

Michi Nakata Greg Smith Mark Moran Dave Walba Youngwoo Yi

SMRC

University of Colorado, Boulder

Tommaso Bellini Giuliano Zanchetta Tommaso Fraccia Marco Buscaglia Fabio Giavazzi Cristina Mazza

Department of Chemistry, Biochemistry, Biotechnology University of Milan, Italy

Science (2007) → Nat. Comm. (2015)

timeline of life on Earth

"The antiquity id RNA-based evolution", G. Joyce , Nature (2002)

accidental prebiotic chemistry

"Common origins of RNA, protein, and lipid precursors in a cyanosulfidic protometabolism"

Patel,et al., Nat. Chem., (2015)

nucleic acids

DNA Chemical Structure (CCo by Madeleine Price Ball)

D ~ 2 nm

A

∦ire Fram∉

Space Filling Vie

L_{bp} ~ 0.33 nm

3'-CGCGAAAATTTTCGCG-5'

selfcomplementary 16-mer *palindromes*

Y. Fang, J. Phys. Chem B (1997)

ribozymes

"cluttered path to (nano) RNA"

liquid crystals and DNA (Cambridge, 1953)

dehydrated

Robinson, Tetrahedron, 1961

duplex DNA chiral nematic phase

(N = 146 bp) Strzelecka, Davidson, Rill, Nature (1988) $L = 50 nm \sim \Lambda_p$ dinoflagellate shape: chromosome L/D ~ 25/1

duplex DNA columnar phase

N = 146 *bp*, *L* = 50 *nm*, *L*/*D* = 25:1

model: hard rods

polydispersity in one dimension favors ordering in the other

Martinez-Raton & Cuesta (2009)

role of rigidity (rods too flexible give no nematic)

no LC phases expected for N = 12

N = 12 textures

low c

high c

nanoDNA: Drew-Dickerson dodecamer (DD12)

12bp:

self-complementary

Crystal structure analysis of a complete turn of B-DNA

Richard Wing*, Horace Drew, Tsunehiro Takano, Chris Broka, Shoji Tanaka, Keiichi Itakura† & Richard E. Dickerson

Nature 1980

(~750 papers on this molecule)

nanoDNA liquid crystal textures (N=10)

10bp: 5'-CGCAATTGCG-3' (~34.0A)

oily-streak texture (N*) developable domain texture (C_U)

mosaic texture (C₂) high density (crystal?, glass?)

increasing concentration

liquid crystals of nanoDNA

"nanoDNA"

20bp	5'-AACGCAAAGATCTTTGCGT	T-3' (L ~ 6.1 nm)
16bp	5'-CGCGAAAATTTTCGCG-3'	(~ 5.4 nm)
14bp	5'-ACGCGAATTCGCGT-3'	(~ 4.8 nm)
12bp	5'-CGCGAATTCGCG-3'	(~ 4.1 nm)
12bp	5'-AACGCATGCGTT-3'	(~ 4.1 nm)
10bp	5'-CGCAATTGCG-3'	(~ 3.4 nm)
8bp	5'-CGCATGCG-3'	(~ 2.7 nm)
6bp	5'-CGATCG-3'	(~ 2.0 nm)
•		12

and many others!

nanoDNA phase diagram

Nakata et al. PNAS (2010)

gradient cells

10bp: 5'-CGCAATTGCG-3' (~34.0A)

increasing N concentration

nanoDNA and longDNA: same liquid crystal phases

dual gradient contact cell

long DNA sample (salmon3 ~ 900bp) nano DNA sample (10bp)

10bp side

900 bp side

structure of the C_U phase

- x-ray microbeam diffraction
- C_U phase
- 16bp
- Advanced Photon Source

Ron Pindak, NSLS Brandon Chapman, NSLS Julie Cross, APS Chris Jones, CU

nanoDNA (c-N-T) phase diagram

the end of DNA

end-to-end adhesion

sticky ends → nematic & columnar phases

Kurablova, Betterton, Glaser, Advanced Materials (2010)

