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1 INTRODUCTION: ‘ASYMPTOTIC
FREEDOM’ IN A CRYOSTAT

The term heavy fermion was coined by Steglich et al. (1976)
in the late 1970s to describe the electronic excitations in
a new class of intermetallic compound with an electronic
density of states as much as 1000 times larger than copper.
Since the original discovery of heavy-fermion behavior in
CeAl3 by Andres, Graebner and Ott (1975), a diversity of
heavy-fermion compounds, including superconductors, anti-
ferromagnets (AFMs), and insulators have been discovered.
In the last 10 years, these materials have become the focus of
intense interest with the discovery that intermetallic AFMs
can be tuned through a quantum phase transition into a
heavy-fermion state by pressure, magnetic fields, or chemical
doping (von Löhneysen et al., 1994; von Löhneysen, 1996;

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

Mathur et al., 1998). The ‘quantum critical point’ (QCP) that
separates the heavy-electron ground state from the AFM rep-
resents a kind of singularity in the material phase diagram
that profoundly modifies the metallic properties, giving them
a a predisposition toward superconductivity and other novel
states of matter.

One of the goals of modern condensed matter research
is to couple magnetic and electronic properties to develop
new classes of material behavior, such as high-temperature
superconductivity or colossal magnetoresistance materials,
spintronics, and the newly discovered multiferroic materials.
Heavy-electron materials lie at the very brink of magnetic
instability, in a regime where quantum fluctuations of the
magnetic and electronic degrees are strongly coupled. As
such, they are an important test bed for the development of
our understanding about the interaction between magnetic
and electronic quantum fluctuations.

Heavy-fermion materials contain rare-earth or actinide
ions, forming a matrix of localized magnetic moments. The
active physics of these materials results from the immersion
of these magnetic moments in a quantum sea of mobile con-
duction electrons. In most rare-earth metals and insulators,
local moments tend to order antiferromagnetically, but, in
heavy-electron metals, the quantum-mechanical jiggling of
the local moments induced by delocalized electrons is fierce
enough to melt the magnetic order.

The mechanism by which this takes place involves a
remarkable piece of quantum physics called the Kondo
effect (Kondo, 1962, 1964; Jones, 2007). The Kondo effect
describes the process by which a free magnetic ion, with a
Curie magnetic susceptibility at high temperatures, becomes
screened by the spins of the conduction sea, to ultimately
form a spinless scatering center at low temperatures and
low magnetic fields (Figure 1a). In the Kondo effect, this
screening process is continuous, and takes place once the
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112 Strongly correlated electronic systems

details about the local Fermi liquid that forms, we refer the
reader to the accompanying chapter on the Kondo effect by
Jones (2007).

2.2.4 Doniach’s Kondo lattice concept

The discovery of heavy-electron metals prompted Doniach
(1977) to make the radical proposal that heavy-electron
materials derive from a dense lattice version of the Kondo
effect, described by the Kondo Lattice model (Kasuya,
1956)

H =
∑
kσ

εkc
†
kσ ckσ + J

∑
j

�Sj · c
†
kα �σαβck′βei(k′−k)·Rj (58)

In effect, Doniach was implicitly proposing that the key
physics of heavy-electron materials resides in the interaction
of neutral local moments with a charged conduction electron
sea.

Most local moment systems develop an antiferromagnetic
order at low temperatures. A magnetic moment at location
x0 induces a wave of ‘Friedel’ oscillations in the electron
spin density (Figure 14)

〈�σ(x)〉 = −Jχ(x − x0)〈�S(x0)〉 (59)

where

χ(x) = 2
∑
k,k′

(
f (εk) − f (εk′)

εk′ − εk

)
ei(k−k′)·x (60)

is the nonlocal susceptibility of the metal. The sharp dis-
continuity in the occupancies f (εk) at the Fermi surface is
responsible for Friedel oscillations in induced spin density
that decay with a power law

〈�σ(r)〉 ∼ −Jρ
cos 2kFr

|kFr|3 (61)

where ρ is the conduction electron density of states and r is
the distance from the impurity. If a second local moment is
introduced at location x, it couples to this Friedel oscillation
with energy J 〈�S(x) · �σ(x)〉, giving rise to the ‘RKKY’

(Ruderman and Kittel, 1954; Kasuya, 1956; Yosida, 1957)
magnetic interaction,

HRKKY =
JRKKY(x−x′)︷ ︸︸ ︷

−J 2χ(x − x′) �S(x) · �S(x′) (62)

where

JRKKY(r) ∼ −J 2ρ
cos 2kFr

kFr
(63)

In alloys containing a dilute concentration of magnetic
transition-metal ions, the oscillatory RKKY interaction gives
rise to a frustrated, glassy magnetic state known as a spin
glass. In dense systems, the RKKY interaction typically
gives rise to an ordered antiferromagnetic state with a Néel
temperature TN of the order J 2ρ. Heavy-electron metals
narrowly escape this fate.

Doniach argued that there are two scales in the Kondo
lattice, the single-ion Kondo temperature TK and TRKKY,
given by

TK = De−1/(2Jρ)

TRKKY = J 2ρ (64)

When Jρ is small, then TRKKY is the largest scale and an
antiferromagnetic state is formed, but, when the Jρ is large,
the Kondo temperature is the largest scale so a dense Kondo
lattice ground state becomes stable. In this paramagnetic
state, each site resonantly scatters electrons with a phase shift
∼π/2. Bloch’s theorem then insures that the resonant elastic
scattering at each site acts coherently, forming a renormalized
band of width ∼TK (Figure 15).

