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Notes:

“Heavy Fermions: electrons at the edge of magnetism.” PC. 
cond-mat/0612006.

“Local moment physics in heavy electron systems”, PC, cond-mat/0206003

General reading:

Many Body Physics “unfinished frontier”, PC, cond-mat/0307004.

The Theory of Quantum Liquids, Nozieres and Pines (Perseus 1999).

Quantum Criticality,  P. Coleman and Andrew Schofield, Nature, 433, 
226-229 (2005), cond-mat/0503002.
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Lecture I:

1. Overview of heavy fermion physics.

2. Landau Fermi liquid Theory.

3. Heavy Fermions from the Landau Perspective.
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Rare Earth

Transition metal

Actinide

4f

3d

5fIncreasing localization

FIGURE 1. Depicting localized 4 f , 5 f and 3d atomic wavefunctions.

represented by a single, neutral spin operator

!S=
h̄

2
!!

where !! denotes the Pauli matrices of the localized electron. Localized moments de-

velop within highly localized atomic wavefunctions. The most severely localized wave-

functions in nature occur inside the partially filled 4 f shell of rare earth compounds

(Fig. 1) such as cerium (Ce) or Ytterbium (Yb). Local moment formation also occurs

in the localized 5 f levels of actinide atoms as uranium and the slightly more delocal-

ized 3d levels of first row transition metals(Fig. 1). Localized moments are the origin

of magnetism in insulators, and in metals their interaction with the mobile charge car-

riers profoundly changes the nature of the metallic state via a mechanism known as the
“Kondo effect”.

In the past decade, the physics of local moment formation has also reappeared in

connection with quantum dots, where it gives rise to the Coulomb blockade phenomenon

and the non-equilibrium Kondo effect.
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A lot of action takes place on the brink of localization!

Heavy Fermions: f-spins are always localized, yet..... 
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Heavy Fermions: f-spins are always localized, yet..... 
High Temperatures : local moment metals.
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Smith and Kmetko (1983)

A lot of action takes place on the brink of localization!

Heavy Fermions: f-spins are always localized, yet..... 
High Temperatures : local moment metals.
Low Temperatures  :  Spins “quench” to form heavy fermions.

Increasing localization
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Localized 4f or 5f Moment.

High Temperatures : local moments
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Localized 4f or 5f Moment.

Low lying magnetic multiplet
N = 2j +1

e.g Ce3+    | 4f1: j m >

L=3,  S = 1/2, j= L-S =5/2

N = 6.

High Temperatures : local moments

SQ = kB ln(2J + 1) spin entropy
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Low Temperature: Landau Fermi liquids.

Ep =
p2

2m∗ , N(0) =
m∗pF

π2!3
.
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Low Temperature: Landau Fermi liquids.

Ep =
p2

2m∗ , N(0) =
m∗pF

π2!3
.

W =
χ

γ
= 3

(
µB

2πkB

)2 1
1 + F a

0

“Wilson” or “Sommerfeld” ratio.

Thursday, July 10, 2008



γ = LimT→0

(
CV

T

)
=

π2k2
B

3
N(0)∗.

χ =
µ2

BN∗(0)
1 + F a

0

Low Temperature: Landau Fermi liquids.

eg  Cu vs CeCu6  (copper, spin doped)

Ep =
p2

2m∗ , N(0) =
m∗pF

π2!3
.

W =
χ

γ
= 3

(
µB

2πkB

)2 1
1 + F a

0

Thursday, July 10, 2008



γ = LimT→0

(
CV

T

)
=

π2k2
B

3
N(0)∗.

χ =
µ2

BN∗(0)
1 + F a

0

Low Temperature: Landau Fermi liquids.

eg  Cu vs CeCu6  (copper, spin doped)
 γCu ~ 1 mJ/mol/K2,

Ep =
p2

2m∗ , N(0) =
m∗pF

π2!3
.

