occurrence of a
superconducting transition, as discovered during our initial obser-
vations in September 199437,38. At a given pressure, this transition
may be characterized by a temperature Tc, at which r falls to 50% of
its normal state value. The width of this transition grows markedly
as the pressure is varied away from pc. We stress that experimentally,
r is found to actually vanish only close to pc. By energizing a Nb–Ti
coil placed in our pressure cell, it was established that the upper
critical field Bc2 varies as dBc2ðpcÞ=dT, 2 6 T=K near Tc. This is a
high rate of change for such a small value of Tc—much higher than
the expected figure for a conventional superconductor. However,
it is the same order of magnitude as the value found in the
heavy fermion superconductor CeCu2Si2 (ref. 27). We note that in
a traditional analysis, the slope of Bc2(T ) at Tc implies a super-
conducting coherence length of 150 Å, a value which is below the
value of lmfp that we estimate for our best samples. No super-
conductivity has been observed in specimens with residual resistiv-
ities above several mQ cm, namely those with an estimated lmfp that is

substantially below y (for a similar example, see ref. 39).
In the case of cubic CeIn3, we find that very close to pc the normal

state resistivity assumes a non-Fermi liquid form, but this time40,41

varies as T 1.660.2. Thus, near their respective critical pressures, the
resistivity exponent in the cubic material is significantly higher than
it is in tetragonal CePd2Si2. In a very narrow region near pc, we again
see a sharp drop in r to below the detection limit, but at somewhat
lower temperatures than the transitions observed in CePd2Si2. This
is consistent with the occurrence of superconductivity in yet
another cerium compound on the edge of long-range magnetic
order40,41.

We stress that in each material studied, both the form of the
temperature dependence of the normal state resistivity, and the
nature and existence of the superconducting transition are sensitive
to sample quality. In particular, the superconducting transitions
appear only in samples with residual resistivities in the low mQ cm
range, as expected in the case of anisotropic pair states with
coherence lengths of the order of a few hundred ångströms.

Magnetic interactions
The observed temperature–pressure phase diagrams for both
CePd2Si2 and CeIn3 are at least qualitatively consistent with what
is expected in terms of the magnetic interactions model (Fig. 1). We
now consider a more quantitative comparison. In the following it is
assumed that the magnetic transition is continuous and that n is
close to nc. The incoherent scattering of quasiparticles via magnetic
interactions is then expected to lead to a resistivity of the form

r ¼ r0 þ ATx ð1Þ

where r0 and A are constants and the exponent x is smaller than two,
that is, smaller that it is in a conventional Fermi liquid at low T
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in good thermal contact with both the pressure cell and the sample
leads. To try to ensure adequate pressure and temperature homo-
geneity, a slow cooling rate from room temperature, typically
0.2 K min−1, was employed. Measurements were carried out from
room temperature to the millikelvin temperature range within a
pumped 4He cryostat, an adiabatic demagnetization refrigerator
and a top-loading dilution refrigerator.

Our key experimental results are summarized in Figs 2, 3. In the
materials studied, the antiferromagnetic ordering temperature TN,
at which there is a discontinuity in the gradient of the resistivity r
(not shown), was found to decrease slowly and monotonically with
increasing pressure, p. Over a wide region of the CePd2Si2 phase
diagram, TN is close to being linear in p, and extrapolation from this
regime to absolute zero allows us to define an effective critical
pressure pc of 28 kbar. In CeIn3, the variation of TN with p is more
rapid, and we estimate pc to be ,26 kbar. The behaviour of TN as it
falls below 1 K has not been resolved in these studies.

In the case of CePd2Si2, the resistivity r does not exhibit the
standard T 2 form expected of a Fermi liquid. Careful analysis shows
that near pc it in fact varies as T 1.260.1 over nearly two decades in
temperature down to the millikelvin range (Fig. 2, inset). Below
500 mK and in a narrow region near pc, we observe an abrupt drop
in r to below the detection limit, consistent with the occurrence of a
superconducting transition, as discovered during our initial obser-
vations in September 199437,38. At a given pressure, this transition
may be characterized by a temperature Tc, at which r falls to 50% of
its normal state value. The width of this transition grows markedly
as the pressure is varied away from pc. We stress that experimentally,
r is found to actually vanish only close to pc. By energizing a Nb–Ti
coil placed in our pressure cell, it was established that the upper
critical field Bc2 varies as dBc2ðpcÞ=dT, 2 6 T=K near Tc. This is a
high rate of change for such a small value of Tc—much higher than
the expected figure for a conventional superconductor. However,
it is the same order of magnitude as the value found in the
heavy fermion superconductor CeCu2Si2 (ref. 27). We note that in
a traditional analysis, the slope of Bc2(T ) at Tc implies a super-
conducting coherence length of 150 Å, a value which is below the
value of lmfp that we estimate for our best samples. No super-
conductivity has been observed in specimens with residual resistiv-
ities above several mQ cm, namely those with an estimated lmfp that is

substantially below y (for a similar example, see ref. 39).
In the case of cubic CeIn3, we find that very close to pc the normal

state resistivity assumes a non-Fermi liquid form, but this time40,41

varies as T 1.660.2. Thus, near their respective critical pressures, the
resistivity exponent in the cubic material is significantly higher than
it is in tetragonal CePd2Si2. In a very narrow region near pc, we again
see a sharp drop in r to below the detection limit, but at somewhat
lower temperatures than the transitions observed in CePd2Si2. This
is consistent with the occurrence of superconductivity in yet
another cerium compound on the edge of long-range magnetic
order40,41.

We stress that in each material studied, both the form of the
temperature dependence of the normal state resistivity, and the
nature and existence of the superconducting transition are sensitive
to sample quality. In particular, the superconducting transitions
appear only in samples with residual resistivities in the low mQ cm
range, as expected in the case of anisotropic pair states with
coherence lengths of the order of a few hundred ångströms.

Magnetic interactions
The observed temperature–pressure phase diagrams for both
CePd2Si2 and CeIn3 are at least qualitatively consistent with what
is expected in terms of the magnetic interactions model (Fig. 1). We
now consider a more quantitative comparison. In the following it is
assumed that the magnetic transition is continuous and that n is
close to nc. The incoherent scattering of quasiparticles via magnetic
interactions is then expected to lead to a resistivity of the form

r ¼ r0 þ ATx ð1Þ

where r0 and A are constants and the exponent x is smaller than two,
that is, smaller that it is in a conventional Fermi liquid at low T
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demonstrate that the normal state resistivity varies as T1.660.2

below several
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in good thermal contact with both the pressure cell and the sample
leads. To try to ensure adequate pressure and temperature homo-
geneity, a slow cooling rate from room temperature, typically
0.2 K min−1, was employed. Measurements were carried out from
room temperature to the millikelvin temperature range within a
pumped 4He cryostat, an adiabatic demagnetization refrigerator
and a top-loading dilution refrigerator.

Our key experimental results are summarized in Figs 2, 3. In the
materials studied, the antiferromagnetic ordering temperature TN,
at which there is a discontinuity in the gradient of the resistivity r
(not shown), was found to decrease slowly and monotonically with
increasing pressure, p. Over a wide region of the CePd2Si2 phase
diagram, TN is close to being linear in p, and extrapolation from this
regime to absolute zero allows us to define an effective critical
pressure pc of 28 kbar. In CeIn3, the variation of TN with p is more
rapid, and we estimate pc to be ,26 kbar. The behaviour of TN as it
falls below 1 K has not been resolved in these studies.

In the case of CePd2Si2, the resistivity r does not exhibit the
standard T 2 form expected of a Fermi liquid. Careful analysis shows
that near pc it in fact varies as T 1.260.1 over nearly two decades in
temperature down to the millikelvin range (Fig. 2, inset). Below
500 mK and in a narrow region near pc, we observe an abrupt drop
in r to below the detection limit, consistent with the occurrence of a
superconducting transition, as discovered during our initial obser-
vations in September 199437,38. At a given pressure, this transition
may be characterized by a temperature Tc, at which r falls to 50% of
its normal state value. The width of this transition grows markedly
as the pressure is varied away from pc. We stress that experimentally,
r is found to actually vanish only close to pc. By energizing a Nb–Ti
coil placed in our pressure cell, it was established that the upper
critical field Bc2 varies as dBc2ðpcÞ=dT, 2 6 T=K near Tc. This is a
high rate of change for such a small value of Tc—much higher than
the expected figure for a conventional superconductor. However,
it is the same order of magnitude as the value found in the
heavy fermion superconductor CeCu2Si2 (ref. 27). We note that in
a traditional analysis, the slope of Bc2(T ) at Tc implies a super-
conducting coherence length of 150 Å, a value which is below the
value of lmfp that we estimate for our best samples. No super-
conductivity has been observed in specimens with residual resistiv-
ities above several mQ cm, namely those with an estimated lmfp that is

substantially below y (for a similar example, see ref. 39).
In the case of cubic CeIn3, we find that very close to pc the normal

state resistivity assumes a non-Fermi liquid form, but this time40,41

varies as T 1.660.2. Thus, near their respective critical pressures, the
resistivity exponent in the cubic material is significantly higher than
it is in tetragonal CePd2Si2. In a very narrow region near pc, we again
see a sharp drop in r to below the detection limit, but at somewhat
lower temperatures than the transitions observed in CePd2Si2. This
is consistent with the occurrence of superconductivity in yet
another cerium compound on the edge of long-range magnetic
order40,41.

We stress that in each material studied, both the form of the
temperature dependence of the normal state resistivity, and the
nature and existence of the superconducting transition are sensitive
to sample quality. In particular, the superconducting transitions
appear only in samples with residual resistivities in the low mQ cm
range, as expected in the case of anisotropic pair states with
coherence lengths of the order of a few hundred ångströms.

Magnetic interactions
The observed temperature–pressure phase diagrams for both
CePd2Si2 and CeIn3 are at least qualitatively consistent with what
is expected in terms of the magnetic interactions model (Fig. 1). We
now consider a more quantitative comparison. In the following it is
assumed that the magnetic transition is continuous and that n is
close to nc. The incoherent scattering of quasiparticles via magnetic
interactions is then expected to lead to a resistivity of the form

r ¼ r0 þ ATx ð1Þ

where r0 and A are constants and the exponent x is smaller than two,
that is, smaller that it is in a conventional Fermi liquid at low T
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Néel temperature T
N

tends to absolute zero. Inset: the normal state a-axis

resistivity above the superconducting transition varies as T 1.260.1

over nearly two

decades in temperature

27,30

. The upper critical field B
c2

at the maximum value of T
c

varies near T
c

at a rate of approximately −6T/K. For clarity, the values of T
c

have

been scaled by a factor of three, and the origin of the inset has been set at 5K

below absolute zero.

0

5

10

0 10 20 30

Te
m

pe
ra

tu
re

 (K
)

Pressure (kbar)

TN

10 T
Superconductivity c

0

0.4

0.8

1.2

0 0.4 0.8 1.2
T (K)

24.0 kbar

Tc

ρ 
(µ
Ω

 c
m

)

0

1

2

0.6 1 1.4
log

10 (T(K))

27 kbar

d 
(ln

 Δ
ρ)

 / 
d 

(ln
 T

)

Figure 3 Temperature–pressure phase diagram of high-purity single-crystal

CeIn

3

. A sharp drop in the resistivity consistent with the onset of super-

conductivity below T
c

is observed in a narrow window near p
c

, the pressure at
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in good thermal contact with both the pressure cell and the sample
leads. To try to ensure adequate pressure and temperature homo-
geneity, a slow cooling rate from room temperature, typically
0.2 K min−1, was employed. Measurements were carried out from
room temperature to the millikelvin temperature range within a
pumped 4He cryostat, an adiabatic demagnetization refrigerator
and a top-loading dilution refrigerator.

Our key experimental results are summarized in Figs 2, 3. In the
materials studied, the antiferromagnetic ordering temperature TN,
at which there is a discontinuity in the gradient of the resistivity r
(not shown), was found to decrease slowly and monotonically with
increasing pressure, p. Over a wide region of the CePd2Si2 phase
diagram, TN is close to being linear in p, and extrapolation from this
regime to absolute zero allows us to define an effective critical
pressure pc of 28 kbar. In CeIn3, the variation of TN with p is more
rapid, and we estimate pc to be ,26 kbar. The behaviour of TN as it
falls below 1 K has not been resolved in these studies.