As in the impurity model, one can identify the Kondo
lattice ground state with the large U limit of the Anderson
lattice model. By appealing to adiabaticity, one can then
link the excitations to the small U Anderson lattice model.
According to this line of argument, the quasiparticle Fermi
surface volume must count the number of conduction and f
electrons (Martin, 1982), even in the large U limit, where it
corresponds to the number of electrons plus the number of
spins

2
VFS

(2π)3
= ne + nspins (65)

Figure 14. Spin polarization around magnetic impurity contains Friedel oscillations and induces an RKKY interaction between the spins.
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Figure 15. Doniach diagram, illustrating the antiferromagnetic
regime, where TK < TRKKY and the heavy-fermion regime, where
TK > TRKKY. Experiment has told us in recent times that the tran-
sition between these two regimes is a quantum critical point. The
effective Fermi temperature of the heavy Fermi liquid is indicated
as a solid line. Circumstantial experimental evidence suggests that
this scale drops to zero at the antiferromagnetic quantum critical
point, but this is still a matter of controversy.

Using topology, and certain basic assumptions about the
response of a Fermi liquid to a flux, Oshikawa (2000) was
able to short circuit this tortuous path of reasoning, proving
that the Luttinger relationship holds for the Kondo lattice
model without reference to its finite U origins.

There are, however, aspects to the Doniach argument that
leave cause for concern:

• It is purely a comparison of energy scales and does
not provide a detailed mechanism connecting the heavy-
fermion phase to the local moment AFM.

• Simple estimates of the value of Jρ required for heavy-
electron behavior give an artificially large value of the
coupling constant Jρ ∼ 1. This issue was later resolved
by the observation that large spin degeneracy 2j + 1 of
the spin-orbit coupled moments, which can be as large
as N = 8 in Yb materials, enhances the rate of scaling
to strong coupling, leading to a Kondo temperature
(Coleman, 1983)

TK = D(NJρ)
1
N exp

[
− 1

NJρ

]
(66)

Since the scaling enhancement effect stretches out across
decades of energy, it is largely robust against crystal
fields (Mekata et al., 1986).

• Nozières’ exhaustion paradox (Nozières, 1985). If one
considers each local moment to be magnetically screened
by a cloud of low-energy electrons within an energy
TK of the Fermi energy, one arrives at an ‘exhaus-
tion paradox’. In this interpretation, the number of
electrons available to screen each local moment is of
the order TK/D � 1 per unit cell. Once the concen-
tration of magnetic impurities exceeds TK

D
∼ 0.1% for

(TK = 10 K, D = 104 K), the supply of screening elec-
trons would be exhausted, logically excluding any sort of
dense Kondo effect. Experimentally, features of single-
ion Kondo behavior persist to much higher densities.
The resolution to the exhaustion paradox lies in the more
modern perception that spin screening of local moments
extends up in energy, from the Kondo scale TK out to the
bandwidth. In this respect, Kondo screening is reminis-
cent of Cooper pair formation, which involves electron
states that extend upward from the gap energy to the
Debye cutoff. From this perspective, the Kondo length
scale ξ ∼ vF/TK is analogous to the coherence length of
a superconductor (Burdin, Georges and Grempel, 2000),
defining the length scale over which the conduction spin
and local moment magnetization are coherent without
setting any limit on the degree to which the correlation
clouds can overlap (Figure 16).

2.3 The large N Kondo lattice

2.3.1 Gauge theories, large N, and strong correlation

The ‘standard model’ for metals is built upon the expansion
to high orders in the strength of the interaction. This
approach, pioneered by Landau, and later formulated in the
language of finite temperature perturbation theory by Landau
(1957), Pitaevskii (1960), Luttinger and Ward (1960), and
Nozières and Luttinger (1962), provides the foundation for
our understanding of metallic behavior in most conventional
metals.

The development of a parallel formalism and approach
for strongly correlated electron systems is still in its infancy,
and there is no universally accepted approach. At the heart
of the problem are the large interactions, which effectively
remove large tracts of Hilbert space and impose strong
constraints on the low-energy electronic dynamics. One way
to describe these highly constrained Hilbert spaces is through
the use of gauge theories. When written as a field theory,
local constraints manifest themselves as locally conserved
quantities. General principles link these conserved quantities
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Figure 16. Contrasting (a) the ‘screening cloud’ picture of the
Kondo effect with (b) the composite fermion picture. In (a),
low-energy electrons form the Kondo singlet, leading to the
exhaustion problem. In (b), the composite heavy electron is a highly
localized bound-state between local moments and high-energy
electrons, which injects new electronic states into the conduction
sea at the chemical potential. Hybridization of these states with
conduction electrons produces a singlet ground state, forming a
Kondo resonance in the single impurity, and a coherent heavy
electron band in the Kondo lattice.

with a set of gauge symmetries. For example, in the Kondo
lattice, if a spin S = 1/2 operator is represented by fermions,

�Sj = f
†
jα

( �σ
2

)
αβ

fjβ (67)

then the representation must be supplemented by the con-
straint nf (j) = 1 on the conserved f number at each site.
This constraint means one can change the phase of each f
fermion at each site arbitrarily

fj → eiφj fj (68)

without changing the spin operator �Sj or the Hamiltonian.
This is the local gauge symmetry.

Similar issues also arise in the infinite U Anderson or
Hubbard models where the ‘no double occupancy’ constraint
can be established by using a slave boson representation
(Barnes, 1976; Coleman, 1984) of Hubbard operators:

Xσ0(j) = f
†
jσ bj , X0σ (j) = b

†
j fjσ (69)

where f
†
jσ creates a singly occupied f state, f

†
jσ |0〉 ≡

|f 1, jσ 〉, while b† creates an empty f 0 state, b†
j |0〉 = |f 0, j〉.

In the slave boson, the gauge charges

Qj =
∑
σ

f
†
jσ fjσ + b

†
j bj (70)

are conserved and the physical Hilbert space corresponds to
Qj = 1 at each site. The gauge symmetry is now fjσ →
eiθj fjσ , bj → eiθj bj . These two examples illustrate the link
between strong correlation and gauge theories.

