Statistical Mechanics of Jamming

Lecture 1: Timescales and Lengthscales, jamming vs thermal critical points

Lecture 2: Statistical ensembles: inherent structures and blocked states

Lecture 3: Example of thermal system with constraints

Lecture 4: Statistical mechanics of grain packings

Lecture 1

What falls under the rubric of jamming?

Universality?

Signatures of jamming

Anomalously slow dynamics

Growing length scales?

Dyamical heterogeneities

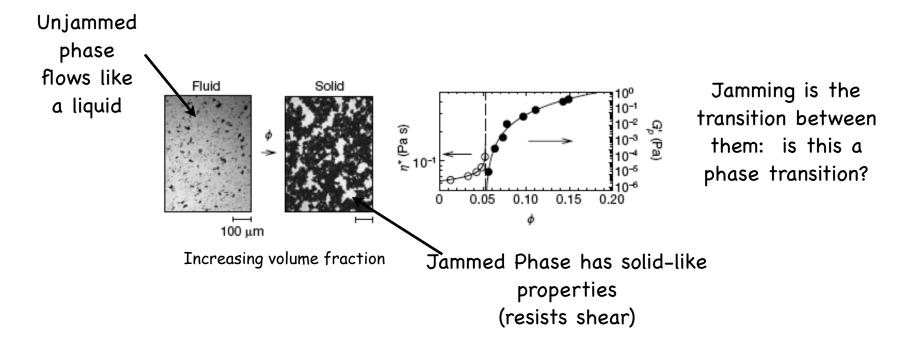
Supercooled liquids (experiments, models)

Granular packings (experiments, models)

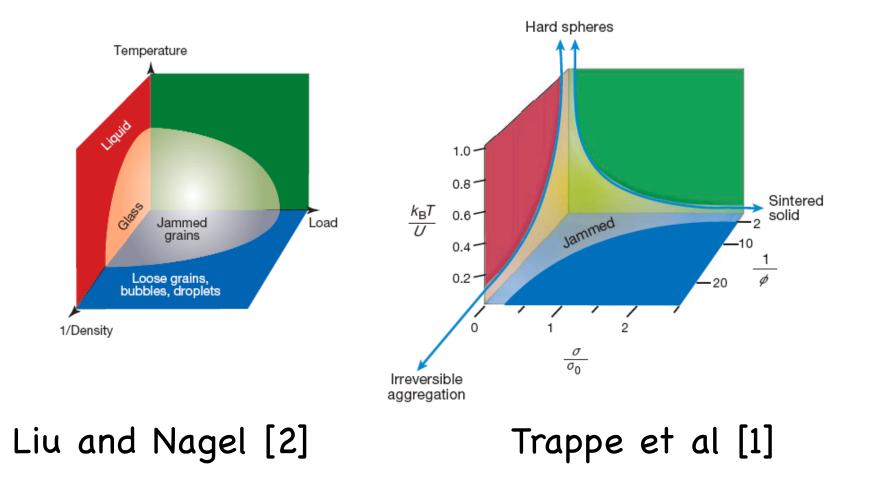
Jamming

"A wide variety of systems, including granular media, colloidal suspensions and molecular systems, exhibit non-equilibrium transitions from a fluid-like to a solid-like state characterized solely by the sudden arrest of their dynamics." [1]

Qualification: No obvious structural signature



Universal Jamming Phase diagram Bringing thermal and athermal systems in to same framework



Signatures of jamming

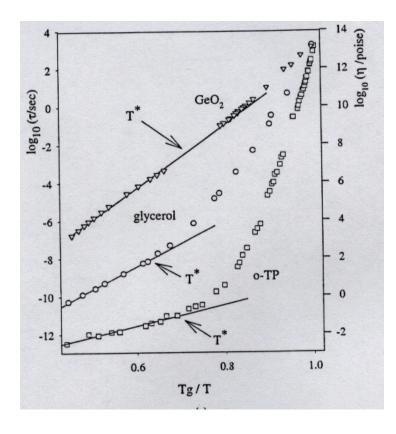
- Anomalously slow dynamics
- Absence of any purely static, structural signatures
 - Simulations of soft spheres, possible exception
- Dynamical heterogeneities

Two schools of thought

 Purely kinetic: arrest of flow with no structural correlations developing

There is an underlying ideal glass transition Slow Dynamics

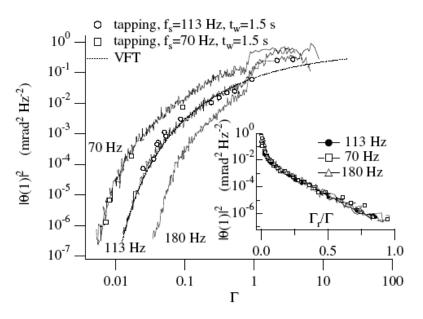
Thermal system



Supercooled liquids

G Tarjus et al J.Phys.C (2000)

Athermal system



Granular packings G D'Anna & G Gremaud, PRL (2001)

Vogel-Fulcher-Tamann form $\tau \sim \text{Exp}((A/\Gamma - \Gamma_0)^p)$

Why is this anomalously slow?