In the case of CePd2Si2, the resistivity r does not exhibit the
standard T 2 form expected of a Fermi liquid. Careful analysis shows
that near pc it in fact varies as T 1.260.1 over nearly two decades in
temperature down to the millikelvin range (Fig. 2, inset). Below
500 mK and in a narrow region near pc, we observe an abrupt drop
in r to below the detection limit, consistent with the occurrence of a
superconducting transition, as discovered during our initial obser-
vations in September 199437,38. At a given pressure, this transition
may be characterized by a temperature Tc, at which r falls to 50% of
its normal state value. The width of this transition grows markedly
as the pressure is varied away from pc. We stress that experimentally,
r is found to actually vanish only close to pc. By energizing a Nb–Ti
coil placed in our pressure cell, it was established that the upper
critical field Bc2 varies as dBc2ðpcÞ=dT, 2 6 T=K near Tc. This is a
high rate of change for such a small value of Tc—much higher than
the expected figure for a conventional superconductor. However,
it is the same order of magnitude as the value found in the
heavy fermion superconductor CeCu2Si2 (ref. 27). We note that in
a traditional analysis, the slope of Bc2(T ) at Tc implies a super-
conducting coherence length of 150 Å, a value which is below the
value of lmfp that we estimate for our best samples. No super-
conductivity has been observed in specimens with residual resistiv-
ities above several mQ cm, namely those with an estimated lmfp that is

substantially below y (for a similar example, see ref. 39).
In the case of cubic CeIn3, we find that very close to pc the normal

state resistivity assumes a non-Fermi liquid form, but this time40,41

varies as T 1.660.2. Thus, near their respective critical pressures, the
resistivity exponent in the cubic material is significantly higher than
it is in tetragonal CePd2Si2. In a very narrow region near pc, we again
see a sharp drop in r to below the detection limit, but at somewhat
lower temperatures than the transitions observed in CePd2Si2. This
is consistent with the occurrence of superconductivity in yet
another cerium compound on the edge of long-range magnetic
order40,41.

We stress that in each material studied, both the form of the
temperature dependence of the normal state resistivity, and the
nature and existence of the superconducting transition are sensitive
to sample quality. In particular, the superconducting transitions
appear only in samples with residual resistivities in the low mQ cm
range, as expected in the case of anisotropic pair states with
coherence lengths of the order of a few hundred ångströms.

Magnetic interactions
The observed temperature–pressure phase diagrams for both
CePd2Si2 and CeIn3 are at least qualitatively consistent with what
is expected in terms of the magnetic interactions model (Fig. 1). We
now consider a more quantitative comparison. In the following it is
assumed that the magnetic transition is continuous and that n is
close to nc. The incoherent scattering of quasiparticles via magnetic
interactions is then expected to lead to a resistivity of the form

r ¼ r0 þ ATx ð1Þ

where r0 and A are constants and the exponent x is smaller than two,
that is, smaller that it is in a conventional Fermi liquid at low T
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which the Néel temperature T
N

tends to absolute zero. Upper inset: this transition

is complete even below p
c

itself. Lower inset: just abovep
c

, where there is noNéel
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= 47 K, (e) and (f) resistivity in heavy fermion superconductors CeCoIn5 with Tsc = 2.3 K, NpPd5Al2 with Tsc = 4.9 K, and
PuCoGa5 with Tsc = 18.5 K, cited from refs. [7–15].

The cyclotron mass of the main dHvA frequencies β2 and α2,3 in Fig. 3(e) increases rapidly above 1.6 GPa, where
superconductivity sets in: 5.5m0 at ambient pressure, 20m0 at 1.6 GPa, and 60m0 at 2.2 GPa for β2, where the
cyclotron mass was determined in the field range from 100 to 169 kOe, namely at an effective field Heff = 126 kOe.
On the other hand, the cyclotron mass of α3, which was observed above 2.4 GPa, decreases slightly with increasing
pressure: about 30m0 at 2.4 GPa and 24m0 at 2.9 GPa. The dHvA frequency β2, which exists in CeCoIn5, was,
however, not detected above 2.4 GPa. This is mainly due to a large cyclotron effective mass close to 100 m0.

From these experimental results, it is concluded that the Fermi surface in CeRhIn5 under pressure is changed from
a 4f -localized Fermi surface to a 4f -itinerant Fermi surface. A notable change in the Fermi surface occurs when the
pressure crosses P ∗

c ≃ 2.4 GPa, revealing a first-order phase transition. Superconductivity is, however, realized in the
pressure region ranging from 1.6 to 5.2 GPa. It is important to emphasize that the cyclotron masses are extremely
large in this pressure region, namely in the heavy fermion state.

It is also noted that the similar dHvA experiment was done for antiferromagnets CeRh2Si2 [20] and CeIn3 [19].
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in good thermal contact with both the pressure cell and the sample
leads. To try to ensure adequate pressure and temperature homo-
geneity, a slow cooling rate from room temperature, typically
0.2 K min−1, was employed. Measurements were carried out from
room temperature to the millikelvin temperature range within a
pumped 4He cryostat, an adiabatic demagnetization refrigerator
and a top-loading dilution refrigerator.

Our key experimental results are summarized in Figs 2, 3. In the
materials studied, the antiferromagnetic ordering temperature TN,
at which there is a discontinuity in the gradient of the resistivity r
(not shown), was found to decrease slowly and monotonically with
increasing pressure, p. Over a wide region of the CePd2Si2 phase
diagram, TN is close to being linear in p, and extrapolation from this
regime to absolute zero allows us to define an effective critical
pressure pc of 28 kbar. In CeIn3, the variation of TN with p is more
rapid, and we estimate pc to be ,26 kbar. The behaviour of TN as it
falls below 1 K has not been resolved in these studies.

In the case of CePd2Si2, the resistivity r does not exhibit the
standard T 2 form expected of a Fermi liquid. Careful analysis shows
that near pc it in fact varies as T 1.260.1 over nearly two decades in
temperature down to the millikelvin range (Fig. 2, inset). Below
500 mK and in a narrow region near pc, we observe an abrupt drop
in r to below the detection limit, consistent with the occurrence of a
superconducting transition, as discovered during our initial obser-
vations in September 199437,38. At a given pressure, this transition
may be characterized by a temperature Tc, at which r falls to 50% of
its normal state value. The width of this transition grows markedly
as the pressure is varied away from pc. We stress that experimentally,
r is found to actually vanish only close to pc. By energizing a Nb–Ti
coil placed in our pressure cell, it was established that the upper
critical field Bc2 varies as dBc2ðpcÞ=dT, 2 6 T=K near Tc. This is a
high rate of change for such a small value of Tc—much higher than
the expected figure for a conventional superconductor. However,
it is the same order of magnitude as the value found in the
heavy fermion superconductor CeCu2Si2 (ref. 27). We note that in
a traditional analysis, the slope of Bc2(T ) at Tc implies a super-
conducting coherence length of 150 Å, a value which is below the
value of lmfp that we estimate for our best samples. No super-
conductivity has been observed in specimens with residual resistiv-
ities above several mQ cm, namely those with an estimated lmfp that is

substantially below y (for a similar example, see ref. 39).
In the case of cubic CeIn3, we find that very close to pc the normal

state resistivity assumes a non-Fermi liquid form, but this time40,41

varies as T 1.660.2. Thus, near their respective critical pressures, the
resistivity exponent in the cubic material is significantly higher than
it is in tetragonal CePd2Si2. In a very narrow region near pc, we again
see a sharp drop in r to below the detection limit, but at somewhat
lower temperatures than the transitions observed in CePd2Si2. This
is consistent with the occurrence of superconductivity in yet
another cerium compound on the edge of long-range magnetic
order40,41.

We stress that in each material studied, both the form of the
temperature dependence of the normal state resistivity, and the
nature and existence of the superconducting transition are sensitive
to sample quality. In particular, the superconducting transitions
appear only in samples with residual resistivities in the low mQ cm
range, as expected in the case of anisotropic pair states with
coherence lengths of the order of a few hundred ångströms.

Magnetic interactions
The observed temperature–pressure phase diagrams for both
CePd2Si2 and CeIn3 are at least qualitatively consistent with what
is expected in terms of the magnetic interactions model (Fig. 1). We
now consider a more quantitative comparison. In the following it is
assumed that the magnetic transition is continuous and that n is
close to nc. The incoherent scattering of quasiparticles via magnetic
interactions is then expected to lead to a resistivity of the form

r ¼ r0 þ ATx ð1Þ

where r0 and A are constants and the exponent x is smaller than two,
that is, smaller that it is in a conventional Fermi liquid at low T
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Fig. 2. (Color online) (a)-(c) Temperature dependence of the electrical resistivity under pressure and pressure vs temperature
phase diagram in CeRhIn5, (d) resistivity in non-5f ThRhIn5, Pauli paramagnet UCoGa5, antiferromagnet NpCoGa5 with TN

= 47 K, (e) and (f) resistivity in heavy fermion superconductors CeCoIn5 with Tsc = 2.3 K, NpPd5Al2 with Tsc = 4.9 K, and
PuCoGa5 with Tsc = 18.5 K, cited from refs. [7–15].

The cyclotron mass of the main dHvA frequencies β2 and α2,3 in Fig. 3(e) increases rapidly above 1.6 GPa, where
superconductivity sets in: 5.5m0 at ambient pressure, 20m0 at 1.6 GPa, and 60m0 at 2.2 GPa for β2, where the
cyclotron mass was determined in the field range from 100 to 169 kOe, namely at an effective field Heff = 126 kOe.
On the other hand, the cyclotron mass of α3, which was observed above 2.4 GPa, decreases slightly with increasing
pressure: about 30m0 at 2.4 GPa and 24m0 at 2.9 GPa. The dHvA frequency β2, which exists in CeCoIn5, was,
however, not detected above 2.4 GPa. This is mainly due to a large cyclotron effective mass close to 100 m0.

From these experimental results, it is concluded that the Fermi surface in CeRhIn5 under pressure is changed from
a 4f -localized Fermi surface to a 4f -itinerant Fermi surface. A notable change in the Fermi surface occurs when the
pressure crosses P ∗

c ≃ 2.4 GPa, revealing a first-order phase transition. Superconductivity is, however, realized in the
pressure region ranging from 1.6 to 5.2 GPa. It is important to emphasize that the cyclotron masses are extremely
large in this pressure region, namely in the heavy fermion state.

It is also noted that the similar dHvA experiment was done for antiferromagnets CeRh2Si2 [20] and CeIn3 [19].
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in good thermal contact with both the pressure cell and the sample
leads. To try to ensure adequate pressure and temperature homo-
geneity, a slow cooling rate from room temperature, typically
0.2 K min−1, was employed. Measurements were carried out from
room temperature to the millikelvin temperature range within a
pumped 4He cryostat, an adiabatic demagnetization refrigerator
and a top-loading dilution refrigerator.

Our key experimental results are summarized in Figs 2, 3. In the
materials studied, the antiferromagnetic ordering temperature TN,
at which there is a discontinuity in the gradient of the resistivity r
(not shown), was found to decrease slowly and monotonically with
increasing pressure, p. Over a wide region of the CePd2Si2 phase
diagram, TN is close to being linear in p, and extrapolation from this
regime to absolute zero allows us to define an effective critical
pressure pc of 28 kbar. In CeIn3, the variation of TN with p is more
rapid, and we estimate pc to be ,26 kbar. The behaviour of TN as it
falls below 1 K has not been resolved in these studies.