Strong correlation ↔ Constrained Hilbert space

↔ Gauge theories (71)

A key feature of these gauge theories is the appearance of
‘fractionalized fields’, which carry either spin or charge, but
not both. How, then, can a Landau–Fermi liquid emerge
within a Gauge theory with fractional excitations?

Some have suggested that Fermi liquids cannot reconsti-
tute themselves in such strongly constrained gauge theories.
Others have advocated against gauge theories, arguing that
the only reliable way forward is to return to ‘real-world’
models with a full fermionic Hilbert space and a finite inter-
action strength. A third possibility is that the gauge theory
approach is valid, but that heavy quasiparticles emerge as
bound-states of gauge particles. Quite independently of one’s
position on the importance of gauge theory approaches, the
Kondo lattice poses a severe computational challenge, in no
small part, because of the absence of any small parameter
for resumed perturbation theory. Perturbation theory in the
Kondo coupling constant J always fails below the Kondo
temperature. How, then, can one develop a controlled com-
putational tool to explore the transition from local moment
magnetism to the heavy Fermi liquid?

One route forward is to seek a family of models that
interpolates between the models of physical interest, and a
limit where the physics can be solved exactly. One approach,
as we shall discuss later, is to consider Kondo lattices in
variable dimensions d, and expand in powers of 1/d about
the limit of infinite dimensionality (Georges, Kotliar, Krauth
and Rozenberg, 1996; Jarrell, 1995). In this limit, electron
self-energies become momentum independent, the basis of
the DMFT. Another approach, with the advantage that it
can be married with gauge theory, is the use of large N

expansions. The idea here is to generalize the problem to a
family of models in which the f-spin degeneracy N = 2j + 1
is artificially driven to infinity. In this extreme limit, the
key physics is captured as a mean-field theory, and finite N

properties are obtained through an expansion in the small
parameter 1/N . Such large N expansions have played an
important role in the context of the spherical model of
statistical mechanics (Berlin and Kac, 1952) and in field
theory (Witten, 1978). The next section discusses how the
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gauge theory of the Kondo lattice model can be treated in a
large N expansion.

2.3.2 Mean-field theory of the Kondo lattice

Quantum large N expansions are a kind of semiclassical
limit, where 1/N ∼ � plays the role of a synthetic Planck’s
constant. In a Feynman path integral

〈xf (t)|xi, 0〉 =
∫

D[x] exp

[
i

�
S[x, ẋ]

]
(72)

where S is the classical action and the quantum action
A = 1

�
S is ‘extensive’ in the variable 1

�
. When 1

�
→ ∞,

fluctuations around the classical trajectory vanish and the
transition amplitude is entirely determined by the classical
action to go from i to f . A large N expansion for the partition
function Z of a quantum system involves a path integral in
imaginary time over the fields φ

Z =
∫

D[φ]e−NS[φ,φ̇] (73)

where NS is the action (or free energy) associated with the
field configuration in space and time. By comparison, we see
that the large N limit of quantum systems corresponds to
an alternative classical mechanics, where 1/N ∼ � emulates
Planck’s constant and new types of collective behavior not
pertinent to strongly interacting electron systems start to
appear.

Our model for a Kondo lattice of spins localized at sites
j is

H =
∑
kσ

εkc
†
kσ ckσ +

∑
j

HI (j) (74)

where

HI (j) = J

N
Sαβ(j)c

†
jβcjα (75)

is the Coqblin Schrieffer form of the Kondo interaction
Hamiltonian (Coqblin and Schrieffer, 1969) between an f
spin with N = 2j + 1 spin components and the conduction
sea. The spin of the local moment at site j is represented as
a bilinear of Abrikosov pseudofermions

Sαβ(j) = f
†
jαfjβ − nf

N
δαβ (76)

and

c
†
jσ = 1√

N

∑
k

c
†
kσ e−ik· �Rj (77)

creates an electron localized at site j , where N is the number
of sites.

Although this is a theorists’ idealization – a ‘spherical
cow approximation’, it nevertheless captures key aspects
of the physics. This model ascribes a spin degeneracy of
N = 2j + 1 to both the f electrons and the conduction
electrons. While this is justified for a single impurity, a more
realistic lattice model requires the introduction of Clebsch–
Gordon coefficients to link the spin-1/2 conduction electrons
with the spin-j conduction electrons.

To obtain a mean-field theory, each term in the Hamil-
tonian must scale as N . Since the interaction contains two
sums over the spin variables, this criterion is met by rescaling
the coupling constant replacing J → J̃

N
. Another important

aspect to this model is the constraint on charge fluctuations,
which in the Kondo limit imposes the constraint nf = 1.
Such a constraint can be imposed in a path integral with a
Lagrange multiplier term λ(nf − 1). However, with nf = 1,
this is not extensive in N , and cannot be treated using a
mean-field value for λ. The resolution is to generalize the
constraint to nf = Q, where Q is an integer chosen so that as
N grows, q = Q/N remains fixed. Thus, for instance, if we
are interested in N = 2, this corresponds to q = nf /N = 1

2 .
In the large N limit, it is then sufficient to apply the con-
straint on the average 〈nf 〉 = Q through a static Lagrange
multiplier coupled to the difference (nf − Q).