W =
χ

γ
= 3

(
µB

2πkB

)2 1
1 + F a

0

Thursday, July 10, 2008



γ = LimT→0

(
CV

T

)
=
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χ =
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BN∗(0)
1 + F a

0

Low Temperature: Landau Fermi liquids.

eg  Cu vs CeCu6  (copper, spin doped)
 γCu ~ 1 mJ/mol/K2,
 ϒ[CeCu6]   ~ 1000 mJ/mol/K2,

m*/me ~ 1000

Ep =
p2

2m∗ , N(0) =
m∗pF

π2!3
.

W =
χ

γ
= 3

(
µB

2πkB

)2 1
1 + F a

0

Cu

CeCu6
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Heavy Fermion Metals Review: cond-mat/0612006

Nozieres ‘74

UBe13
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Tour of Heavy Fermion Systems
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Ott et al, (1985)

Spin entropy contributes to the Superconducting and  Fermi liquid
thermodyanmics. Spins are forming the heavy fermions which are themselves
pairing!
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CeCu6 : From dilute impurity to 
dense “Kondo lattice”, showing 
Development of coherence
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Hundley et al (1990)

CeBi4Pt3 : Kondo Insulator.
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Ce(Co,Rh,Ir)In
5

P. Pagliuso et al.

115 Materials:  layered heavy 
electron superconductors.
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Ce(Co,Rh,Ir)In
5

P. Pagliuso et al.

115 Materials:  layered heavy 
electron superconductors.

Data: Tuson Park

Figure rendition: Mathias Graf

CeRhIn5
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Custers et al, (2003)

YbRh2Si2 : Field tuned quantum 
criticality.
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UPd2Al3 : Coexistent 
antiferromagnetism and nodal 
superconductivity. 
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Landau Fermi Liquid Theory
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Landau Fermi Liquid Theory

Landau

Dyson
Larkin

Abrikosov
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Landau Fermi Liquid Theory

Landau

Dyson
Larkin

Abrikosov

So, what happens 
when the interaction 
becomes large? 
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Landau, JETP 3, 920 (1957)

Interactions  can be turned on 
adiabatically, preserving the excitation  
spectrum.

Landau Fermi Liquid 
Theory :

Thursday, July 10, 2008



Landau, JETP 3, 920 (1957)

Interactions  can be turned on 
adiabatically, preserving the excitation  
spectrum.

Landau Fermi Liquid 
Theory :

States labelled by same quantum nos 
as non-interacting Fermi liquid

Ψ = |np1σ1 , np2σ2 , . . . 〉

Thursday, July 10, 2008



Landau, JETP 3, 920 (1957)

Interactions  can be turned on 
adiabatically, preserving the excitation  
spectrum.

- -

“Quasiparticle”

Landau Fermi Liquid 
Theory :

States labelled by same quantum nos 
as non-interacting Fermi liquid

Ψ = |np1σ1 , np2σ2 , . . . 〉

Interactions
adiabatically

Thursday, July 10, 2008



Landau, JETP 3, 920 (1957)

Interactions  can be turned on 
adiabatically, preserving the excitation  
spectrum.

- -

“Quasiparticle”

Landau Fermi Liquid 
Theory :

States labelled by same quantum nos 
as non-interacting Fermi liquid

Ψ = |np1σ1 , np2σ2 , . . . 〉

Interactions
adiabatically

Thursday, July 10, 2008



Thursday, July 10, 2008



Ψ = |np1σ1 , np2σ2 , . . . 〉
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Ψ = |np1σ1 , np2σ2 , . . . 〉

to

Ground− state Ψo : np =
{

1 (p < pF)
0 (otherwise p > pF) (2)
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Ψ = |np1σ1 , np2σ2 , . . . 〉

to

Ground− state Ψo : np =
{

1 (p < pF)
0 (otherwise p > pF) (2)

to

Quasi− particle : Ψpoσo npσ =
{

1 (p < pF and p = po,σ = σo)
0 (otherwise) (2)

ε(0)po
= E(0)

po
− µ = E(po)− Eo Quasiparticle excitation energy.
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τ−1(ε) ∝ (ε2 + π2T 2)
Key observation of Landau:

Pauli principle drives quasiparticle scattering 
rate to zero at the Fermi surface. Quasiparticles
are well defined at the Fermi surface.
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δnpσ = npσ − n(o)
pσ

E = E0 +
∑

pσ

(E(0)
pσ − µ)δnpσ +

1
2

∑

p,p′,σ,σ′

fpσ,p′σ′δnpσδnp′σ′ + . . . .