In the case of CePd2Si2, the resistivity r does not exhibit the
standard T 2 form expected of a Fermi liquid. Careful analysis shows
that near pc it in fact varies as T 1.260.1 over nearly two decades in
temperature down to the millikelvin range (Fig. 2, inset). Below
500 mK and in a narrow region near pc, we observe an abrupt drop
in r to below the detection limit, consistent with the occurrence of a
superconducting transition, as discovered during our initial obser-
vations in September 199437,38. At a given pressure, this transition
may be characterized by a temperature Tc, at which r falls to 50% of
its normal state value. The width of this transition grows markedly
as the pressure is varied away from pc. We stress that experimentally,
r is found to actually vanish only close to pc. By energizing a Nb–Ti
coil placed in our pressure cell, it was established that the upper
critical field Bc2 varies as dBc2ðpcÞ=dT, 2 6 T=K near Tc. This is a
high rate of change for such a small value of Tc—much higher than
the expected figure for a conventional superconductor. However,
it is the same order of magnitude as the value found in the
heavy fermion superconductor CeCu2Si2 (ref. 27). We note that in
a traditional analysis, the slope of Bc2(T ) at Tc implies a super-
conducting coherence length of 150 Å, a value which is below the
value of lmfp that we estimate for our best samples. No super-
conductivity has been observed in specimens with residual resistiv-
ities above several mQ cm, namely those with an estimated lmfp that is

substantially below y (for a similar example, see ref. 39).
In the case of cubic CeIn3, we find that very close to pc the normal

state resistivity assumes a non-Fermi liquid form, but this time40,41

varies as T 1.660.2. Thus, near their respective critical pressures, the
resistivity exponent in the cubic material is significantly higher than
it is in tetragonal CePd2Si2. In a very narrow region near pc, we again
see a sharp drop in r to below the detection limit, but at somewhat
lower temperatures than the transitions observed in CePd2Si2. This
is consistent with the occurrence of superconductivity in yet
another cerium compound on the edge of long-range magnetic
order40,41.

We stress that in each material studied, both the form of the
temperature dependence of the normal state resistivity, and the
nature and existence of the superconducting transition are sensitive
to sample quality. In particular, the superconducting transitions
appear only in samples with residual resistivities in the low mQ cm
range, as expected in the case of anisotropic pair states with
coherence lengths of the order of a few hundred ångströms.

Magnetic interactions
The observed temperature–pressure phase diagrams for both
CePd2Si2 and CeIn3 are at least qualitatively consistent with what
is expected in terms of the magnetic interactions model (Fig. 1). We
now consider a more quantitative comparison. In the following it is
assumed that the magnetic transition is continuous and that n is
close to nc. The incoherent scattering of quasiparticles via magnetic
interactions is then expected to lead to a resistivity of the form

r ¼ r0 þ ATx ð1Þ

where r0 and A are constants and the exponent x is smaller than two,
that is, smaller that it is in a conventional Fermi liquid at low T
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Fig. 2. (Color online) (a)-(c) Temperature dependence of the electrical resistivity under pressure and pressure vs temperature
phase diagram in CeRhIn5, (d) resistivity in non-5f ThRhIn5, Pauli paramagnet UCoGa5, antiferromagnet NpCoGa5 with TN

= 47 K, (e) and (f) resistivity in heavy fermion superconductors CeCoIn5 with Tsc = 2.3 K, NpPd5Al2 with Tsc = 4.9 K, and
PuCoGa5 with Tsc = 18.5 K, cited from refs. [7–15].

The cyclotron mass of the main dHvA frequencies β2 and α2,3 in Fig. 3(e) increases rapidly above 1.6 GPa, where
superconductivity sets in: 5.5m0 at ambient pressure, 20m0 at 1.6 GPa, and 60m0 at 2.2 GPa for β2, where the
cyclotron mass was determined in the field range from 100 to 169 kOe, namely at an effective field Heff = 126 kOe.
On the other hand, the cyclotron mass of α3, which was observed above 2.4 GPa, decreases slightly with increasing
pressure: about 30m0 at 2.4 GPa and 24m0 at 2.9 GPa. The dHvA frequency β2, which exists in CeCoIn5, was,
however, not detected above 2.4 GPa. This is mainly due to a large cyclotron effective mass close to 100 m0.

From these experimental results, it is concluded that the Fermi surface in CeRhIn5 under pressure is changed from
a 4f -localized Fermi surface to a 4f -itinerant Fermi surface. A notable change in the Fermi surface occurs when the
pressure crosses P ∗

c ≃ 2.4 GPa, revealing a first-order phase transition. Superconductivity is, however, realized in the
pressure region ranging from 1.6 to 5.2 GPa. It is important to emphasize that the cyclotron masses are extremely
large in this pressure region, namely in the heavy fermion state.

It is also noted that the similar dHvA experiment was done for antiferromagnets CeRh2Si2 [20] and CeIn3 [19].
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15.3 Anderson’s Model of Local Moment Formation

Anderson’s model for moment formation, proposed in 1963, combines two essential ideas[? ]:

• the localizing influence of Coulomb interactions. Peierls and Mott [? ? ] had reasoned
in the 1940s that strong-enough Coulomb repulsion between electrons in an atomic state
would blockade the passage of electrons, converting a metal into what is now called a “Mott
insulator”. These ideas were independently explored by Van Vleck and Hurvitz in an early
attempt to understand magnetic ions in metals[? ].

• the formation of an electronic resonance. In the 1950’s Friedel and Blandin [? ? ? ] proposed
that electrons in the core states of magnetic atoms tunnel out into the conduction sea, forming
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where Hatomic describes the atomic limit of an isolated magnetic ion containing a Kramer’s doublet
of energy E f . The engine of magnetism in the Anderson model is the Coulomb interaction
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of a doubly occupied f-state, where ρ f (r) = |Ψ f (r)|2 is the electron density in a single atomic
orbital ψ f (r). The operator c†kσ creates a conduction electron of momentum k, spin σ and energy
ϵk = Ek − µ, while

f †σ =
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Ψ f (r)ψ̂†σ(r), (15.3)

creates an f-electron in the atomic f-state. Unlike the electron continuum in a vacuum, a conduction
band in a metal has a finite energy width, so in the model, the energies are taken lying in the range
ϵk ∈ [−D,D]. Hresonance describes the hybridization with the Bloch waves of the conduction sea that
develops when the ion is immersed in a metal. The quantity

V(k) = ⟨k|Vion| f ⟩ =
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d3re−ik·rVion(r)Ψ f (⃗r). (15.4)

is the hybridization between the ionic potential and a plane wave. This term is the result of applying
first order perturbation theory to the degenerate states of the conduction sea and the atomic f-orbital.
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15.3.1 The Atomic limit.

The atomic physics of an isolated ion, described by

Hatomic = E f n f + Unf↑n f↓. (15.5)

is the engine at the heart of the Anderson model that drives moment formation. The four atomic
quantum states are
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16.3.2 Virtual bound-state formation: the non-interacting resonance.

When the magnetic ion is immersed in a sea of electrons, the f-electrons within the core of the atom
can tunnel out, hybridizing with the Bloch states of surrounding electron sea [9] as shown in Fig.
16.4.

In the absence of interactions, this physics is described by

Hresonance =

∑

k,σ

ϵknkσ +

∑

kσ

[
V(k)c†kσ fσ + H.c.

]
+ E f n f , (16.9)

where c†kσ creates an electron of momentum k, spin σ and energy ϵk = Ek − µ in the conduction
band. The hybridization broadens the localized f-state, and in the absence of interactions, gives rise
to a resonance of width ∆ given by Fermi’s Golden Rule.

∆ = π
∑

k⃗

|V(k)|2δ(ϵk − E f ) (16.10)

This is really an average of the density of states ρ(ϵ) =
∑

k δ(ω − ϵk) with the hybridization |V(k)|2.
For future reference, we shall define

∆(ϵ) = π
∑

k⃗

|V(k)|2δ(ϵk − ϵ) = πρ(ϵ)V2(ϵ) (16.11)

as the “hybridization” function.

Example 16.1: Derivation of the non-interacting Anderson model

Consider an isolated ion, where the f-state is a solution of the one-particle Schrödinger equation
[
−∇2
+ V̂ion

]
| f ⟩ = Eion

f | f ⟩, (16.12)

where Vion(r) is the ionic potential and Eion
f
< 0 is the energy of the atomic f-level. In a metal,

the positive ionic background draws the continuum downwards to become degenerate with the
f-level as shown in Fig. 16.4. A convenient way to model this situation is to use “muffin tin
potential”, 4

V(r) = (Vion(r) +W) θ(R0 − r) (16.13)

equal to the ionic potential, shifted upwards by an amount W inside the muffin tin radius R0. The
f-state is now an approximate eigenstate ofH = −∇2+ V̂ that is degenerate with the continuum.

Derive the Anderson model using degenerate perturbation theory, evaluating the matrix ele-
ments ofH between the conduction states |k⟩ and the local f-state | f ⟩. You may assume that the
muffin tin R0 is much smaller than the Fermi wavelength, so that the conduction electron matrix
elements Vk,k′ = ⟨k|V |k′⟩ are negligible.

Solution:

4named after the cylindrical tins that were once used to package muffins

10
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creates an f-electron in the atomic f-state. Unlike the electron continuum in a vacuum, a conduction
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16.3.2 Virtual bound-state formation: the non-interacting resonance.

When the magnetic ion is immersed in a sea of electrons, the f-electrons within the core of the atom
can tunnel out, hybridizing with the Bloch states of surrounding electron sea [9] as shown in Fig.
16.4.

In the absence of interactions, this physics is described by
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ϵknkσ +
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V(k)c†kσ fσ + H.c.

]
+ E f n f , (16.9)

where c†kσ creates an electron of momentum k, spin σ and energy ϵk = Ek − µ in the conduction
band. The hybridization broadens the localized f-state, and in the absence of interactions, gives rise
to a resonance of width ∆ given by Fermi’s Golden Rule.

∆ = π
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< 0 is the energy of the atomic f-level. In a metal,
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equal to the ionic potential, shifted upwards by an amount W inside the muffin tin radius R0. The
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16.3.2 Virtual bound-state formation: the non-interacting resonance.

When the magnetic ion is immersed in a sea of electrons, the f-electrons within the core of the atom
can tunnel out, hybridizing with the Bloch states of surrounding electron sea [9] as shown in Fig.
16.4.
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where c†kσ creates an electron of momentum k, spin σ and energy ϵk = Ek − µ in the conduction
band. The hybridization broadens the localized f-state, and in the absence of interactions, gives rise
to a resonance of width ∆ given by Fermi’s Golden Rule.

∆ = π
∑

k⃗

|V(k)|2δ(ϵk − E f ) (16.10)
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< 0 is the energy of the atomic f-level. In a metal,
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equal to the ionic potential, shifted upwards by an amount W inside the muffin tin radius R0. The
f-state is now an approximate eigenstate ofH = −∇2+ V̂ that is degenerate with the continuum.
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U =
e2

4πϵ0

∫

r,r′

1
|r − r′|

ρ f (r)ρ f (r′)

of a doubly occupied f-state, where ρ f (r) = |Ψ f (r)|2 is the electron density in a single atomic
orbital ψ f (r). The operator c†kσ creates a conduction electron of momentum k, spin σ and energy
ϵk = Ek − µ, while

f †σ =

∫

r

Ψ f (r)ψ̂†σ(r), (15.3)

creates an f-electron in the atomic f-state. Unlike the electron continuum in a vacuum, a conduction
band in a metal has a finite energy width, so in the model, the energies are taken lying in the range
ϵk ∈ [−D,D]. Hresonance describes the hybridization with the Bloch waves of the conduction sea that
develops when the ion is immersed in a metal. The quantity

V(k) = ⟨k|Vion| f ⟩ =
∫

d3re−ik·rVion(r)Ψ f (⃗r). (15.4)

is the hybridization between the ionic potential and a plane wave. This term is the result of applying
first order perturbation theory to the degenerate states of the conduction sea and the atomic f-orbital.
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A competition between localization and hybridization.

To understand the formation and properties of local moments, we need to examine the two limiting
types of behaviour in the Anderson model:

• Localized moment behavior, described by the limiting case where the hybridization vanishes.

• Virtual bound-state formation, described by the limiting case where the interaction is negligi-
ble.

Figure 15.3: Phase diagram for Anderson impurity model in the atomic Limit. For U > |E f + U/2,
the ground-state is a magnetic doublet. When U < 0, the ground-state is degenerate charge doublet
provided E f + U/2 = 0.

15.3.1 The Atomic limit.

The atomic physics of an isolated ion, described by

Hatomic = E f n f + Unf↑n f↓. (15.5)

is the engine at the heart of the Anderson model that drives moment formation. The four atomic
quantum states are

| f 2⟩
| f 0⟩

E( f 2) = 2E f + U

E( f 0) = 0

}
non-magnetic

| f 1 ↑⟩, | f 1 ↓⟩ E( f 1) = E f . magnetic.

(15.6)

494

Atomic limit 
(V=0)

Ef < 0
U + Ef > 0

�
)

⇢
Ef + U/2 < U/2

U/2 > �(Ef + U/2)

f0

f1

f2

Ef

2Ef + U



Ef

E

Chapter 16. c⃝Piers Coleman 2010

16.3.2 Virtual bound-state formation: the non-interacting resonance.

When the magnetic ion is immersed in a sea of electrons, the f-electrons within the core of the atom
can tunnel out, hybridizing with the Bloch states of surrounding electron sea [9] as shown in Fig.
16.4.