The next step is to carry out a ‘Hubbard–Stratonovich’
transformation on the interaction

HI(j) = − J

N

(
c

†
jβfjβ

) (
f

†
jαcjα

)
(78)

Here, we have absorbed the term − J
N

nf c
†
jαcjα derived

from the spin-diagonal part of (equation (76)) by a shift
µ → µ − Jnf

N2 in the chemical potential. This interaction has

the form −gA†A, with g = J
N

and A = f
†
jαcjα, which we

factorize using a Hubbard–Stratonovich transformation,

−gA†A → A†V + V A + V V

g
(79)

so that (Lacroix and Cyrot, 1979; Read and Newns, 1983a)

HI (j) → HI [V, j ] = V j

(
c

†
jσ fjσ

)
+
(
f

†
jσ cjσ

)
Vj

+N
V jVj

J
(80)

This is an exact transformation, provided the Vj (τ ) are
treated as fluctuating variables inside a path integral. The Vj

can be regarded as a spinless exchange boson for the Kondo
effect. In the parallel treatment of the infinite Anderson
model (Coleman, 1987a), Vj = V bj is the ‘slave boson’ field
associated with valence fluctuations.
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In diagrams:

J/N

J
N

(c†
s fs) ( f†s ′cs ′)−

J
N d (t − t′)

c†
s fs f †

s′cs′

(81)

The path integral for the Kondo lattice is then

Z =
∫

D[V, λ]

=Tr
[
T exp

(
− ∫ β

0 H [V,λ]dτ
)]︷ ︸︸ ︷∫

D[c, f ] exp

−
∫ β

0

∑
kσ

c
†
kσ ∂τ ckσ +

∑
jσ

f
†
jσ ∂τ fjσ + H [V, λ]

 (82)

where

H [V, λ] =
∑
kσ

εkc
†
kσ ckσ

+
∑

j

(
HI [Vj , j ] + λj [nf (j) − Q]

)
(83)

This is the ‘Read–Newns’ path integral formulation (Read
and Newns, 1983a; Auerbach and Levin, 1986) of the Kondo
lattice model. The path integral contains an outer integral∫
D[V, λ] over the gauge fields Vj and λj (τ), and an inner

integral
∫
D[c, f ] over the fermion fields moving in the

environment of the gauge fields. The inner path integral
is equal to a trace over the time-ordered exponential of
H [V, λ].

Since the action in this path integral grows extensively
with N , the large N limit is saturated by the saddle point
configurations of V and λ, eliminating the the outer integral
in equation (83). We seek a translationally invariant, static,
saddle point, where λj (τ ) = λ and Vj (τ ) = V . Since the
Hamiltonian is static, the interior path integral can be written
as the trace over the Hamiltonian evaluated at the saddle
point,

Z = Tre−βHMFT (N → ∞) (84)

where

HMFT =H [V, λ]=
∑
kσ

εkc
†
kσ ckσ +

∑
j,σ

(
V c

†
jσ fjσ +Vf

†
jσ cjσ

+λf
†
jσ fjσ

)
+ Nn

(
V V

J
− λoq

)
(85)

The saddle point is determined by the condition that
the Free energy F = −T ln Z is stationary with respect to
variations in V and λ. To impose this condition, we need
to diagonalize HMFT and compute the Free energy. First we
rewrite the mean-field Hamiltonian in momentum space,

HMFT =
∑
kσ

(
c

†
kσ , f

†
kσ

) [
εk V

V λ

](
ckσ

fkσ

)

+Nn

(
V V

J
− λq

)
(86)

where

f
†
�kσ = 1√

N

∑
j

f
†
jσ ei�k· �Rj (87)

is the Fourier transform of the f-electron field. This Hamil-
tonian can then be diagonalized in the form

HMFT =
∑
kσ

(
a

†
kσ , b

†
kσ

) [
Ek+ 0

0 Ek−

](
akσ

bkσ

)

+NNs

( |V |2
J

− λq

)
(88)

where a
†
kσ and b

†
kσ are linear combinations of c

†
kσ and

f
†
�kσ

, which describe the quasiparticles of the theory. The
momentum state eigenvalues E = E �k± are the roots of the
equation

Det

[
E1 −

(
εk V

V λ

)]
= (E − εk)(E − λ) − |V |2

= 0 (89)

so

Ek± = εk + λ

2
±
[(

εk − λ

2

)2

+ |V |2
] 1

2

(90)

are the energies of the upper and lower bands. The dispersion
described by these energies is shown in Figure 17. Notice
that:
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Figure 17. (a) Dispersion produced by the injection of a composite fermion into the conduction sea. (b) Renormalized density of states,
showing ‘hybridization gap’ (�g).

• hybridization between the f-electron states and the con-
duction electrons builds an upper and lower Fermi band,
separated by an indirect ‘hybridization gap’ of width
�g = Eg(+) − Eg(−) ∼ TK, where

Eg(±) = λ ± V 2

D∓
(91)

and ±D± are the top and bottom of the conduction band.
The ‘direct’ gap between the upper and lower bands is
2|V |.

• From (89), the relationship between the energy of the
heavy electrons (E) and the energy of the conduc-
tion electrons (ε) is given by ε = E − |V |2/(E − λ),
so that the density of heavy-electron states ρ∗(E) =∑

k,± δ(E − E
(±)
k ) is related to the conduction electron

density of states ρ(ε) by

ρ∗(E) = ρ
dε

dE
= ρ(ε)

(
1 + |V |2

(E − λ)2

)

∼
{

ρ
(

1+ |V |2
(E−λ)2

)
outside hybridization gap,

0 inside hybridization gap,

(92)
so the ‘hybridization gap’ is flanked by two sharp peaks

of approximate width TK.
• The Fermi surface volume expands in response to the

injection of heavy electrons into the conduction sea,

NaD VFS

(2π)3
=
〈

1

Ns

∑
kσ

nkσ

〉
= Q + nc (93)

where aD is the unit cell volume, nkσ = a
†
kσ akσ +

b
†
kσ bkσ is the quasiparticle number operator and nc is

the number of conduction electrons per unit cell. More

instructively, if ne = nc/a
D is the electron density,

e− density︷︸︸︷
ne =

quasi particle density︷ ︸︸ ︷
N

VFS

(2π)3
− Q

aD︸︷︷︸
positive background

(94)

so the electron density nc divides into a contribution
carried by the enlarged Fermi sea, whose enlargement is
compensated by the development of a positively charged
background. Loosely speaking, each neutral spin in the
Kondo lattice has ‘ionized’ to produce Q negatively
charged heavy fermions, leaving behind a Kondo singlet
of charge +Qe (Figure 18).