"living polymerization"

quantitative analysis

linear aggregate of i monomers

$$\langle i \rangle = \frac{1}{2} \left(1 + \sqrt{1 + 4\rho K} \right)$$

$$K = v_0 e^{\beta \varepsilon}$$

Cates, Candau, JPCM, 1990 Lu, Kindt, J. Chem. Phys, 2004 Sciortino et al. J.Chem. Phys 2007

aggregation # <i> ~ 10

effect of DNA oligomer termination

12bp OH-CGCGAAAATTTTCGCG-OH OH-CGCGAAAATTTTCGCG-PO₄ PO₄-CGCGAAAATTTTCGCG-PO₄ no LC phases

12bp-T, 12bp-TT

C1 and C2 phase no nematic phase

TICCCCAAAATTIICCCC DODOTTTIAAAADODOTT

10bp-TTTTTTTTT No LC phases DODOTTTAAAADODOTTTTTCCCC TTTTTTCCCCCAAAATTTTCCCCC

- termination matters
- noncomplementary tails destabilize LC phases

defected sequences

no N*phases

non-complementary shift

COCOLOGOCO COCOCOCOCO COCOCOCOCOCO

nanoDNA with sticky ends (12 (DD) +2 bp)

5'-AT CGCGAATTCGCG-3' 5'-TA CGCGAATTCGCG-3' 5'-CG CGCGAATTCGCG-3' 5'-GC CGCGAATTCGCG-3' 5'-CGCGAATTCGCG AT-3' 5'-CGCGAATTCGCG TA-3' 5'-CGCGAATTCGCG CG-3'

GCGCTTAAGCGC GCGCTTAAGCGC

TA DODAATTOODO TA DODAATTOODO CCCCLLAACCCC VL CCCCLLAACCCC VL CCCCLLAACCCC VL

quantitative analysis

	$\Delta G (k_{B}T)$	ΔΗ (k_BT)	$\Delta S (k_B)$
DD	-5.2 ±0.2	-28 ±6	-0.08 ±0.02
TA-DD	-6.0 ±0.2	-20 ±10	-0.05 ±0.03
"AT"	-7.0 ±0.2	-9 ±3	-0.01 ±0.01
"CG"	-7.3 ±0.2	-7 ±4	0 ± 0.008

propagation of chirality

nanoDNA N* helix pitch and handedness

Sequence	Nickname	<i>p</i> range (µm)	н	
CGAATTCG	8sc1	1–2	L	L
CGCATGCG	8sc2	0,45–0,8	L	15 - 8sc2
CGCAATTGCG	10sc	0,4–∞	R	◆ 10sc
ATAAATTTAT	10allAT	1–3	R	• DD
CGCGAATTCGCG	DD	0,7–3	R	10
pCGCGAATTCGCG	pDD	0,35–1	R	10 pbb
CGCGAATTCGCGp	DDp	0,3–1	R	
GCGCTTAAGCGC	antiDD	1–2	R	* allAl
GGAGTTTTGAGG + CCTCAAAACTCC	12mc	0,7–2	R	5 - AllCG2_L
ACCGAATTCGGT	ACC	1–3	R	allCG2_R
AACGAATTCGTT	AAC	00	A	CG-DD
AATGAATTCATT	AAT	1–2	L	E O GC-DD
ΑΑΤΑΑΑΤΤΤΑΤΤ	allAT	0,5–1	L	3 0
CCGGCGCGCGG	allCG1	1–3	L	σ
CGCGCCGGCGCG	allCG2	0,3–∞	L,R	the second se
GCGCGAATTCGC	sDD	0,3–1	L	-5 -
ACGCGAATTCGCGT	14Aterm	1–3	L	
CGCGAAATTTCGCG	14sc	1–3	L	
pCGCGAAATTTCGCG	p14sc	1–3	L	10
GCCGCGAATTCGCG	GC-DD	0.35–1	L	-10
CGCGAATTCGCGGC	DD-GC	1–3	L	the state of the s
CGCGCGAATTCGCG	CG-DD	1–3	L	******
ATCGCGAATTCGCG	AT-DD	1–3	L	-15 -
ACGCAGAATTCTGCGT	16Aterm	1–4	L	
CGCGAAAATTTTCGCG	16sc	1–4	L	32 33 34 35 36
AACGCAAAGATCTTTGCGTT	20sc	1–4	L	0.2 0.0 0.4 0.0 0.0
CGCGAAUUCGCG	DD-RNA	0.3–1	R	1/Т (10 ³ К ⁻¹)
—	long DNA	2–4	L	

Zanchetta et al. PNAS (2010)