In the absence of interactions, this physics is described by

Hresonance =

∑

k,σ

ϵknkσ +

∑

kσ

[
V(k)c†kσ fσ + H.c.

]
+ E f n f , (16.9)

where c†kσ creates an electron of momentum k, spin σ and energy ϵk = Ek − µ in the conduction
band. The hybridization broadens the localized f-state, and in the absence of interactions, gives rise
to a resonance of width ∆ given by Fermi’s Golden Rule.

∆ = π
∑

k⃗

|V(k)|2δ(ϵk − E f ) (16.10)

This is really an average of the density of states ρ(ϵ) =
∑

k δ(ω − ϵk) with the hybridization |V(k)|2.
For future reference, we shall define

∆(ϵ) = π
∑

k⃗

|V(k)|2δ(ϵk − ϵ) = πρ(ϵ)V2(ϵ) (16.11)

as the “hybridization” function.

Example 16.1: Derivation of the non-interacting Anderson model

Consider an isolated ion, where the f-state is a solution of the one-particle Schrödinger equation
[
−∇2
+ V̂ion

]
| f ⟩ = Eion

f | f ⟩, (16.12)

where Vion(r) is the ionic potential and Eion
f
< 0 is the energy of the atomic f-level. In a metal,

the positive ionic background draws the continuum downwards to become degenerate with the
f-level as shown in Fig. 16.4. A convenient way to model this situation is to use “muffin tin
potential”, 4

V(r) = (Vion(r) +W) θ(R0 − r) (16.13)

equal to the ionic potential, shifted upwards by an amount W inside the muffin tin radius R0. The
f-state is now an approximate eigenstate ofH = −∇2+ V̂ that is degenerate with the continuum.

Derive the Anderson model using degenerate perturbation theory, evaluating the matrix ele-
ments ofH between the conduction states |k⟩ and the local f-state | f ⟩. You may assume that the
muffin tin R0 is much smaller than the Fermi wavelength, so that the conduction electron matrix
elements Vk,k′ = ⟨k|V |k′⟩ are negligible.

Solution:

4named after the cylindrical tins that were once used to package muffins
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15.3 Anderson’s Model of Local Moment Formation

Anderson’s model for moment formation, proposed in 1963, combines two essential ideas[? ]:

• the localizing influence of Coulomb interactions. Peierls and Mott [? ? ] had reasoned
in the 1940s that strong-enough Coulomb repulsion between electrons in an atomic state
would blockade the passage of electrons, converting a metal into what is now called a “Mott
insulator”. These ideas were independently explored by Van Vleck and Hurvitz in an early
attempt to understand magnetic ions in metals[? ].

• the formation of an electronic resonance. In the 1950’s Friedel and Blandin [? ? ? ] proposed
that electrons in the core states of magnetic atoms tunnel out into the conduction sea, forming
a resonance.

Anderson unified these ideas in a second-quantized Hamiltonian

H =

Hresonance︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∑

k,σ

ϵknkσ +
∑

k,σ

[
V(k)c†kσ fσ + V∗(k) f †σckσ

]
+ E f n f + Unf↑n f↓︸!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!︸

Hatomic

, (15.2)

Anderson model.

where Hatomic describes the atomic limit of an isolated magnetic ion containing a Kramer’s doublet
of energy E f . The engine of magnetism in the Anderson model is the Coulomb interaction

U =
e2

4πϵ0

∫

r,r′

1
|r − r′|

ρ f (r)ρ f (r′)

of a doubly occupied f-state, where ρ f (r) = |Ψ f (r)|2 is the electron density in a single atomic
orbital ψ f (r). The operator c†kσ creates a conduction electron of momentum k, spin σ and energy
ϵk = Ek − µ, while

f †σ =

∫

r

Ψ f (r)ψ̂†σ(r), (15.3)

creates an f-electron in the atomic f-state. Unlike the electron continuum in a vacuum, a conduction
band in a metal has a finite energy width, so in the model, the energies are taken lying in the range
ϵk ∈ [−D,D]. Hresonance describes the hybridization with the Bloch waves of the conduction sea that
develops when the ion is immersed in a metal. The quantity

V(k) = ⟨k|Vion| f ⟩ =
∫

d3re−ik·rVion(r)Ψ f (⃗r). (15.4)

is the hybridization between the ionic potential and a plane wave. This term is the result of applying
first order perturbation theory to the degenerate states of the conduction sea and the atomic f-orbital.
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A competition between localization and hybridization.

To understand the formation and properties of local moments, we need to examine the two limiting
types of behaviour in the Anderson model:

• Localized moment behavior, described by the limiting case where the hybridization vanishes.

• Virtual bound-state formation, described by the limiting case where the interaction is negligi-
ble.

Figure 15.3: Phase diagram for Anderson impurity model in the atomic Limit. For U > |E f + U/2,
the ground-state is a magnetic doublet. When U < 0, the ground-state is degenerate charge doublet
provided E f + U/2 = 0.

15.3.1 The Atomic limit.

The atomic physics of an isolated ion, described by

Hatomic = E f n f + Unf↑n f↓. (15.5)

is the engine at the heart of the Anderson model that drives moment formation. The four atomic
quantum states are

| f 2⟩
| f 0⟩

E( f 2) = 2E f + U

E( f 0) = 0

}
non-magnetic

| f 1 ↑⟩, | f 1 ↓⟩ E( f 1) = E f . magnetic.

(15.6)
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16.3.2 Virtual bound-state formation: the non-interacting resonance.

When the magnetic ion is immersed in a sea of electrons, the f-electrons within the core of the atom
can tunnel out, hybridizing with the Bloch states of surrounding electron sea [9] as shown in Fig.
16.4.

In the absence of interactions, this physics is described by

Hresonance =

∑

k,σ

ϵknkσ +

∑

kσ

[
V(k)c†kσ fσ + H.c.

]
+ E f n f , (16.9)

where c†kσ creates an electron of momentum k, spin σ and energy ϵk = Ek − µ in the conduction
band. The hybridization broadens the localized f-state, and in the absence of interactions, gives rise
to a resonance of width ∆ given by Fermi’s Golden Rule.

∆ = π
∑

k⃗

|V(k)|2δ(ϵk − E f ) (16.10)

This is really an average of the density of states ρ(ϵ) =
∑

k δ(ω − ϵk) with the hybridization |V(k)|2.
For future reference, we shall define

∆(ϵ) = π
∑

k⃗

|V(k)|2δ(ϵk − ϵ) = πρ(ϵ)V2(ϵ) (16.11)

as the “hybridization” function.

Example 16.1: Derivation of the non-interacting Anderson model

Consider an isolated ion, where the f-state is a solution of the one-particle Schrödinger equation
[
−∇2
+ V̂ion

]
| f ⟩ = Eion

f | f ⟩, (16.12)

where Vion(r) is the ionic potential and Eion
f
< 0 is the energy of the atomic f-level. In a metal,

the positive ionic background draws the continuum downwards to become degenerate with the
f-level as shown in Fig. 16.4. A convenient way to model this situation is to use “muffin tin
potential”, 4

V(r) = (Vion(r) +W) θ(R0 − r) (16.13)

equal to the ionic potential, shifted upwards by an amount W inside the muffin tin radius R0. The
f-state is now an approximate eigenstate ofH = −∇2+ V̂ that is degenerate with the continuum.

Derive the Anderson model using degenerate perturbation theory, evaluating the matrix ele-
ments ofH between the conduction states |k⟩ and the local f-state | f ⟩. You may assume that the
muffin tin R0 is much smaller than the Fermi wavelength, so that the conduction electron matrix
elements Vk,k′ = ⟨k|V |k′⟩ are negligible.

Solution:

4named after the cylindrical tins that were once used to package muffins
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15.3 Anderson’s Model of Local Moment Formation

Anderson’s model for moment formation, proposed in 1963, combines two essential ideas[? ]:

• the localizing influence of Coulomb interactions. Peierls and Mott [? ? ] had reasoned
in the 1940s that strong-enough Coulomb repulsion between electrons in an atomic state
would blockade the passage of electrons, converting a metal into what is now called a “Mott
insulator”. These ideas were independently explored by Van Vleck and Hurvitz in an early
attempt to understand magnetic ions in metals[? ].

• the formation of an electronic resonance. In the 1950’s Friedel and Blandin [? ? ? ] proposed
that electrons in the core states of magnetic atoms tunnel out into the conduction sea, forming
a resonance.

Anderson unified these ideas in a second-quantized Hamiltonian

H =

Hresonance︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∑

k,σ

ϵknkσ +
∑

k,σ

[
V(k)c†kσ fσ + V∗(k) f †σckσ

]
+ E f n f + Unf↑n f↓︸!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!︸

Hatomic

, (15.2)

Anderson model.

where Hatomic describes the atomic limit of an isolated magnetic ion containing a Kramer’s doublet
of energy E f . The engine of magnetism in the Anderson model is the Coulomb interaction

U =
e2

4πϵ0

∫

r,r′

1
|r − r′|

ρ f (r)ρ f (r′)

of a doubly occupied f-state, where ρ f (r) = |Ψ f (r)|2 is the electron density in a single atomic
orbital ψ f (r). The operator c†kσ creates a conduction electron of momentum k, spin σ and energy
ϵk = Ek − µ, while

f †σ =

∫

r

Ψ f (r)ψ̂†σ(r), (15.3)

creates an f-electron in the atomic f-state. Unlike the electron continuum in a vacuum, a conduction
band in a metal has a finite energy width, so in the model, the energies are taken lying in the range
ϵk ∈ [−D,D]. Hresonance describes the hybridization with the Bloch waves of the conduction sea that
develops when the ion is immersed in a metal. The quantity

V(k) = ⟨k|Vion| f ⟩ =
∫

d3re−ik·rVion(r)Ψ f (⃗r). (15.4)

is the hybridization between the ionic potential and a plane wave. This term is the result of applying
first order perturbation theory to the degenerate states of the conduction sea and the atomic f-orbital.
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A competition between localization and hybridization.

To understand the formation and properties of local moments, we need to examine the two limiting
types of behaviour in the Anderson model:

• Localized moment behavior, described by the limiting case where the hybridization vanishes.

• Virtual bound-state formation, described by the limiting case where the interaction is negligi-
ble.

Figure 15.3: Phase diagram for Anderson impurity model in the atomic Limit. For U > |E f + U/2,
the ground-state is a magnetic doublet. When U < 0, the ground-state is degenerate charge doublet
provided E f + U/2 = 0.

15.3.1 The Atomic limit.

The atomic physics of an isolated ion, described by

Hatomic = E f n f + Unf↑n f↓. (15.5)

is the engine at the heart of the Anderson model that drives moment formation. The four atomic
quantum states are

| f 2⟩
| f 0⟩

E( f 2) = 2E f + U

E( f 0) = 0

}
non-magnetic

| f 1 ↑⟩, | f 1 ↓⟩ E( f 1) = E f . magnetic.

(15.6)
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The cost of adding or removing to the magnetic f 1 state is given by

adding: E( f 2) − E( f 1) = U + E f

removing: E( f 0) − E( f 1) = −E f

}
⇒ ∆E =

U

2
± (E f +

U

2
) (15.7)

In other words, provided (Fig. 15.3)

U/2 > |E f + U/2| (15.8)

the ground-state of the atom is a two-fold degenerate magnetic doublet. Indeed, provided it is
probed at energies below the smallest charge excitation energy, ∆Emin = U/2− |E f +U/2|, only the
spin degrees of freedom remain, and the system behaves as a local moment - a “quantum top”. The
interaction between such a local moment and the conduction sea gives rise to the “Kondo effect”
that will be the main topic of this chapter.

Although we shall be mainly interested in positive, repulsive U, we note that in the attractive
region of the phase diagram (U < 0) the atomic ground-state can form a degenerate “charge” doublet
(| f 0⟩, | f 2⟩) or “isospin”. For U < 0, when E f + U/2 = 0 the doubly occupied state | f 2⟩ and the
empty state | f 0⟩ become degenerate. This is the charge analog of the magnetic doublet that exists
for U > 0, and when coupled to the sea of electrons, gives rise to an effect known as the “charge
Kondo effect”. Such charge doublets are thought to be important in certain “negative U” materials,
such as Tl doped PbTe.