To obtain V and λ, we must compute the free energy

F

N
= −T

∑
k,±

ln

[
1 + e−βEk±

]
+ Ns

( |V |2
J

− λq

)
(95)

+Qe

E(k) −(Q + nc)e

+
+

(a) (b)

++
+ +

++ Kondo singlets:
charged background.

Heavy electrons

−nce

−
−−

−−

Figure 18. Schematic diagram from Coleman, Paul and Rech
(2005a). (a) High-temperature state: small Fermi surface with a
background of spins; (b) Low-temperature state, where large Fermi
surface develops against a background of positive charge. Each
spin ‘ionizes’ into Q heavy electrons, leaving behind a a Kondo
singlet with charge +Qe. (Reproduced from P. Coleman, I. Paul,
and J. Rech, Phys. Rev. B 72, 2005, 094430, copyright  2005 by
the American Physical Society, with permission of the APS.)
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At T = 0, the free energy converges the ground-state energy
E0, given by

E0

NNs

=
∫ 0

−∞
ρ∗(E)E +

( |V |2
J

− λq

)
(96)

Using equation (92), the total energy is

Eo

NNs

=
∫ 0

−D

dερEdE +
∫ 0

−D

dEρ|V |2 E

(E − λ)2

+
( |V |2

J
− λq

)

=

Ec/(NNs )︷ ︸︸ ︷
−D2ρ

2
+

EK/(NNs )︷ ︸︸ ︷
�

π
ln

(
λe

TK

)
− λq (97)

where we have assumed that the upper band is empty and

the lower band is partially filled. TK = De
− 1

Jρ as before.
The first term in (97) is the conduction electron contribution
to the energy Ec/Nns , while the second term is the lattice
‘Kondo’ energy EK/NNs

. If now we impose the constraint
∂Eo

∂λ
= 〈nf 〉 − Q = 0 then λ = �

πq
so that the ground-state

energy can be written

EK

NNs

= �

π
ln

(
�e

πqTK

)
(98)

This energy functional has a ‘Mexican Hat’ form, with a
minimum at

� = πq

e2
TK (99)

confirming that � ∼ TK. If we now return to the quasiparticle
density of states ρ∗, we find it has the value

ρ∗(0) = ρ + q

TK
(100)

at the Fermi energy so the mass enhancement of the heavy
electrons is then

m∗

m
= 1 + q

ρTK
∼ qD

TK
(101)

2.3.3 The charge of the f electron

How does the f electron acquire its charge? We have
emphasized from the beginning that the charge degrees of
freedom of the original f electrons are irrelevant, indeed,
absent from the physics of the Kondo lattice. So how are
charged f electrons constructed out of the states of the
Kondo lattice, and how do they end up coupling to the
electromagnetic field?

The large N theory provides an intriguing answer. The
passage from the original Hamiltonian equation (75) to the
mean-field Hamiltonian equation (85) is equivalent to the
substitution

J

N
Sαβ(j)c

†
jβcjα −→ V f

†
jαcjα + V c

†
jαfjα (102)

In other words, the composite combination of spin and
conduction electron are contracted into a single Fermi
field

J

N
Sαβ(j)c

†

jβ =
 J

N
f

†
jαfjβc

†

jβ

 → Vf
†
jα (103)

The amplitude V = J
N

fjβc

†

jβ = − J
N

〈c†
jβfjβ〉 involves elec-

tron states that extend over decades of energy out to the
band edges. In this way, the f electron emerges as a compos-
ite bound-state of a spin and an electron. More precisely, in
the long-time correlation functions,

〈[Sγα(i)ciγ

]
(t)

[
Sαβ(j)c

†
jβ

]
(t ′)〉

|t−t ′|��/TK−−−−−−−→ N |V 2|
J 2

〈fiα(t)f
†
jα(t ′)〉 (104)

Such ‘clustering’ of composite operators into a single entity
is well-known statistical mechanics as part of the operator
product expansion (Cardy, 1996). In many-body physics,
we are used to the clustering of fermions pairs into a
composite boson, as in the BCS model of superconductiv-

ity, −gψ↑(x)ψ↓(x ′) → �(x − x ′). The unfamiliar aspect
of the Kondo effect is the appearance of a composite
fermion.

The formation of these composite objects profoundly mod-
ifies the conductivity and plasma oscillations of the electron
fluid. The Read–Newns path integral has two U(1) gauge
invariances – an external electromagnetic gauge invariance
associated with the conservation of charge and an internal
gauge invariance associated with the local constraints. The f
electron couples to the internal gauge fields rather than the
external electromagnetic fields, so why is it charged?

The answer lies in the broken symmetry associated with
the development of the amplitude V . The phase of V

transforms under both internal and external gauge groups.
When V develops an amplitude, its phase does not actually
order, but it does develop a stiffness which is sufficient to
lock the internal and external gauge fields together so that,
at low frequencies, they become synonymous. Written in a
schematic long-wavelength form, the gauge-sensitive part of
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the Kondo lattice Lagrangian is

L =
∑
σ

∫
dDx

[
c†
σ (x)(−i∂t + e�(x) + εp−e �A)cσ (x)

+f †
σ (x)(−i∂t + λ(x))fσ (x)

+
(

V (x)c†
σ (x)fσ (x) + H.c

)]
(105)

where p = −i �∇. Suppose V (x) = |V (x)|eiφ(x). There are
two independent gauge transformations that increase the
phase φ of the hybridization. In the external, electromagnetic
gauge transformation, the change in phase is absorbed onto
the conduction electron and electromagnetic field, so if
V → V eiα ,