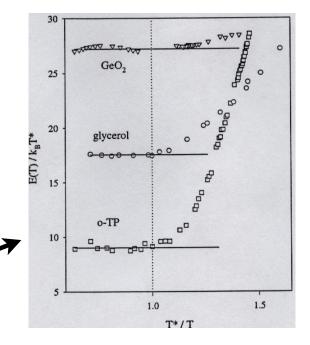
Dynamics near a critical point: controlled by a diverging correlation length

 $\xi \simeq (T - T_c)^{-\nu}$ $\tau \simeq \xi^z$ $\tau \simeq (T - T_c)^{-z\nu}$

(More in Lecture 3)

Jamming: (1) No diverging length scale (2) Activated scaling Vogel-Fulcher law

$$\xi \simeq (T - T_{\theta})^{-\nu}$$
$$\tau \simeq e^{\xi^{\theta}}$$
$$\tau \simeq e^{(T - T_c)^{-z\nu}}$$



Models with quenched disorder such as the random field Ising model are described by this type of activated scaling [3]

Supercooled liquids do not have quenched disorder. Is this type of scaling realized in non-disordered models?

Granular packings are non-equilibrium systems. Is there a generic mechanism for generating the Vogel-Fulcher scaling?

Supercooled liquids 1.0 F°(q,t) 8'0 °1 8'1 T=0.466 T=5.0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 $10^{\circ}_{t/\tau} 10^{1}$ 10^{-4} 10⁻³ 10⁻² 10⁻ 10

Non-exponential relaxation in Lennard-Jones fluid (Walter Kob, review) •Incoherent intermediate scattering function [4](density autocorrelation function)

$$\delta \rho_s(\mathbf{q}, t) = \exp[-i\mathbf{q} \cdot \mathbf{r}_j(t)]$$

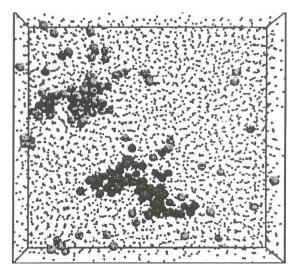
$$F_s(\mathbf{q}, t) = \langle \delta \rho_s(\mathbf{q}, t) \delta \rho_s(\mathbf{q}, 0)^* \rangle$$

 One of the many successes of mode-coupling theory

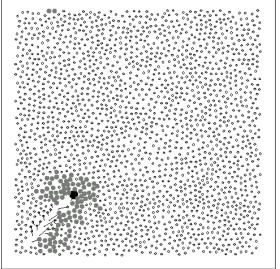
experiment measures
Mode coupling theory does not rely on a static transition it is a purely dynamic theory

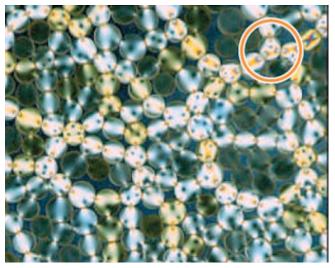
 Deficiencies: predicted glass transition temperature too high, absence of activated scaling

Dynamical heterogeneities



Colloidal glass: Correlation of particles (Weeks et al, Science 287, 627 (2000) Near the T=0 jamming transition: Number of disks: (Drocco et al, condmat/0310291)





Force chains in compressed/ sheared grain packings

Simulations, measurement and theories of 4point susceptibility [5-9]

Definition:

$$C((r - r'); (t - t')) = <\rho(r', t')\rho(r, t) >$$

Measures how the densities at separated by a certain distance decorrelate with time (remember: incoherent scattering function)

$$G((r-r')) = <\rho(r',t)\rho(r,t)>$$

Static correlation function or equal time, spatial correlation function which is independent of time for a system in equilibrium. Normally, we pick up a diverging length scale from this correlation function

$$G_4((r-r');(t-t')) = <\rho(r',t')\rho(r',t)\rho(r,t')\rho(r,t)>$$

A length scale (time-dependent) obtained from here provides a measure of the extent of correlation between two snapshots separated by time t remain correlated

Simulations, measurement and theories of 4point susceptibility [5-9]

$$G_4((r-r');(t-t')) = <\rho(r',t')\rho(r',t)\rho(r,t')\rho(r,t)>$$

This correlation function is related to a susceptibility

$$\chi_4 = \langle q^2 \rangle - \langle q \rangle^2$$
$$q = \int dr \rho(r, t) \rho(r, t')$$

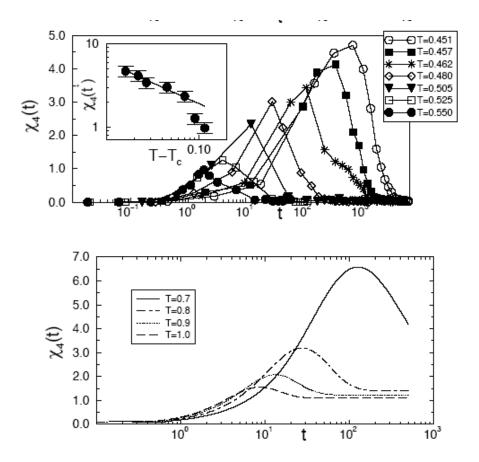
Compare to the overlap function of spin glasses

$$q^{parisi}_{\alpha\beta} = \sum_{i} S^{\alpha}_{i} S^{\beta}_{i}$$

Compare to ferromagnet $\chi = \frac{1}{N} (\langle m^2 \rangle - \langle m \rangle^2)$ $m = \sum_i S_i$ $\langle m^2 \rangle = \sum_{ij} \langle S_i S_j \rangle \simeq N + Nm_0$ # of spins correlated with 1