τ−1(ε) ∝ (ε2 + π2T 2)
Key observation of Landau:

Pauli principle drives quasiparticle scattering 
rate to zero at the Fermi surface. Quasiparticles
are well defined at the Fermi surface.
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δnpσ = npσ − n(o)
pσ

E = E0 +
∑

pσ

(E(0)
pσ − µ)δnpσ +

1
2

∑

p,p′,σ,σ′

fpσ,p′σ′δnpσδnp′σ′ + . . . .

ε(0)pσ = ε(0)p − σµF B

τ−1(ε) ∝ (ε2 + π2T 2)
Key observation of Landau:

Pauli principle drives quasiparticle scattering 
rate to zero at the Fermi surface. Quasiparticles
are well defined at the Fermi surface.

QP energy

ε(0)pσ ≡ E(0)
pσ − µ =

δE
δnpσ

∣∣∣∣
δnp′σ′=0
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∑
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fpσ,p′σ′δnpσδnp′σ′ + . . . .

ε(0)pσ = ε(0)p − σµF B

τ−1(ε) ∝ (ε2 + π2T 2)
Key observation of Landau:

Pauli principle drives quasiparticle scattering 
rate to zero at the Fermi surface. Quasiparticles
are well defined at the Fermi surface.

fpσ,p′σ′ =
δ2E

δnpσδnp′σ′

∣∣∣∣
δnp′′σ′′ = 0

QP interaction:QP energy

ε(0)pσ ≡ E(0)
pσ − µ =

δE
δnpσ

∣∣∣∣
δnp′σ′=0
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Forward scattering/ F.P Hamiltonian
δnpσ = npσ − n(o)

pσ

E = E0 +
∑

pσ

(E(0)
pσ − µ)δnpσ +

1
2

∑

p,p′,σ,σ′

fpσ,p′σ′δnpσδnp′σ′ + . . . .
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Forward scattering/ F.P Hamiltonian
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∑
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QP interaction:
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Forward scattering/ F.P Hamiltonian
δnpσ = npσ − n(o)

pσ

E = E0 +
∑

pσ

(E(0)
pσ − µ)δnpσ +

1
2

∑

p,p′,σ,σ′

fpσ,p′σ′δnpσδnp′σ′ + . . . .

fpσ,p′σ′ =
δ2E

δnpσδnp′σ′

∣∣∣∣
δnp′′σ′′ = 0

QP interaction:

pσ

pσ

p′σ′

=

p′σ′

“Fixed point” Hamiltonian (Shankar, RMP 94) 

HFP =
∑

pσ

(E(0)
pσ − µ)n̂pσ +

1
2

∑

p,σ,p′σ′

fpσ,p′σ′ n̂pσn̂p′σ′
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Interaction feedback on QP energy
δnpσ = npσ − n(o)

pσ

E = E0 +
∑

pσ

(E(0)
pσ − µ)δnpσ +

1
2

∑

p,p′,σ,σ′

fpσ,p′σ′δnpσδnp′σ′ + . . . .
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Interaction feedback on QP energy
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∑
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(E(0)
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∑
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fpσ,p′σ′δnpσδnp′σ′ + . . . .

δE
δnpσ

= εpσ ≡ Epσ − µ
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S = −kB

∑

p,σ

[npσlnnpσ + (1− npσ)ln(1− npσ)]

Entropy and qp occupancy

δF = dE − TdS =
∑

pσ

δnpσ

[
εpσ + kBT ln

(
npσ

1− npσ

)]
+ Ø(δnpσ

2) = 0.

Thursday, July 10, 2008



S = −kB

∑

p,σ

[npσlnnpσ + (1− npσ)ln(1− npσ)]

Entropy and qp occupancy

npσ =
1

eβεpσ + 1
= f(εpσ)

δF = dE − TdS =
∑

pσ

δnpσ

[
εpσ + kBT ln

(
npσ

1− npσ

)]
+ Ø(δnpσ

2) = 0.