Figure 15.4: (a) The immersion of an atomic f state in a conduction sea leads to hybridization
between the localized f-state and the degenerate conduction electron continuum, forming (b) a res-
onance in the density of states.
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Example 15.42: Derivation of the non-interacting Anderson model

Consider an isolated ion, where the f-state is a solution of the one-particle Schrödinger equation
[
−∇2 + V̂ion

]
| f ⟩ = Eion

f | f ⟩, (15.9)

where Vion(r) is the ionic potential and Eion
f
< 0 is the energy of the atomic f-level. In a metal,

the positive ionic background draws the continuum downwards to become degenerate with the
f-level as shown in Fig. 15.4. A convenient way to model this situation is to use “muffin tin
potential”, 4

V(r) = (Vion(r) +W) θ(R0 − r) (15.10)
equal to the ionic potential, shifted upwards by an amount W inside the muffin tin radius R0. The
f-state is now an approximate eigenstate ofH = −∇2+ V̂ that is degenerate with the continuum.
Derive the non-interacting component of the Anderson model using degenerate perturbation
theory, evaluating the matrix elements of H between the conduction states |k⟩ and the local
f-state | f ⟩. You may assume that the muffin tin R0 is much smaller than the Fermi wavelength,
so that the conduction electron matrix elements Vk,k′ = ⟨k|V |k′⟩ are negligible.
Solution:
To carry out degenerate perturbation theory on H we must first orthogonalize the f-state to the
continuum | f̃ ⟩ = | f ⟩ −

∑
ϵk∈[−D,D] |k⟩⟨k| f ⟩, where D is the conduction electron band-width. Now

we need to evaluate the matrix elements ofH = −∇2 + V . If we set

Vk,k′ =

∫

r<R0

d3rei(k′−k)·r(Vion(r) +W), (15.11)

then the conduction electron matrix elements are

⟨k|H|k′⟩ = Ekδk,k′ + Vk,k′ ≈ Ekδk,k′ (15.12)

while ⟨ f̃ |H| f̃ ⟩ ≈ Eion
f

is the f-level energy.
The hybridization is given by the off-diagonal matrix element,

V(k) = ⟨k|H| f̃ ⟩ = ⟨k| − ∇2 + V̂ | f̃ ⟩ = Ek⟨k| f̃ ⟩ + ⟨k|V̂ | f̃ ⟩ = ⟨k|V̂ | f̃ ⟩, (15.13)

where we have used the orthogonality ⟨k| f̃ ⟩ = 0 to eliminate the kinetic energy. Infact, since
the f-state is highly localized, its overlap with the conduction electron states is small ⟨k| f ⟩ ≈ 0,
so we can now drop the tilde, approximating ⟨k|V̂ | f̃ ⟩ ≈ ⟨k|V̂ion +W | f ⟩ ≈ ⟨k|V̂ion| f ⟩, so that

V(k) ≈ ⟨k|Vion| f ⟩ =
∫

d3re−ik.rVion(r)ψ f (r). (15.14)

In this way, the only surviving term contributing to the hybridization is the atomic potential
- only this term has the high-momentum Fourier components to create a significant overlap
between the low momentum conduction electrons and the localized f-state.
Putting these results together, the non-interacting Anderson model can then be written

Ĥresonance =
∑

k

ϵk︷!!!!!!!!!!︸︸!!!!!!!!!!︷
(Ek +W − µ) c†kσckσ +

∑

kσ

(V(k)c†kσ fσ + H.c) +

E f︷!!!!!︸︸!!!!!︷
(Eion

f − µ) n f .

4named after the cylindrical tins that were once used to package muffins
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16.3.2 Virtual bound-state formation: the non-interacting resonance.

When the magnetic ion is immersed in a sea of electrons, the f-electrons within the core of the atom
can tunnel out, hybridizing with the Bloch states of surrounding electron sea [9] as shown in Fig.
16.4.

In the absence of interactions, this physics is described by

Hresonance =

∑

k,σ

ϵknkσ +

∑

kσ

[
V(k)c†kσ fσ + H.c.

]
+ E f n f , (16.9)

where c†kσ creates an electron of momentum k, spin σ and energy ϵk = Ek − µ in the conduction
band. The hybridization broadens the localized f-state, and in the absence of interactions, gives rise
to a resonance of width ∆ given by Fermi’s Golden Rule.

∆ = π
∑

k⃗

|V(k)|2δ(ϵk − E f ) (16.10)

This is really an average of the density of states ρ(ϵ) =
∑

k δ(ω − ϵk) with the hybridization |V(k)|2.
For future reference, we shall define

∆(ϵ) = π
∑

k⃗

|V(k)|2δ(ϵk − ϵ) = πρ(ϵ)V2(ϵ) (16.11)

as the “hybridization” function.

Example 16.1: Derivation of the non-interacting Anderson model

Consider an isolated ion, where the f-state is a solution of the one-particle Schrödinger equation
[
−∇2
+ V̂ion

]
| f ⟩ = Eion

f | f ⟩, (16.12)

where Vion(r) is the ionic potential and Eion
f
< 0 is the energy of the atomic f-level. In a metal,

the positive ionic background draws the continuum downwards to become degenerate with the
f-level as shown in Fig. 16.4. A convenient way to model this situation is to use “muffin tin
potential”, 4

V(r) = (Vion(r) +W) θ(R0 − r) (16.13)

equal to the ionic potential, shifted upwards by an amount W inside the muffin tin radius R0. The
f-state is now an approximate eigenstate ofH = −∇2+ V̂ that is degenerate with the continuum.

Derive the Anderson model using degenerate perturbation theory, evaluating the matrix ele-
ments ofH between the conduction states |k⟩ and the local f-state | f ⟩. You may assume that the
muffin tin R0 is much smaller than the Fermi wavelength, so that the conduction electron matrix
elements Vk,k′ = ⟨k|V |k′⟩ are negligible.

Solution:

4named after the cylindrical tins that were once used to package muffins
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15.3 Anderson’s Model of Local Moment Formation

Anderson’s model for moment formation, proposed in 1963, combines two essential ideas[? ]:

• the localizing influence of Coulomb interactions. Peierls and Mott [? ? ] had reasoned
in the 1940s that strong-enough Coulomb repulsion between electrons in an atomic state
would blockade the passage of electrons, converting a metal into what is now called a “Mott
insulator”. These ideas were independently explored by Van Vleck and Hurvitz in an early
attempt to understand magnetic ions in metals[? ].

• the formation of an electronic resonance. In the 1950’s Friedel and Blandin [? ? ? ] proposed
that electrons in the core states of magnetic atoms tunnel out into the conduction sea, forming
a resonance.

Anderson unified these ideas in a second-quantized Hamiltonian

H =

Hresonance︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∑

k,σ

ϵknkσ +
∑

k,σ

[
V(k)c†kσ fσ + V∗(k) f †σckσ

]
+ E f n f + Unf↑n f↓︸!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!︸

Hatomic

, (15.2)

Anderson model.

where Hatomic describes the atomic limit of an isolated magnetic ion containing a Kramer’s doublet
of energy E f . The engine of magnetism in the Anderson model is the Coulomb interaction

U =
e2

4πϵ0

∫

r,r′

1
|r − r′|

ρ f (r)ρ f (r′)

of a doubly occupied f-state, where ρ f (r) = |Ψ f (r)|2 is the electron density in a single atomic
orbital ψ f (r). The operator c†kσ creates a conduction electron of momentum k, spin σ and energy
ϵk = Ek − µ, while

f †σ =

∫

r

Ψ f (r)ψ̂†σ(r), (15.3)

creates an f-electron in the atomic f-state. Unlike the electron continuum in a vacuum, a conduction
band in a metal has a finite energy width, so in the model, the energies are taken lying in the range
ϵk ∈ [−D,D]. Hresonance describes the hybridization with the Bloch waves of the conduction sea that
develops when the ion is immersed in a metal. The quantity

V(k) = ⟨k|Vion| f ⟩ =
∫

d3re−ik·rVion(r)Ψ f (⃗r). (15.4)

is the hybridization between the ionic potential and a plane wave. This term is the result of applying
first order perturbation theory to the degenerate states of the conduction sea and the atomic f-orbital.
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A competition between localization and hybridization.

To understand the formation and properties of local moments, we need to examine the two limiting
types of behaviour in the Anderson model:

• Localized moment behavior, described by the limiting case where the hybridization vanishes.

• Virtual bound-state formation, described by the limiting case where the interaction is negligi-
ble.

Figure 15.3: Phase diagram for Anderson impurity model in the atomic Limit. For U > |E f + U/2,
the ground-state is a magnetic doublet. When U < 0, the ground-state is degenerate charge doublet
provided E f + U/2 = 0.

15.3.1 The Atomic limit.

The atomic physics of an isolated ion, described by

Hatomic = E f n f + Unf↑n f↓. (15.5)

is the engine at the heart of the Anderson model that drives moment formation. The four atomic
quantum states are

| f 2⟩
| f 0⟩

E( f 2) = 2E f + U

E( f 0) = 0

}
non-magnetic

| f 1 ↑⟩, | f 1 ↓⟩ E( f 1) = E f . magnetic.

(15.6)
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The cost of adding or removing to the magnetic f 1 state is given by

adding: E( f 2) − E( f 1) = U + E f

removing: E( f 0) − E( f 1) = −E f

}
⇒ ∆E =

U

2
± (E f +

U

2
) (15.7)

In other words, provided (Fig. 15.3)

U/2 > |E f + U/2| (15.8)

the ground-state of the atom is a two-fold degenerate magnetic doublet. Indeed, provided it is
probed at energies below the smallest charge excitation energy, ∆Emin = U/2− |E f +U/2|, only the
spin degrees of freedom remain, and the system behaves as a local moment - a “quantum top”. The
interaction between such a local moment and the conduction sea gives rise to the “Kondo effect”
that will be the main topic of this chapter.

Although we shall be mainly interested in positive, repulsive U, we note that in the attractive
region of the phase diagram (U < 0) the atomic ground-state can form a degenerate “charge” doublet
(| f 0⟩, | f 2⟩) or “isospin”. For U < 0, when E f + U/2 = 0 the doubly occupied state | f 2⟩ and the
empty state | f 0⟩ become degenerate. This is the charge analog of the magnetic doublet that exists
for U > 0, and when coupled to the sea of electrons, gives rise to an effect known as the “charge
Kondo effect”. Such charge doublets are thought to be important in certain “negative U” materials,
such as Tl doped PbTe.

Figure 15.4: (a) The immersion of an atomic f state in a conduction sea leads to hybridization
between the localized f-state and the degenerate conduction electron continuum, forming (b) a res-
onance in the density of states.
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Example 15.42: Derivation of the non-interacting Anderson model

Consider an isolated ion, where the f-state is a solution of the one-particle Schrödinger equation
[
−∇2 + V̂ion

]
| f ⟩ = Eion

f | f ⟩, (15.9)

where Vion(r) is the ionic potential and Eion
f
< 0 is the energy of the atomic f-level. In a metal,

the positive ionic background draws the continuum downwards to become degenerate with the
f-level as shown in Fig. 15.4. A convenient way to model this situation is to use “muffin tin
potential”, 4

V(r) = (Vion(r) +W) θ(R0 − r) (15.10)
equal to the ionic potential, shifted upwards by an amount W inside the muffin tin radius R0. The
f-state is now an approximate eigenstate ofH = −∇2+ V̂ that is degenerate with the continuum.
Derive the non-interacting component of the Anderson model using degenerate perturbation
theory, evaluating the matrix elements of H between the conduction states |k⟩ and the local
f-state | f ⟩. You may assume that the muffin tin R0 is much smaller than the Fermi wavelength,
so that the conduction electron matrix elements Vk,k′ = ⟨k|V |k′⟩ are negligible.
Solution:
To carry out degenerate perturbation theory on H we must first orthogonalize the f-state to the
continuum | f̃ ⟩ = | f ⟩ −

∑
ϵk∈[−D,D] |k⟩⟨k| f ⟩, where D is the conduction electron band-width. Now

we need to evaluate the matrix elements ofH = −∇2 + V . If we set

Vk,k′ =

∫

r<R0

d3rei(k′−k)·r(Vion(r) +W), (15.11)

then the conduction electron matrix elements are

⟨k|H|k′⟩ = Ekδk,k′ + Vk,k′ ≈ Ekδk,k′ (15.12)

while ⟨ f̃ |H| f̃ ⟩ ≈ Eion
f

is the f-level energy.
The hybridization is given by the off-diagonal matrix element,

V(k) = ⟨k|H| f̃ ⟩ = ⟨k| − ∇2 + V̂ | f̃ ⟩ = Ek⟨k| f̃ ⟩ + ⟨k|V̂ | f̃ ⟩ = ⟨k|V̂ | f̃ ⟩, (15.13)

where we have used the orthogonality ⟨k| f̃ ⟩ = 0 to eliminate the kinetic energy. Infact, since
the f-state is highly localized, its overlap with the conduction electron states is small ⟨k| f ⟩ ≈ 0,
so we can now drop the tilde, approximating ⟨k|V̂ | f̃ ⟩ ≈ ⟨k|V̂ion +W | f ⟩ ≈ ⟨k|V̂ion| f ⟩, so that

V(k) ≈ ⟨k|Vion| f ⟩ =
∫

d3re−ik.rVion(r)ψ f (r). (15.14)

In this way, the only surviving term contributing to the hybridization is the atomic potential
- only this term has the high-momentum Fourier components to create a significant overlap
between the low momentum conduction electrons and the localized f-state.
Putting these results together, the non-interacting Anderson model can then be written

Ĥresonance =
∑

k

ϵk︷!!!!!!!!!!︸︸!!!!!!!!!!︷
(Ek +W − µ) c†kσckσ +

∑

kσ

(V(k)c†kσ fσ + H.c) +

E f︷!!!!!︸︸!!!!!︷
(Eion

f − µ) n f .