φ → φ + α, c(x) → c(x)e−iα(x),

e�(x) → e�(x) + α̇(x), e �A → e �A − �∇α(x) (106)

where (�, �A) denotes the electromagnetic scalar and vector
potential at site j and α̇ = ∂tα ≡ −i∂τα denotes the deriva-
tive with respect to real time t . By contrast, in the internal
gauge transformation, the phase change of V is absorbed
onto the f fermion and the internal gauge field (Read and
Newns, 1983a), so if V → V eiβ ,

φ → φ + β, f (x) → f (x)eiβ(x),

λ(x) → λ(x) − β̇(x) (107)

If we expand the mean-field free energy to quadratic order
in small, slowly varying changes in λ(x), then the change in
the action is given by

δS = −χQ

2

∫
dDxdτδλ(x)2 (108)

where χQ = −δ2F/δλ2 is the f-electron susceptibility eval-
uated in the mean-field theory. However, δλ(x) is not gauge
invariant, so there must be additional terms. To guarantee
gauge invariance under both the internal and external trans-
formation, we must replace δλ by the covariant combination
δλ + φ̇ − e�. The first two terms are required for invariance
under the internal gauge group, while the last two terms are
required for gauge invariance under the external gauge group.
The expansion of the action to quadratic order in the gauge
fields must therefore have the form

S ∼ −χQ

2

∫
dτ
∑

j

(φ̇ + δλ(x) − e�(x))2 (109)

so the phase φ acquires a rigidity in time that generates
a ‘mass’ or energy cost associated with difference of the

external and internal potentials. The minimum energy static
configuration is when

δλ(x) + φ̇(x) = e�(x) (110)

so when the external potential changes slowly, the internal
potential tracks it. It is this effect that keeps the Kondo
resonance pinned at the Fermi surface. We can always choose
the gauge where the phase velocity φ̇ is absorbed into the
local gauge field λ. Recent work by Coleman, Marston and
Schofield (2005b) has extended this kind of reasoning to the
case where RKKY couplings generate a dispersion jp−A for
the spinons, where A is an internal vector potential, which
suppresses currents of the gauge charge nf . In this case, the
long-wavelength action has the form

S = 1

2

∫
d3xdτ

[
ρs

(
e �A + �∇φ − �A

)2

−χQ(e� − φ̇ − δλ)2
]

(111)

In this general form, heavy-electron physics can be seen
to involve a kind of ‘Meissner effect’ that excludes the
difference field e �A − �A from within the metal, locking the
internal field to the external electromagnetic field, so that
the f electrons, which couple to it, now become charged
(Figure 19).

2.3.4 Optical conductivity of the heavy-electron fluid

One of the interesting consequences of the heavy-electron
charge is a complete renormalization of the electronic plasma
frequency (Millis, Lavagna and Lee, 1987b). The electronic

(b)(a)

A(x)A(x)

A(x)
A(x)

Figure 19. (a) Spin liquid, or local moment phase, internal field
A decoupled from electromagnetic field. (b) Heavy-electron phase,
internal gauge field ‘locked’ together with electromagnetic field.
Heavy electrons are now charged and difference field [e �A(x) −
A(x)] is excluded from the material.
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plasma frequency is related via a f-sum rule to the integrated
optical conductivity∫ ∞

0

dω

π
σ(ω) = f1 = π

2

(
nce

2

m

)
(112)

where ne is the density of electrons [2]. In the absence of
local moments, this is the total spectral weight inside the
Drude peak of the optical conductivity.

When the heavy-electron fluid forms, we need to consider
the plasma oscillations of the enlarged Fermi surface. If the
original conduction sea was less than half filled, then the
renormalized heavy-electron band is more than half filled,
forming a partially filled hole band. The density of electrons
in a filled band is N/aD , so the effective density of hole
carriers is then

nHF = (N − Q − Nc)/a
D = (N − Q)/aD − nc (113)

The mass of the excitations is also renormalized, m → m∗.
The two effects produce a low-frequency ‘quasiparticle’
Drude peak in the conductivity, with a small total weight∫ ∼V

0
dωσ(ω) = f2 = π

2

nHFe
2

m∗ ∼ f1

× m

m∗

(
nHF

nc

)
� f1 (114)

Optical conductivity probes the plasma excitations of the
electron fluid at low momenta. The direct gap between the
upper and lower bands of the Kondo lattice are separated by
a direct hybridization gap of the order 2V ∼ √

DTK. This
scale is substantially larger than the Kondo temperature, and
it defines the separation between the thin Drude peak of the
heavy electrons and the high-frequency contribution from the
conduction sea.

In other words, the total spectral weight is divided up into a
small ‘heavy fermion’ Drude peak, of total weight f2, where

σ(ω) = nHFe
2

m∗
1

(τ ∗)−1 − iω
(115)

separated off by an energy of the order V ∼ √
TKD from an

‘interband’ component associated with excitations between
the lower and upper Kondo bands (Millis and Lee, 1987a;
Degiorgi, Anders, Gruner and Society, 2001). This second
term carries the bulk ∼f1 of the spectral weight (Figure 20).

Simple calculations, based on the Kubo formula, confirm
this basic expectation, (Millis and Lee, 1987a; Degiorgi,
Anders, Gruner and Society, 2001) showing that the relation-
ship between the original relaxation rate of the conduction
sea and the heavy-electron relaxation rate τ ∗ is

(τ ∗)−1 = m

m∗ (τ )−1 (116)

ne
2 t

m

‘Interband’

w

pne2

2m∗f2 =

pne2

2m
f1 =

∆w~ V~ TKD

m∗(t∗)−1 = t−1 m

s
(w

)

TKD~

Figure 20. Separation of the optical sum rule in a heavy-fermion
system into a high-energy ‘interband’ component of weight f2 ∼
ne2/m and a low-energy Drude peak of weight f1 ∼ ne2/m∗.