4 base pairs (GCTA)

chiral interactions

c) Electrostatic interactions of charged spirals: d) $\alpha < 45^{\circ}$, $\psi < 0$, left-handed twist $\omega < 10^{\circ}$

 α >45°, ψ <0, left-handed twist

b) Steric interactions of uncharged helices:

d) Electrostatic interactions of charged spirals with cations: $\alpha < 45^{\circ}$, $\psi > 0$, right-handed twist

steric component: packing fusilli

Straley (1975)

DNA (B-DNA), RNA (A-RNA), G-quartets all have < 45° helices (A case)

electrostatic interactions: phosphate charges only with counterions adsorbed in the grooves too

Cherstvy (2008)

nanoDNA N phase

Blunt end < 14 bp = RIGHT handed N* Blunt end > 14 bp = LEFT handed N* Sticky end, any length = LEFT handed N*

mixing right-handed 12mer with left-handed 20mer

= achiral nematic

RNA: the same but with increased constraints

guanine quartets (G quartets)

Mariani, Mazabard, Garbesi, and Spada, JACS (1989)

J.T. Davis, Ang. Chem. (2004)

liquid crystal condensation of nanoDNA and RNA

mutually- but not self-complementary

- **CCTCAAAACTCC**
- **B: GGAGTTTTGAGG**

self-complementary
CGCGAAAATTTTCGCG

plus a mixture of non-complementary strands

self-complementary pairs

equimolar complementary pairs

LC condensation of complementary strands from A:B mixtures

LC condensation from complementary / random mixtures

down to 10:1 molar ratio

Zanchetta, Nakata, Buscaglia, Bellini, Clark, PNAS (2008)

In either case the demixing is between rigid and flexible solutes, driven by entropic / depletion-type forces

condensation mechanisms

Kulp, Herzfeld (1995, 2004): self-assembled filaments with different flexibilities Dogic et al., PRE (2004) I-N transition in suspensions of filamentous virus + Dextran

liquid crystal condensation of complementary strands

random sequence DNA

<14 mers – association too weak: no LCs 14-20 mers – kinetic arrest into duplexes with random tails: gives LCs >30 mers – kinetic arrest into a gel: no LCs

centrifugation

30 min @ 14,000g

liquid crystal

...physical separation of complementary and noncompementary oligomers

isotropic

add ligation ...

in a race to make longer complimentary oligomers, which will win?

condensed nanoDNA droplet reactor

features of an ancient liquid crystal world

a liquid crystal droplet can provide...

the bottom line

There was an era in the appearance and evolution of life during which...

the bottom line

There was an era in the appearance and evolution of life during which...

...the sole purpose of life

was to make liquid crystals...

deracemization by stirring and grinding

C. Viedma, PRL (2005)

crystal conglomerates

amino acid derivative

W. Noorduin et al., JACS (2008)

emergence of chirality

Frank, F. C. Biochim. Biophys. Acta 11, 459–463 (1953)

"I have long supposed that this was no problem on the basis of a supposition that the initial production of life is a rare event."

He went on to prove mathematically that, in a system containing entities that both copy themselves and destroy their mirror images, an initial random event that provides a tiny excess of one hand would necessarily lead to the exclusive occurrence of that form, even if mirror-image versions could also form randomly. He concluded: "A laboratory demonstration may not be impossible." This seminal paper was Frank's sole contribution to biology — he is better known for his insights concerning the mechanisms of crystal growth. He might have been gratified to learn that his own field is supplying increasingly convincing laboratory demonstrations to support his biological model.

B2 banana phases

tilt & polarity \implies *chirality* $C_{8}H_{17}$

Walba, Clark, Science (1997) 🗲

the "B2" banana phases: fluid layer smectics

conglomerate EO in NOBOW

spontaneous reflection symmetry breaking

NonylOxyBOW (NOBOW): **B4**— 155" **B2**— 173" I

thermotropic sponge phase

apply to focal conic arrays

conglomerate domains in an isotropic fluid of achiral molecules

upon cooling from the isotropic a second isotropic phase appears in many materials

Cooling: I – 172 – Dark cg – 133 – X Heating: X – 145 – SmCP – 175 – I "dark conglomerates"

conglomerate domains in an isotropic fluid crystal of achiral molecules

filaments are helical

twisted nanofilaments

B4 freeze fracture

spherulitic domains in 60% NOBOW – 40% CE8

50% 70.5 in NOBOW*