4named after the cylindrical tins that were once used to package muffins
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16.3.2 Virtual bound-state formation: the non-interacting resonance.

When the magnetic ion is immersed in a sea of electrons, the f-electrons within the core of the atom
can tunnel out, hybridizing with the Bloch states of surrounding electron sea [9] as shown in Fig.
16.4.

In the absence of interactions, this physics is described by

Hresonance =

∑

k,σ

ϵknkσ +

∑

kσ

[
V(k)c†kσ fσ + H.c.

]
+ E f n f , (16.9)

where c†kσ creates an electron of momentum k, spin σ and energy ϵk = Ek − µ in the conduction
band. The hybridization broadens the localized f-state, and in the absence of interactions, gives rise
to a resonance of width ∆ given by Fermi’s Golden Rule.

∆ = π
∑

k⃗

|V(k)|2δ(ϵk − E f ) (16.10)

This is really an average of the density of states ρ(ϵ) =
∑

k δ(ω − ϵk) with the hybridization |V(k)|2.
For future reference, we shall define

∆(ϵ) = π
∑

k⃗

|V(k)|2δ(ϵk − ϵ) = πρ(ϵ)V2(ϵ) (16.11)

as the “hybridization” function.

Example 16.1: Derivation of the non-interacting Anderson model

Consider an isolated ion, where the f-state is a solution of the one-particle Schrödinger equation
[
−∇2
+ V̂ion

]
| f ⟩ = Eion

f | f ⟩, (16.12)

where Vion(r) is the ionic potential and Eion
f
< 0 is the energy of the atomic f-level. In a metal,

the positive ionic background draws the continuum downwards to become degenerate with the
f-level as shown in Fig. 16.4. A convenient way to model this situation is to use “muffin tin
potential”, 4

V(r) = (Vion(r) +W) θ(R0 − r) (16.13)

equal to the ionic potential, shifted upwards by an amount W inside the muffin tin radius R0. The
f-state is now an approximate eigenstate ofH = −∇2+ V̂ that is degenerate with the continuum.

Derive the Anderson model using degenerate perturbation theory, evaluating the matrix ele-
ments ofH between the conduction states |k⟩ and the local f-state | f ⟩. You may assume that the
muffin tin R0 is much smaller than the Fermi wavelength, so that the conduction electron matrix
elements Vk,k′ = ⟨k|V |k′⟩ are negligible.

Solution:

4named after the cylindrical tins that were once used to package muffins

10

Free ion

bk.pdf — December 7, 2010 — 247

c⃝2010 Piers Coleman Chapter 15.

15.3 Anderson’s Model of Local Moment Formation

Anderson’s model for moment formation, proposed in 1963, combines two essential ideas[? ]:

• the localizing influence of Coulomb interactions. Peierls and Mott [? ? ] had reasoned
in the 1940s that strong-enough Coulomb repulsion between electrons in an atomic state
would blockade the passage of electrons, converting a metal into what is now called a “Mott
insulator”. These ideas were independently explored by Van Vleck and Hurvitz in an early
attempt to understand magnetic ions in metals[? ].

• the formation of an electronic resonance. In the 1950’s Friedel and Blandin [? ? ? ] proposed
that electrons in the core states of magnetic atoms tunnel out into the conduction sea, forming
a resonance.

Anderson unified these ideas in a second-quantized Hamiltonian

H =

Hresonance︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∑

k,σ

ϵknkσ +
∑

k,σ

[
V(k)c†kσ fσ + V∗(k) f †σckσ

]
+ E f n f + Unf↑n f↓︸!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!︸

Hatomic

, (15.2)

Anderson model.

where Hatomic describes the atomic limit of an isolated magnetic ion containing a Kramer’s doublet
of energy E f . The engine of magnetism in the Anderson model is the Coulomb interaction

U =
e2

4πϵ0

∫

r,r′

1
|r − r′|

ρ f (r)ρ f (r′)

of a doubly occupied f-state, where ρ f (r) = |Ψ f (r)|2 is the electron density in a single atomic
orbital ψ f (r). The operator c†kσ creates a conduction electron of momentum k, spin σ and energy
ϵk = Ek − µ, while

f †σ =

∫

r

Ψ f (r)ψ̂†σ(r), (15.3)

creates an f-electron in the atomic f-state. Unlike the electron continuum in a vacuum, a conduction
band in a metal has a finite energy width, so in the model, the energies are taken lying in the range
ϵk ∈ [−D,D]. Hresonance describes the hybridization with the Bloch waves of the conduction sea that
develops when the ion is immersed in a metal. The quantity

V(k) = ⟨k|Vion| f ⟩ =
∫

d3re−ik·rVion(r)Ψ f (⃗r). (15.4)

is the hybridization between the ionic potential and a plane wave. This term is the result of applying
first order perturbation theory to the degenerate states of the conduction sea and the atomic f-orbital.
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A competition between localization and hybridization.

To understand the formation and properties of local moments, we need to examine the two limiting
types of behaviour in the Anderson model:

• Localized moment behavior, described by the limiting case where the hybridization vanishes.

• Virtual bound-state formation, described by the limiting case where the interaction is negligi-
ble.

Figure 15.3: Phase diagram for Anderson impurity model in the atomic Limit. For U > |E f + U/2,
the ground-state is a magnetic doublet. When U < 0, the ground-state is degenerate charge doublet
provided E f + U/2 = 0.

15.3.1 The Atomic limit.

The atomic physics of an isolated ion, described by

Hatomic = E f n f + Unf↑n f↓. (15.5)

is the engine at the heart of the Anderson model that drives moment formation. The four atomic
quantum states are

| f 2⟩
| f 0⟩

E( f 2) = 2E f + U

E( f 0) = 0

}
non-magnetic

| f 1 ↑⟩, | f 1 ↓⟩ E( f 1) = E f . magnetic.

(15.6)
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16.3.2 Virtual bound-state formation: the non-interacting resonance.

When the magnetic ion is immersed in a sea of electrons, the f-electrons within the core of the atom
can tunnel out, hybridizing with the Bloch states of surrounding electron sea [9] as shown in Fig.
16.4.

In the absence of interactions, this physics is described by

Hresonance =

∑

k,σ

ϵknkσ +

∑

kσ

[
V(k)c†kσ fσ + H.c.

]
+ E f n f , (16.9)

where c†kσ creates an electron of momentum k, spin σ and energy ϵk = Ek − µ in the conduction
band. The hybridization broadens the localized f-state, and in the absence of interactions, gives rise
to a resonance of width ∆ given by Fermi’s Golden Rule.

∆ = π
∑

k⃗

|V(k)|2δ(ϵk − E f ) (16.10)

This is really an average of the density of states ρ(ϵ) =
∑

k δ(ω − ϵk) with the hybridization |V(k)|2.
For future reference, we shall define

∆(ϵ) = π
∑

k⃗

|V(k)|2δ(ϵk − ϵ) = πρ(ϵ)V2(ϵ) (16.11)

as the “hybridization” function.

Example 16.1: Derivation of the non-interacting Anderson model

Consider an isolated ion, where the f-state is a solution of the one-particle Schrödinger equation
[
−∇2
+ V̂ion

]
| f ⟩ = Eion

f | f ⟩, (16.12)

where Vion(r) is the ionic potential and Eion
f
< 0 is the energy of the atomic f-level. In a metal,

the positive ionic background draws the continuum downwards to become degenerate with the
f-level as shown in Fig. 16.4. A convenient way to model this situation is to use “muffin tin
potential”, 4

V(r) = (Vion(r) +W) θ(R0 − r) (16.13)

equal to the ionic potential, shifted upwards by an amount W inside the muffin tin radius R0. The
f-state is now an approximate eigenstate ofH = −∇2+ V̂ that is degenerate with the continuum.

Derive the Anderson model using degenerate perturbation theory, evaluating the matrix ele-
ments ofH between the conduction states |k⟩ and the local f-state | f ⟩. You may assume that the
muffin tin R0 is much smaller than the Fermi wavelength, so that the conduction electron matrix
elements Vk,k′ = ⟨k|V |k′⟩ are negligible.

Solution:

4named after the cylindrical tins that were once used to package muffins
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15.3 Anderson’s Model of Local Moment Formation

Anderson’s model for moment formation, proposed in 1963, combines two essential ideas[? ]:

• the localizing influence of Coulomb interactions. Peierls and Mott [? ? ] had reasoned
in the 1940s that strong-enough Coulomb repulsion between electrons in an atomic state
would blockade the passage of electrons, converting a metal into what is now called a “Mott
insulator”. These ideas were independently explored by Van Vleck and Hurvitz in an early
attempt to understand magnetic ions in metals[? ].

• the formation of an electronic resonance. In the 1950’s Friedel and Blandin [? ? ? ] proposed
that electrons in the core states of magnetic atoms tunnel out into the conduction sea, forming
a resonance.

Anderson unified these ideas in a second-quantized Hamiltonian

H =

Hresonance︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷∑

k,σ

ϵknkσ +
∑

k,σ

[
V(k)c†kσ fσ + V∗(k) f †σckσ

]
+ E f n f + Unf↑n f↓︸!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!︸

Hatomic

, (15.2)

Anderson model.

where Hatomic describes the atomic limit of an isolated magnetic ion containing a Kramer’s doublet
of energy E f . The engine of magnetism in the Anderson model is the Coulomb interaction

U =
e2

4πϵ0

∫

r,r′

1
|r − r′|

ρ f (r)ρ f (r′)

of a doubly occupied f-state, where ρ f (r) = |Ψ f (r)|2 is the electron density in a single atomic
orbital ψ f (r). The operator c†kσ creates a conduction electron of momentum k, spin σ and energy
ϵk = Ek − µ, while

f †σ =

∫

r

Ψ f (r)ψ̂†σ(r), (15.3)

creates an f-electron in the atomic f-state. Unlike the electron continuum in a vacuum, a conduction
band in a metal has a finite energy width, so in the model, the energies are taken lying in the range
ϵk ∈ [−D,D]. Hresonance describes the hybridization with the Bloch waves of the conduction sea that
develops when the ion is immersed in a metal. The quantity

V(k) = ⟨k|Vion| f ⟩ =
∫

d3re−ik·rVion(r)Ψ f (⃗r). (15.4)

is the hybridization between the ionic potential and a plane wave. This term is the result of applying
first order perturbation theory to the degenerate states of the conduction sea and the atomic f-orbital.
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A competition between localization and hybridization.

To understand the formation and properties of local moments, we need to examine the two limiting
types of behaviour in the Anderson model:

• Localized moment behavior, described by the limiting case where the hybridization vanishes.

• Virtual bound-state formation, described by the limiting case where the interaction is negligi-
ble.

Figure 15.3: Phase diagram for Anderson impurity model in the atomic Limit. For U > |E f + U/2,
the ground-state is a magnetic doublet. When U < 0, the ground-state is degenerate charge doublet
provided E f + U/2 = 0.