Notice that this means that the residual resistivity

ρo = m∗

ne2τ ∗ = m

ne2τ
(117)

is unaffected by the effects of mass renormalization. This
can be understood by observing that the heavy-electron
Fermi velocity is also renormalized by the effective mass,
v∗

F = m
m∗ , so that the mean-free path of the heavy-electron

quasiparticles is unaffected by the Kondo effect.

l∗ = v∗
Fτ ∗ = vFτ (118)

The formation of a narrow Drude peak, and the presence
of a direct hybridization gap, have been seen in optical
measurements on heavy-electron systems (Schlessinger, Fisk,
Zhang and Maple, 1997; Beyerman, Gruner, Dlicheouch and
Maple, 1988; Dordevic et al., 2001). One of the interesting
features about the hybridization gap of size 2V is that the
mean-field theory predicts that the ratio of the direct to the

indirect hybridization gap is given by 2V
TK

∼ 1√
ρTK

∼
√

m∗
me

,
so that the effective mass of the heavy electrons should scale
as square of the ratio between the hybridization gap and the
characteristic scale T ∗ of the heavy Fermi liquid

m∗

me

∝
(

2V

TK

)2

(119)

In practical experiments, TK is replaced by the ‘coherence
temperature’ T ∗, where the resistivity reaches a maximum.
This scaling law is broadly followed (see Figure 21) in
measured optical data (Dordevic et al., 2001), and provides
further confirmation of the correctness of the Kondo lattice
picture.
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Figure 21. Scaling of the effective mass of heavy electrons with the square of the optical hybridization gap. (Reproduced from
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2.4 Dynamical mean-field theory

The fermionic large N approach to the Kondo lattice provides
an invaluable description of heavy-fermion physics, one that
can be improved upon beyond the mean-field level. For
example, the fluctuations around the mean-field theory can be
used to compute the interactions, the dynamical correlation
functions, and the optical conductivity (Coleman, 1987b;
Millis and Lee, 1987a). However, the method does face a
number of serious outstanding drawbacks:

• False phase transition: In the large N limit, the crossover
between the heavy Fermi liquid and the local moment
physics sharpens into a phase transition where the 1/N

expansion becomes singular. There is no known way of
eliminating this feature in the 1/N expansion.

• Absence of magnetism and superconductivity: The large
N approach, based on the SU(N) group, cannot form
a two-particle singlet for N > 2. The SU(N) group
is fine for particle physics, where baryons are bound-
states of N quarks, but, for condensed matter physics,
we sacrifice the possibility of forming two-particle
or two-spin singlets, such as Cooper pairs and spin-
singlets. Antiferromagnetism and superconductivity are
consequently absent from the mean-field theory.

Amongst the various alternative approaches currently
under consideration, one of particular note is the DMFT. The

idea of DMFT is to reduce the lattice problem to the physics
of a single magnetic ion embedded within a self-consistently
determined effective medium (Georges, Kotliar, Krauth and
Rozenberg, 1996; Kotliar et al., 2006). The effective medium
is determined self-consistently from the self-energies of the
electrons that scatter off the single impurity. In its more
advanced form, the single impurity is replaced by a cluster
of magnetic ions.

Early versions of the DMFT were considered by Kuramoto
and Watanabe (1987), and Cox and Grewe (1988), and others,
who used diagrammatic means to extract the physics of
a single impurity. The modern conceptual framework for
DMFT was developed by Metzner and Vollhardt (1989),
and Georges and Kotliar (1992). The basic idea behind
DMFT is linked to early work of Luttinger and Ward (1960),
and Kotliar et al. (2006), who found a way of writing the
free energy as a variational functional of the full electronic
Green’s function

Gij = −〈T ψi(τ )ψ
†
j (0)〉 (120)

Luttinger and Ward showed that the free energy is a
variational functional of F [G] from which Dyson’s equation
relating the G to the bare Green’s function G0

[G−1
0 − G−1]ij = �ij [G] (121)
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Figure 22. In the dynamical mean-field theory, the many-body
physics of the lattice is approximated by a single impurity in a self-
consistently determined environment. Each time the electron makes
a sortie from the impurity, its propagation through the environment
is described by a self-consistently determined local propagator G(ω),
represented by the thick gray line.

The quantity �[G] is a functional, a machine which takes the
full propagator of the electron and outputs the self-energy of
the electron. Formally, this functional is the sum of the one-
particle irreducible Feynman diagrams for the self-energy:
while its output depends on the input Greens function, the
actual the machinery of the functional is determined solely
by the interactions. The only problem is that we do not know
how to calculate it.

DMFT solves this problem by approximating this func-
tional by that of a single impurity or a cluster of magnetic
impurities (Figure 22). This is an ideal approximation for
a local Fermi liquid, where the physics is highly retarded
in time, but local in space. The local approximation is also
asymptotically exact in the limit of infinite dimensions (Met-
zner and Vollhardt, 1989). If one approximates the input
Green function to � by its on-site component Gij ≈ Gδij ,
then the functional becomes the local self-energy functional
of a single magnetic impurity,

�ij [Gls] ≈ �ij [Gδls] ≡ �impurity[G]δij (122)

DMFT extracts the local self-energy by solving an Ander-
son impurity model embedded in an arbitrary electronic envi-
ronment. The physics of such a model is described by a path
integral with the action

S = −
∫ β

0
dτdτ ′f †

σ (τ )G−1
0 (τ − τ ′)fσ (τ ′)

+U

∫ β

0
dτn↑(τ )n↓(τ ) (123)

where G0(τ ) describes the bare Green’s function of the
f electron, hybridized with its dynamic environment. This

quantity is self-consistently updated by the DMFT. There are,
by now, a large number of superb numerical methods to solve
an Anderson model for an arbitrary environment, including
the use of exact diagonalization, diagrammatic techniques,
and the use of Wilson’s renormalization group (Bulla, 2006).
Each of these methods is able to take an input ‘environment’
Green’s function providing as output the impurity self-energy
�[G0] = �(iωn).