 $\alpha \beta$ are replica indices

Simulations, measurement and theories of 4point susceptibility [5-9]



Simulation of binary Lennard Jones[5]

Simulation of pspin spinglass[5]

Simulations, measurement and theories of 4point susceptibility [5-9]

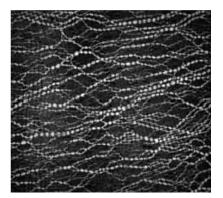
 $\chi_3(\omega,T) = \frac{\chi_s^2}{k_B T} \ell^{2-\overline{\eta}} \mathcal{H}(\omega \tau).$ (analog of the dynamical scaling hypothesis for usual critical points)

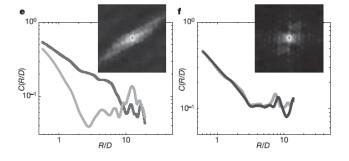
Within mode-coupling theory, this particular response can be related to the dynamical correlation length, l.[6]

Experiments have measured a growing length scale based on this relationship [7]

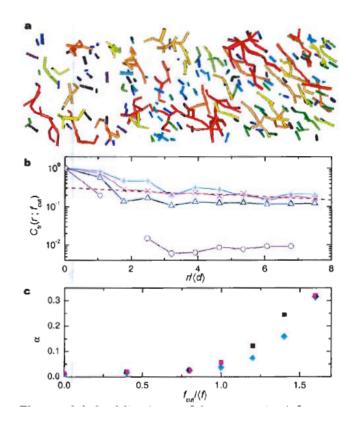
Granular packings: Length scales ?

Behringer's experiments on stress fluctuations [10]





O'Hern, Silbert simulations [11]: growing length scale from phonon spectrum Dinsmore bubble experiments[12]



Blocked states and inherent structures: A promising approach to a unified framework

Stillinger's construction of inherent structures[13]

Edwards' idea of blocked states [14]

Simulations

- Properties of inherent structures (LJ systems)[15]
- Properties of inherent structures of purely repulsive systems[16]

Ensemble of Blocked states (inherent structures) Consider all mechanically stable states

- One way in thermal systems is to set an energy scale to infinity
- athermal systems enforce mechanical stability
- Either way, dealing with constraints
- In thermal ensembles, assume Boltzman distribution
- In athermal systems, what is the appropriate probability distribution? Edwards'?
- Phase transition in this restricted ensemble, diverging correlation length?
- Is the 4-point correlation a manifestation in the real system of this underlying phase transition?

- [1] V. Trappe, V. Prasad, Luca Cipelletti, P. N. Segre and D. A. Weitz, Nature, 411, 772 (2001).
- [2] Liu, A. J. and Nagel, S. R., Nature 396, (1998)
- [3] D. S. Fisher, Phys. Rev. Lett. 56, 416 (1986).
- [4] Walter Kob, Lecture notes for LES HOUCHES 2002 SUMMER SCHOOL SESSION LXXVII; SLOW RELAXATIONS AND NONEQUILIBRIUM DYNAMICS IN CONDENSED MAT-TER
- [5] C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998); W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, ibid. 79, 2827 (1997); C. Donati, S. C. Glotzer, P. H. Poole, W. Kob, and S. J. Plimpton, Phys. Rev. E 60, 3107 (1999).
- [6] L. Berthier, G. Biroli, J.-P. Bouchaud, 4 L. Cipelletti, D. El Masri, D. LHote F. Ladieu, and M. Pierno, cond-mat/0512379
- [7] Jean-Philippe Bouchaud and Giulio Biroli, cond-mat/051668
- [8] David Reichman, K. Minazaki and J.-P. Bouchaud, very recent cond-mat
- [9] J. P. Garrahan and D. Chandler, Proc. Natl. Acad. Sci. U.S.A. 100, 9710 (2003).
- [10] F. Stillinger, J. Chem. Phys., 88, 7188(1988)
- [11] S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature London! 393, 554 (1998).
- [12] B. Doliwa and A. Heuer, Phys. Rev. E 67, 030501 (2003).
- [13] R. A. Denny, D. R. Reichman, and J. P. Bouchaud, Phys. Rev. Lett. 90, 025503 (2003)
- [14] C.S. OHearn, L.E. Silbert, A.J. Liu and S.R. Nagel, Phys. Rev. E. 68, 011306, (2003) ;C. S. OHern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 88, 075507 (2002).; L. E. Silbert, A. J. Liu and S. R. Nagel, cond-mat/0501616