15.3.1 The Atomic limit.

The atomic physics of an isolated ion, described by

Hatomic = E f n f + Unf↑n f↓. (15.5)

is the engine at the heart of the Anderson model that drives moment formation. The four atomic
quantum states are

| f 2⟩
| f 0⟩

E( f 2) = 2E f + U

E( f 0) = 0

}
non-magnetic

| f 1 ↑⟩, | f 1 ↓⟩ E( f 1) = E f . magnetic.

(15.6)
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110 Strongly correlated electronic systems

carried out by Schrieffer and Wolff (1966), and Coqblin
and Schrieffer (1969), who showed how this model gives
rise to a residual antiferromagnetic interaction between the
local moment and conduction electrons. The emergence
of this antiferromagnetic interaction is associated with a
process called superexchange: the virtual process in which
an electron or hole briefly migrates off the ion, to be
immediately replaced by another with a different spin. When
these processes are removed by the canonical transformation,
they induce an antiferromagnetic interaction between the
local moment and the conduction electrons. This can be seen
by considering the two possible spin-exchange processes

e−
↑ + f 1

↓ ↔ f 2 ↔ e−
↓ + f 1

↑ !EI ∼ U + Ef

h+
↑ + f 1

↓ ↔ f 0 ↔ h+
↓ + f 1

↑ !EII ∼ −Ef (39)

Both processes require that the f electron and incoming
particle are in a spin-singlet. From second-order perturbation
theory, the energy of the singlet is lowered by an amount
−2J , where

J = V 2
[

1
!E1

+ 1
!E2

]
(40)

and the factor of two derives from the two ways a singlet
can emit an electron or hole into the continuum [1] and
V ∼ V (kF) is the hybridization matrix element near the
Fermi surface. For the symmetric Anderson model, where
!E1 = !EII = U/2, J = 4V 2/U .

If we introduce the electron spin-density operator σ⃗ (0) =
1
N

∑
k,k′ c

†
kασ⃗ αβck′β , where N is the number of sites in the

lattice, then the effective interaction has the form

HK = −2JPS=0 (41)

where PS=0 =
[

1
4 − 1

2 σ⃗ (0) · S⃗f

]
is the singlet projection

operator. If we drop the constant term, then the effective
interaction induced by the virtual charge fluctuations must
have the form

HK = J σ⃗ (0) · S⃗f (42)

where S⃗f is the spin of the localized moment. The complete
‘Kondo Model’, H = Hc + HK describing the conduction
electrons and their interaction with the local moment is

H =
∑

kσ

ϵkc
†
k⃗σ

ck⃗σ + J σ⃗ (0) · S⃗f (43)

2.2.3 The Kondo effect

The antiferromagnetic sign of the superexchange interac-
tion J in the Kondo Hamiltonian is the origin of the

spin-screening physics of the Kondo effect. The bare inter-
action is weak, but the spin fluctuations it induces have
the effect of antiscreening the interaction at low ener-
gies, renormalizing it to larger and larger values. To see
this, we follow an Anderson’s ‘Poor Man’s’ scaling pro-
cedure (Anderson, 1973, 1970), which takes advantage of
the observation that at small J the renormalization in the
Hamiltonian associated with the block-diagonalization pro-
cess δH = H̃L − HL is given by second-order perturbation
theory:

δHab = ⟨a|δH |b⟩ = 1
2

[Tab(Ea) + Tab(Eb)] (44)

where

Tab(ω) =
∑

|(⟩∈{H }

[
V †

a(V(b

ω − E(

]

(45)

is the many-body ‘t-matrix’ associated with virtual transi-
tions into the high-energy subspace {H }. For the Kondo
model,

V = PHJ S⃗(0) · S⃗dPL (46)

where PH projects the intermediate state into the high-
energy subspace, while PL projects the initial state into
the low-energy subspace. There are two virtual scatter-
ing processes that contribute to the antiscreening effect,
involving a high-energy electron (I) or a high-energy
hole (II).

Process I is denoted by the diagram

s′s′′

ka

k ′′l

s

k ′b

and starts in state |b⟩ = |kα, σ ⟩, passes through a virtual
state |(⟩ = |c†

k′′ασ ′′⟩ where ϵk′′ lies at high energies in the
range ϵk′′ ∈ [(/b, (] and ends in state |a⟩ = |k′β, σ ′⟩. The
resulting renormalization

⟨k′β, σ ′|T I (E)|kα, σ ⟩

=
∑

ϵk′′ ∈[(−δ(,(]

[
1

E−ϵk′′

]
J 2×(σ a

βλσ
b
λα)(Sa

σ ′σ ′′S
b
σ ′′σ )

≈ J 2ρδ(

[
1

E − (

]
(σ aσ b)βα(SaSb)σ ′σ (47)

In Process II, denoted by

Virtual Valence  fluctuations in the singlet 
channel, induced by hybridization
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carried out by Schrieffer and Wolff (1966), and Coqblin
and Schrieffer (1969), who showed how this model gives
rise to a residual antiferromagnetic interaction between the
local moment and conduction electrons. The emergence
of this antiferromagnetic interaction is associated with a
process called superexchange: the virtual process in which
an electron or hole briefly migrates off the ion, to be
immediately replaced by another with a different spin. When
these processes are removed by the canonical transformation,
they induce an antiferromagnetic interaction between the
local moment and the conduction electrons. This can be seen
by considering the two possible spin-exchange processes

e−
↑ + f 1

↓ ↔ f 2 ↔ e−
↓ + f 1

↑ !EI ∼ U + Ef

h+
↑ + f 1

↓ ↔ f 0 ↔ h+
↓ + f 1

↑ !EII ∼ −Ef (39)

Both processes require that the f electron and incoming
particle are in a spin-singlet. From second-order perturbation
theory, the energy of the singlet is lowered by an amount
−2J , where

J = V 2
[

1
!E1

+ 1
!E2

]
(40)

and the factor of two derives from the two ways a singlet
can emit an electron or hole into the continuum [1] and
V ∼ V (kF) is the hybridization matrix element near the
Fermi surface. For the symmetric Anderson model, where
!E1 = !EII = U/2, J = 4V 2/U .

If we introduce the electron spin-density operator σ⃗ (0) =
1
N

∑
k,k′ c

†
kασ⃗ αβck′β , where N is the number of sites in the

lattice, then the effective interaction has the form

HK = −2JPS=0 (41)

where PS=0 =
[

1
4 − 1

2 σ⃗ (0) · S⃗f

]
is the singlet projection

operator. If we drop the constant term, then the effective
interaction induced by the virtual charge fluctuations must
have the form

HK = J σ⃗ (0) · S⃗f (42)

where S⃗f is the spin of the localized moment. The complete
‘Kondo Model’, H = Hc + HK describing the conduction
electrons and their interaction with the local moment is

H =
∑

kσ

ϵkc
†
k⃗σ

ck⃗σ + J σ⃗ (0) · S⃗f (43)

2.2.3 The Kondo effect

The antiferromagnetic sign of the superexchange interac-
tion J in the Kondo Hamiltonian is the origin of the

spin-screening physics of the Kondo effect. The bare inter-
action is weak, but the spin fluctuations it induces have
the effect of antiscreening the interaction at low ener-
gies, renormalizing it to larger and larger values. To see
this, we follow an Anderson’s ‘Poor Man’s’ scaling pro-
cedure (Anderson, 1973, 1970), which takes advantage of
the observation that at small J the renormalization in the
Hamiltonian associated with the block-diagonalization pro-
cess δH = H̃L − HL is given by second-order perturbation
theory:

δHab = ⟨a|δH |b⟩ = 1
2

[Tab(Ea) + Tab(Eb)] (44)

where

Tab(ω) =
∑

|(⟩∈{H }

[
V †

a(V(b

ω − E(

]

(45)

is the many-body ‘t-matrix’ associated with virtual transi-
tions into the high-energy subspace {H }. For the Kondo
model,

V = PHJ S⃗(0) · S⃗dPL (46)

where PH projects the intermediate state into the high-
energy subspace, while PL projects the initial state into
the low-energy subspace. There are two virtual scatter-
ing processes that contribute to the antiscreening effect,
involving a high-energy electron (I) or a high-energy
hole (II).

Process I is denoted by the diagram

s′s′′

ka

k ′′l

s

k ′b

and starts in state |b⟩ = |kα, σ ⟩, passes through a virtual
state |(⟩ = |c†
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they induce an antiferromagnetic interaction between the
local moment and the conduction electrons. This can be seen
by considering the two possible spin-exchange processes

e−
↑ + f 1

↓ ↔ f 2 ↔ e−
↓ + f 1

↑ !EI ∼ U + Ef

h+
↑ + f 1

↓ ↔ f 0 ↔ h+
↓ + f 1

↑ !EII ∼ −Ef (39)

Both processes require that the f electron and incoming
particle are in a spin-singlet. From second-order perturbation
theory, the energy of the singlet is lowered by an amount
−2J , where

J = V 2
[

1
!E1

+ 1
!E2

]
(40)
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action is weak, but the spin fluctuations it induces have
the effect of antiscreening the interaction at low ener-
gies, renormalizing it to larger and larger values. To see
this, we follow an Anderson’s ‘Poor Man’s’ scaling pro-
cedure (Anderson, 1973, 1970), which takes advantage of
the observation that at small J the renormalization in the
Hamiltonian associated with the block-diagonalization pro-
cess δH = H̃L − HL is given by second-order perturbation
theory:

δHab = ⟨a|δH |b⟩ = 1
2

[Tab(Ea) + Tab(Eb)] (44)

where

Tab(ω) =
∑

|(⟩∈{H }

[
V †

a(V(b

ω − E(

]

(45)

is the many-body ‘t-matrix’ associated with virtual transi-
tions into the high-energy subspace {H }. For the Kondo
model,

V = PHJ S⃗(0) · S⃗dPL (46)

where PH projects the intermediate state into the high-
energy subspace, while PL projects the initial state into
the low-energy subspace. There are two virtual scatter-
ing processes that contribute to the antiscreening effect,
involving a high-energy electron (I) or a high-energy
hole (II).

Process I is denoted by the diagram

s′s′′

ka

k ′′l

s

k ′b

and starts in state |b⟩ = |kα, σ ⟩, passes through a virtual
state |(⟩ = |c†

k′′ασ ′′⟩ where ϵk′′ lies at high energies in the
range ϵk′′ ∈ [(/b, (] and ends in state |a⟩ = |k′β, σ ′⟩. The
resulting renormalization

⟨k′β, σ ′|T I (E)|kα, σ ⟩

=
∑

ϵk′′ ∈[(−δ(,(]

[
1

E−ϵk′′

]
J 2×(σ a

βλσ
b
λα)(Sa

σ ′σ ′′S
b
σ ′′σ )

≈ J 2ρδ(

[
1

E − (

]
(σ aσ b)βα(SaSb)σ ′σ (47)

In Process II, denoted by



f0

f1

f2

Ef

2Ef + U

Schrieffer Wolff Transformation: integrate out high 
frequency valence fluctuations.

ΔE2=Ef+U
ΔE1=-Ef

110 Strongly correlated electronic systems

carried out by Schrieffer and Wolff (1966), and Coqblin
and Schrieffer (1969), who showed how this model gives
rise to a residual antiferromagnetic interaction between the
local moment and conduction electrons. The emergence
of this antiferromagnetic interaction is associated with a
process called superexchange: the virtual process in which
an electron or hole briefly migrates off the ion, to be
immediately replaced by another with a different spin. When
these processes are removed by the canonical transformation,
they induce an antiferromagnetic interaction between the
local moment and the conduction electrons. This can be seen
by considering the two possible spin-exchange processes

e−
↑ + f 1

↓ ↔ f 2 ↔ e−
↓ + f 1

↑ !EI ∼ U + Ef

h+
↑ + f 1

↓ ↔ f 0 ↔ h+
↓ + f 1

↑ !EII ∼ −Ef (39)

Both processes require that the f electron and incoming
particle are in a spin-singlet. From second-order perturbation
theory, the energy of the singlet is lowered by an amount
−2J , where

J = V 2
[

1
!E1

+ 1
!E2

]
(40)

and the factor of two derives from the two ways a singlet
can emit an electron or hole into the continuum [1] and
V ∼ V (kF) is the hybridization matrix element near the
Fermi surface. For the symmetric Anderson model, where
!E1 = !EII = U/2, J = 4V 2/U .