Briefly, this is how the DMFT computational cycle works.
One starts with an estimate for the environment Green’s
function G0 and uses this as input to the ‘impurity solver’ to
compute the first estimate �(iωn) of the local self-energy.
The interaction strength is set within the impurity solver. This
local self-energy is used to compute the Green’s functions of
the electrons in the environment. In an Anderson lattice, the
Green’s function becomes

G(k, ω) =
[
ω − Ef − V 2

ω − εk
− �(ω)

]−1

(124)

where V is the hybridization and εk the dispersion of the
conduction electrons. It is through this relationship that the
physics of the lattice is fed into the problem. From G(k, ω),
the local propagator is computed

G(ω) =
∑

k

[
ω − Ef − V 2

ω − εk
− �(ω)

]−1

(125)

Finally, the new estimate for the bare environment Green’s
function G0 is then obtained by inverting the equation G−1 =
G−1

0 − �, so that

G0(ω) = [
G−1(ω) + �(ω)

]
(126)

This quantity is then reused as the input to an ‘impurity
solver’ to compute the next estimate of �(ω). The whole pro-
cedure is then reiterated to self-consistency. For the Anderson
lattice, Cyzcholl (Schweitzer and Czycholl, 1991) has shown
that remarkably good results are obtained using a perturba-
tive expansion for � to the order of U 2 (Figure 23). Although
this approach is not sufficient to capture the limiting Kondo
behavior much, the qualitative physics of the Kondo lattice,
including the development of coherence at low temperatures,
is already captured by this approach. However, to go to the
strongly correlated regime, where the ratio of the interaction
to the impurity hybridization width U/(π�) is much larger
than unity, one requires a more sophisticated solver.

There are many ongoing developments under way using
this powerful new computational tool, including the incor-
poration of realistic descriptions of complex atoms, and the
extension to ‘cluster DMFT’ involving clusters of magnetic
moments embedded in a self-consistent environment. Let me
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Figure 23. Resistivity for the Anderson lattice, calculated using
the DMFT, computing the self-energy to order U2. (1), (2),
(3), and (4) correspond to a sequence of decreasing electron
density corresponding to nTOT = (0.8, 0.6, 0.4, 0.2) respectively.
(Reproduced from H. Schweitzer and G. Czycholl, Phys. Rev. Lett.
67, 1991, 3724 copyright  by the American Physical Society, with
permission of the APS.)

end this brief summary with a list of a few unsolved issues
with this technique

• There is, at present, no way to relate the thermodynamics
of the bulk to the impurity thermodynamics.

• At present, there is no natural extension of these methods
to the infinite U Anderson or Kondo models that
incorporates the Green’s functions of the localized f-
electron degrees of freedom as an integral part of the
DMFT.

• The method is largely a numerical black box, making
it difficult to compute microscopic quantities beyond
the electron-spectral functions. At the human level,
it is difficult for students and researchers to separate
themselves from the ardors of coding the impurity
solvers, and make time to develop new conceptual and
qualitative understanding of the physics.

3 KONDO INSULATORS

3.1 Renormalized silicon

The ability of a dense lattice of local moments to transform
a metal into an insulator, a ‘Kondo insulator’ is one of the
remarkable and striking consequences of the dense Kondo
effect (Aeppli and Fisk, 1992; Tsunetsugu, Sigrist and Ueda,
1997; Riseborough, 2000). Kondo insulators are heavy-
electron systems in which the the liberation of mobile charge
through the Kondo effect gives rise to a filled heavy-electron
band in which the chemical potential lies in the middle
of the hybridization gap. From a quasiparticle perspective,
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Figure 24. Schematic band picture of Kondo insulator, illustrating
how a magnetic field drives a metal-insulator transition. Modified
from Aeppli and Fisk (1992). (Reproduced from V. Jaccarino,
G.K. Wertheim, J.H. Wernick, C.R. Walker and S. Arajs, Phys. Rev.
160, 1967, 476 copyright  1967 by the American Physical Society,
with permission of the APS.)

Kondo insulators are highly renormalized ‘band insulators’
(Figure 24). The d-electron Kondo insulator FeSi has been
referred to as renormalized silicon. However, like Mott–
Hubbard insulators, the gap in their spectrum is driven by
interaction effects, and they display optical and magnetic
properties that cannot be understood with band theory.

There are about a dozen known Kondo insulators, includ-
ing the rare-earth systems SmB6 (Menth, Buehler and
Geballe, 1969), YB12 (Iga, Kasaya and Kasuya, 1988),
CeFe4P12 (Meisner et al., 1985), Ce3Bi4Pt3 (Hundley et al.,
1990), CeNiSn (Takabatake et al., 1992, 1990; Izawa et al.,
1999) and CeRhSb (Takabatake et al., 1994), and the d-
electron Kondo insulator FeSi. At high temperatures, Kondo
insulators are local moment metals, with classic Curie sus-
ceptibilities, but, at low temperatures, as the Kondo effect
develops coherence, the conductivity and the magnetic sus-
ceptibility drop toward zero. Perfect insulating behavior is,
however, rarely observed due to difficulty in eliminating
impurity band formation in ultranarrow gap systems. One of
the cleanest examples of Kondo-insulating behavior occurs
in the d-electron system FeSi (Jaccarino et al., 1967; DiTusa
et al., 1997). This ‘flyweight’ heavy-electron system provides
a rather clean realization of the phenomena seen in other
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von Löhneysen, H. (1996). Non-Fermi-liquid behaviour in the
heavy-fermion system CeCu6−xAux . Journal of Physics: Con-
densed Matter, 8, 9689.
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