Thursday, July 10, 2008



S = −kB

∑

p,σ

[npσlnnpσ + (1− npσ)ln(1− npσ)]

Entropy and qp occupancy

npσ =
1

eβεpσ + 1
= f(εpσ) Note the strong feedback implicit

in this statement. 

εpσ = ε(0)pσ +
∑

p′σ′

fpσ,p′,σ′δnp′σ′ .

δF = dE − TdS =
∑

pσ

δnpσ

[
εpσ + kBT ln

(
npσ

1− npσ

)]
+ Ø(δnpσ

2) = 0.
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npσ =
1

eβεpσ + 1
= f(εpσ)

Linear Specific Heat
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Thursday, July 10, 2008



npσ =
1

eβεpσ + 1
= f(εpσ)

Linear Specific Heat

npσ = f(ε(0)p ) (T → 0, δnp → 0)

Thursday, July 10, 2008



npσ =
1

eβεpσ + 1
= f(εpσ)

Linear Specific Heat

npσ = f(ε(0)p ) (T → 0, δnp → 0)

vF =
dε(0)p

dp

∣∣∣∣∣
p=pF

=
pF

m∗ .
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npσ =
1

eβεpσ + 1
= f(εpσ)

Linear Specific Heat

npσ = f(ε(0)p ) (T → 0, δnp → 0)

vF =
dε(0)p

dp

∣∣∣∣∣
p=pF

=
pF
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Parameters which parameterize 
permit the low energy effects of 
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f(p,p′)α,β,γ,η = fs
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Rotational invariance
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1

N∗(0)
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Landau Parameters
The interaction can be expanded in 
terms of a small set of Landau 
Parameters which parameterize 
permit the low energy effects of 
interactions.

fpσ,p′,σ′ = fs
p,p′ + fa

p,p′σσ′.

fs,a
p,p′ = fs,a(cos θ)

cos θ = p̂ · p̂′

1
2

∫ 1

−1
dc Pl(c)Pl′(c) = (2l + 1)−1δl,l′

Landau Parameters

F s,a
l = 2

∑

p′

fs,a
p,p′Pl(cos θp,p′)δ(εp′). (∗)

f(p,p′)α,β,γ,η = fs
p,p′δαβδγη + fa

p,p′"σαβ · "σγη

Rotational invariance

fs,a(cos θ) =
1

N∗(0)

∞∑

l=0

(2l + 1)F s,a
l Pl(cos θ).

F s,a
l = N∗(0)
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∫ 1

−1
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distortion of the Fermi surface.
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∑
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Renormalization of 
Susceptibilties

The feedback effects renormalize 
the Fermi surface susceptibilities. χc =

∂N

∂µ
χs = µB

∂(N↑ −N↓)
∂B
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Renormalization of 
Susceptibilties

The feedback effects renormalize 
the Fermi surface susceptibilities. 

χs =
µ2

BN∗(0)
1 + F a

0

= µ2
BN∗(0)(1−Aa

0)

χc =
∂N

∂µ

χc =
N∗(0)
1 + F s

0

= N∗(0)(1−As
0)

As
0 =

F s
0

1 + F s
0

Aa
0 =

F a
0

1 + F a
0

where the quantities

are interpreted as the t-matrix 
amplitudes for s-wave scattering 

χs = µB
∂(N↑ −N↓)

∂B
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Heavy electrons: “Local Fermi Liquids”
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Local Landau Fermi Liquid
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Apσ,p′σ′ =
1

N∗(0)

(
As

0 + σσ′As
0

)

Local Landau Fermi Liquid
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↑↑ = A0

s + A0
a = 0

Apσ,p′σ′ =
1

N∗(0)
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0

)

Local Landau Fermi Liquid
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A(0)
↑↑ = A0

s + A0
a = 0

Apσ,p′σ′ =
1

N∗(0)

(
As

0 + σσ′As
0

)

Local Landau Fermi Liquid

χc ∼ (1−As
0) ∼ 0

As
0 = 1
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Kadowaki Woods (1986)

Tsuji et al (05)
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