If we introduce the electron spin-density operator σ⃗ (0) =
1
N

∑
k,k′ c

†
kασ⃗ αβck′β , where N is the number of sites in the

lattice, then the effective interaction has the form

HK = −2JPS=0 (41)

where PS=0 =
[

1
4 − 1

2 σ⃗ (0) · S⃗f

]
is the singlet projection

operator. If we drop the constant term, then the effective
interaction induced by the virtual charge fluctuations must
have the form

HK = J σ⃗ (0) · S⃗f (42)

where S⃗f is the spin of the localized moment. The complete
‘Kondo Model’, H = Hc + HK describing the conduction
electrons and their interaction with the local moment is

H =
∑

kσ

ϵkc
†
k⃗σ

ck⃗σ + J σ⃗ (0) · S⃗f (43)

2.2.3 The Kondo effect

The antiferromagnetic sign of the superexchange interac-
tion J in the Kondo Hamiltonian is the origin of the

spin-screening physics of the Kondo effect. The bare inter-
action is weak, but the spin fluctuations it induces have
the effect of antiscreening the interaction at low ener-
gies, renormalizing it to larger and larger values. To see
this, we follow an Anderson’s ‘Poor Man’s’ scaling pro-
cedure (Anderson, 1973, 1970), which takes advantage of
the observation that at small J the renormalization in the
Hamiltonian associated with the block-diagonalization pro-
cess δH = H̃L − HL is given by second-order perturbation
theory:

δHab = ⟨a|δH |b⟩ = 1
2

[Tab(Ea) + Tab(Eb)] (44)

where

Tab(ω) =
∑

|(⟩∈{H }

[
V †

a(V(b

ω − E(

]

(45)

is the many-body ‘t-matrix’ associated with virtual transi-
tions into the high-energy subspace {H }. For the Kondo
model,

V = PHJ S⃗(0) · S⃗dPL (46)

where PH projects the intermediate state into the high-
energy subspace, while PL projects the initial state into
the low-energy subspace. There are two virtual scatter-
ing processes that contribute to the antiscreening effect,
involving a high-energy electron (I) or a high-energy
hole (II).

Process I is denoted by the diagram

s′s′′

ka

k ′′l

s

k ′b

and starts in state |b⟩ = |kα, σ ⟩, passes through a virtual
state |(⟩ = |c†

k′′ασ ′′⟩ where ϵk′′ lies at high energies in the
range ϵk′′ ∈ [(/b, (] and ends in state |a⟩ = |k′β, σ ′⟩. The
resulting renormalization

⟨k′β, σ ′|T I (E)|kα, σ ⟩

=
∑

ϵk′′ ∈[(−δ(,(]

[
1

E−ϵk′′

]
J 2×(σ a

βλσ
b
λα)(Sa

σ ′σ ′′S
b
σ ′′σ )

≈ J 2ρδ(

[
1

E − (

]
(σ aσ b)βα(SaSb)σ ′σ (47)

In Process II, denoted by

Virtual Valence  fluctuations in the singlet 
channel, induced by hybridization

From second order perturbation theory, the 
energy of c-f singlets reduces by an amount 
2J, where

110 Strongly correlated electronic systems

carried out by Schrieffer and Wolff (1966), and Coqblin
and Schrieffer (1969), who showed how this model gives
rise to a residual antiferromagnetic interaction between the
local moment and conduction electrons. The emergence
of this antiferromagnetic interaction is associated with a
process called superexchange: the virtual process in which
an electron or hole briefly migrates off the ion, to be
immediately replaced by another with a different spin. When
these processes are removed by the canonical transformation,
they induce an antiferromagnetic interaction between the
local moment and the conduction electrons. This can be seen
by considering the two possible spin-exchange processes

e−
↑ + f 1

↓ ↔ f 2 ↔ e−
↓ + f 1

↑ !EI ∼ U + Ef

h+
↑ + f 1

↓ ↔ f 0 ↔ h+
↓ + f 1

↑ !EII ∼ −Ef (39)

Both processes require that the f electron and incoming
particle are in a spin-singlet. From second-order perturbation
theory, the energy of the singlet is lowered by an amount
−2J , where

J = V 2
[

1
!E1

+ 1
!E2

]
(40)

and the factor of two derives from the two ways a singlet
can emit an electron or hole into the continuum [1] and
V ∼ V (kF) is the hybridization matrix element near the
Fermi surface. For the symmetric Anderson model, where
!E1 = !EII = U/2, J = 4V 2/U .

If we introduce the electron spin-density operator σ⃗ (0) =
1
N

∑
k,k′ c

†
kασ⃗ αβck′β , where N is the number of sites in the

lattice, then the effective interaction has the form

HK = −2JPS=0 (41)

where PS=0 =
[

1
4 − 1

2 σ⃗ (0) · S⃗f

]
is the singlet projection

operator. If we drop the constant term, then the effective
interaction induced by the virtual charge fluctuations must
have the form

HK = J σ⃗ (0) · S⃗f (42)

where S⃗f is the spin of the localized moment. The complete
‘Kondo Model’, H = Hc + HK describing the conduction
electrons and their interaction with the local moment is

H =
∑

kσ

ϵkc
†
k⃗σ

ck⃗σ + J σ⃗ (0) · S⃗f (43)

2.2.3 The Kondo effect

The antiferromagnetic sign of the superexchange interac-
tion J in the Kondo Hamiltonian is the origin of the

spin-screening physics of the Kondo effect. The bare inter-
action is weak, but the spin fluctuations it induces have
the effect of antiscreening the interaction at low ener-
gies, renormalizing it to larger and larger values. To see
this, we follow an Anderson’s ‘Poor Man’s’ scaling pro-
cedure (Anderson, 1973, 1970), which takes advantage of
the observation that at small J the renormalization in the
Hamiltonian associated with the block-diagonalization pro-
cess δH = H̃L − HL is given by second-order perturbation
theory:

δHab = ⟨a|δH |b⟩ = 1
2

[Tab(Ea) + Tab(Eb)] (44)

where

Tab(ω) =
∑

|(⟩∈{H }

[
V †

a(V(b

ω − E(

]

(45)

is the many-body ‘t-matrix’ associated with virtual transi-
tions into the high-energy subspace {H }. For the Kondo
model,

V = PHJ S⃗(0) · S⃗dPL (46)

where PH projects the intermediate state into the high-
energy subspace, while PL projects the initial state into
the low-energy subspace. There are two virtual scatter-
ing processes that contribute to the antiscreening effect,
involving a high-energy electron (I) or a high-energy
hole (II).

Process I is denoted by the diagram

s′s′′

ka

k ′′l

s

k ′b

and starts in state |b⟩ = |kα, σ ⟩, passes through a virtual
state |(⟩ = |c†

k′′ασ ′′⟩ where ϵk′′ lies at high energies in the
range ϵk′′ ∈ [(/b, (] and ends in state |a⟩ = |k′β, σ ′⟩. The
resulting renormalization

⟨k′β, σ ′|T I (E)|kα, σ ⟩

=
∑

ϵk′′ ∈[(−δ(,(]

[
1

E−ϵk′′

]
J 2×(σ a

βλσ
b
λα)(Sa

σ ′σ ′′S
b
σ ′′σ )

≈ J 2ρδ(

[
1

E − (

]
(σ aσ b)βα(SaSb)σ ′σ (47)

In Process II, denoted by

HK = �2JPS=0 = �2J

1
4
� 1

2
⇥�c(0) · ⇥Sf

�
⇥ J⇥�c(0) · ⇥Sf

Antiferromagnetic Kondo interaction

Conduction sea



f0

f1

f2

Ef

2Ef + U

Schrieffer Wolff Transformation: integrate out high 
frequency valence fluctuations.

ΔE2=Ef+U
ΔE1=-Ef

HK = �2JPS=0 = �2J

1
4
� 1

2
⇥�c(0) · ⇥Sf

�
⇥ J⇥�c(0) · ⇥Sf

Antiferromagnetic Kondo interaction

Conduction sea

H =
�

k⇤

�kc†k⇤ck⇤ +
J

N
�

j

�Sj · c†k��⇥�⇥ck�⇥ei(k��k)·Rj



f0

f1

f2

Ef

2Ef + U

Schrieffer Wolff Transformation: integrate out high 
frequency valence fluctuations.

ΔE2=Ef+U
ΔE1=-Ef

HK = �2JPS=0 = �2J

1
4
� 1

2
⇥�c(0) · ⇥Sf

�
⇥ J⇥�c(0) · ⇥Sf

Antiferromagnetic Kondo interaction

Conduction sea

H =
�

k⇤

�kc†k⇤ck⇤ +
J

N
�

j

�Sj · c†k��⇥�⇥ck�⇥ei(k��k)·Rj

Note: can also write Kondo interaction 
in the “Coqblin Schrieffer” form

HK = �J
�

j,�,�

(c†j�fj�)(f†
j�cj�)

<latexit sha1_base64="EqWVKCGJd3AFhT3IAvKVoon08iI="></latexit><latexit sha1_base64="EqWVKCGJd3AFhT3IAvKVoon08iI="></latexit>



THE KONDO LATTICE

H =
�

k⇤

�kc†k⇤ck⇤ +
J

N
�

j

�Sj · c†k��⇥�⇥ck�⇥ei(k��k)·Rj

T. Kasuya (1951)

“Kondo Lattice”



Doniach Hypothesis.



H = J
X

~�(j) · ~Sj � t
X

(i,j)

(c†i�cj� +H.c)

J >> tStrong coupling Kondo Lattice



H = J
X

~�(j) · ~Sj � t
X

(i,j)

(c†i�cj� +H.c)

J >> tStrong coupling Kondo Lattice

ne = nspins
Kondo insulator



H = J
X

~�(j) · ~Sj � t
X

(i,j)

(c†i�cj� +H.c)

J >> tStrong coupling Kondo Lattice

ne = nspins
Kondo insulator

Electron doping



H = J
X

~�(j) · ~Sj � t
X

(i,j)

(c†i�cj� +H.c)

J >> tStrong coupling Kondo Lattice

ne = nspins
Kondo insulator

Electron doping

-t



H = J
X

~�(j) · ~Sj � t
X

(i,j)

(c†i�cj� +H.c)

J >> tStrong coupling Kondo Lattice

ne = nspins
Kondo insulator

Electron doping

-t

Mobile 

“Heavy Electrons”



H = J
X

~�(j) · ~Sj � t
X

(i,j)

(c†i�cj� +H.c)

J >> tStrong coupling Kondo Lattice

ne = nspins
Kondo insulator

Electron doping

-t

3J/2
k

Ek
~ 8t

Mobile 

“Heavy Electrons”



H = J
X

~�(j) · ~Sj � t
X

(i,j)

(c†i�cj� +H.c)

J >> tStrong coupling Kondo Lattice

ne = nspins
Kondo insulator

Electron doping

Hole doping: mobile heavy 
holes ne = nspins � �

-t

-t

3J/2
k

Ek
~ 8t

Mobile 

“Heavy Electrons”



H = J
X

~�(j) · ~Sj � t
X

(i,j)

(c†i�cj� +H.c)

J >> tStrong coupling Kondo Lattice

ne = nspins
Kondo insulator

Electron doping

Hole doping: mobile heavy 
holes ne = nspins � �

-t

� 3J/2

~ 8t

-t

3J/2
k

Ek
~ 8t

Mobile 

“Heavy Electrons”



H = J
X

~�(j) · ~Sj � t
X

(i,j)

(c†i�cj� +H.c)

J >> tStrong coupling Kondo Lattice

ne = nspins
Kondo insulator

Electron doping

Hole doping: mobile heavy 
holes ne = nspins � �

-t

� 3J/2

~ 8t

-t

3J/2
k

Ek
~ 8t

Mobile 

“Heavy Electrons”

2� �



H = J
X

~�(j) · ~Sj � t
X

(i,j)

(c†i�cj� +H.c)

J >> tStrong coupling Kondo Lattice

ne = nspins
Kondo insulator

Hole doping: mobile heavy 
holes ne = nspins � �

-t

� 3J/2

~ 8t

2

✓
vFS

(2⇡)D

◆
= 2� � = nspins + ne

FS sum rule counts spins as charged qp.

3J/2
k

Ek
~ 8t

2� �



Large Fermi surface and the charge of 
the f-electron




