An experimentalists guide to

SUPERCONDUCTIVITY

(and what to do when you find it).

Paul C. Canfield

Distinguished Professor,

Department of Physics

Senior Physicist, Ames Laboratory

Iowa State University

Boulder 2008 Summer School

Physics among light-weights: Superconductivity in MgB₂ and other borides

Or, superconductivity from RNi₂B₂C to MgB₂

With a little arsenic at the end for seasoning....

This interaction clearly depends on electons, phonons, and their coupling....

BCS Superconductivity: 3 parameters (+ some prejudices)

$$k_{\rm B}T_{\rm C} = 1.13\hbar\omega_{\rm D}e^{-1/VN(E_{\rm F})}$$

- 1) Electrons pair via exchange of a phonon (lattice vibration). ω_D is the characteristic frequency of the lattice. For a simple mass/spring system $\omega = \sqrt{k/m} \rightarrow \text{lighter } m \rightarrow \text{higher } T_C$
- Prejudice: higher $T_{\rm C}$ values can be found in compounds with light mass elements
- 2) $V \equiv$ electron-phonon coupling strength.

Higher V \rightarrow Higher T_C, BUT too large of a V leads to distortions (e.g. CDW)

Prejudice: higher T_c values can be found close to structural phase transitions

- 3) $N(E_F) = Density of states at the Fermi surface. This is basically a caliper of the number of electrons that can participate in the superconducting ground state. (Note that d-levels generally have higher <math>N(E_F)$ than p-levels or s-levels.
- Prejudice: For high T_C values there has to be a transition metal element (with its d-levels) so as to pump up the $N(E_F)$

Superconductivity: a recent history.

In the 1950's, 1960's and even 1970's there was a large-scale hunt for higher T_c superconductors (intermetallics since they were *the only* place to expect such phenomena). In the U.S., these took place in Bell Labs, GE, UCSD, etc.

Binary compounds were made (often by arcmelting) and tested for superconductivity, usually by quick $\rho(T)$ or $\chi(T)$ measurements at low-T.

These were exciting times! You could make a sample in the morning and discovery a new superconductor by afternoon coffee. For decades T_c was stuck at ~ 20 K. (Theories were written why B.C.S. could not support $T_c > 30$ K while others predicted T_c up to ~ 100 K.)

Then came the copper oxides \dots T_c > 120 K

Pleasure

Pain

Complex materials problems

?Mechanisms?

Hard to work with

But even during these exciting times, intermetallics remained interesting....

The past thirteen years have been an exciting time for boride based superconductors..

1994: RNi₂B₂C and YPd₂B₂C

2001: MgB₂

These two classes of compounds have pushed our understanding of superconductivity in intermetallic compounds, extending the range over which superconductivity is know to exist: to higher temperatures and new extremes of interaction with local moments as well as with the underlying lattice. Based the three prejudices, what you want is the following:

Light atoms / high characteristic frequencies Strong electron phonon coupling, but no structural transition Good $N(E_F)$, probably coming (in part) from transition metal

RNi₂B₂C series as well as YPd₂B₂C are perfect!!

LuNi₂B₂C: $T_{c} \sim 17 \text{ K}$ $N(E_F)$ large with significant Ni contribution Very close to a structural phase transition Large Debye temperature (high characteristic frequency)

YPd₂B₂C: $T_{c} \sim 23 \text{ K}$

Metastable....If annealed loses structure---basically "just beyond" a structural phase transition, but, like diamond, can be trapped into structurally metastable state.

P. C. Canfield et al. Physics Today Oct. 1998

Superconducting for R = Dy, Ho, Er, Tm, Lu, Y T_c values ranging from 17 K – 6 K

Magnetic order for R = Gd, Tb, Dy, Ho, Er, Tm T_N values ranging from 20 K to 1.5 K The suppression of T_c with increasingly magnetic rare earth is due to the fact that the Cooper pairs are spin up, spin down pairs. The interaction between the electrons and local moments involves a spin flip, thereby acting as a pair breaker.

This pair breaking is one of the reasons why magnetic superconductors are so interesting: they allow the study of competing effects.

S.L. Bud'ko, P.C. Canfield / C. R. Physique 7 (2006) 56-67

This interplay between superconductivity and local moment magnetism manifests itself most clearly as anomalies in T_c and $H_{c2}(T)$.

Let's start by looking at $H_{c2}(T)$

Since Lu and Y are nonmoment bearing rare earths, both LuNi₂B₂C and YNi₂B₂C serve as examples of what superconductivity in these compounds looks like when there is no 4f-based, local moment magnetism present. \mathbf{r}^{3}

Both manifest relatively high T_c values and minor $H_{c2}(T)$ anisotropy.

S. L. Bud'ko, V. G. Kogan, and P. C. Canfield PHYSICAL REVIEW B, VOLUME 64, 180506(R) 12 October 2001

One effect of local moment magnetism is immediately clear from the correlations between the anisotropy of χ and H_{c2}(T): larger χ leads to smaller H_{c2}(T). This is due to the internal field suppressing superconductivity.

P. C. Canfield et al. Physics Today Oct. 1998 S.L. Bud'ko, P.C. Canfield / C. R. Physique 7 (2006) 56–67

The other conspicuous feature in the $H_{c2}(T)$ data is the sharp decrease in $H_{c2}(T)$ when the sample crosses from the paramagnetic to antiferromagnetically ordered state. This can be seen most clearly by creating a composite H-T phase diagram that shows phase lines for both superconductivity as well as local moment order.

When the superconductivity enters into the ordered state with a wave vector of 0.55 a*, then there is a drop in H_{c2} . We can correlate this with the existence of a superzone gap in the normal state, electrical resistivity.

This suppression in $H_{c2}(T)$ is associated with the onset of long range magnetic order that has an ordering wavevector that is determined by Fermi surface nesting (i.e. a wave vector determined by a maximum in $\chi(q)$, the generalized electronic susceptibility).

This is not unique to $ErNi_2B_2C$, but is also seen, perhaps even more dramatically in $HoNi_2B_2C$.

S.L. Bud'ko, P.C. Canfield / C. R. Physique 7 (2006) 56-67 SERGEY L. BUD'KO AND PAUL C. CANFIELD PRB Rathnayaka et al. PRB 53 (1996) 5688 61 R14 932 JUNE 2000-II

The T_c versus Rare Earth (or de Gennes factor) plot also brings up what can be called "a clever monkey" question: What happens as we make T_c cross T_N ?

Р.

As we discussed last lecture, both T_c and T_N can be

1.2

(a) Ho_{1-x}Dy_xNi₂B₂C

B.K. Cho,* P.C. Canfield, and D.C. Johnston PHYSICAL REVIEW LETTEIVOLUME 77, 1996 163

We find that something remarkable happens: Whereas T_N continues to change in a linear manner, T_c essentially becomes independent of dG factor when $T_c < T_N$.

B.K. Cho,* P.C. Canfield, and D.C. Johnston PHYSICAL REVIEW LETTEIVOLUME 77, 1996163

In order to get a better idea of what was going on, we retreated to what we thought would be a simpler system: $Lu_{1-x}Dy_{x}Ni_{2}B_{2}C$.

We found that DyNi₂B₂C was actually a very rare beast indeed: a system that is superconducting only because there is a higher temperature antiferromagnetic transition.

If DyNi₂B₂C remained paramagnetic, it would never superconduct.

B.K. Cho,* P.C. Canfield, and D.C. Johnston PHYSICAL REVIEW LETTEIVOLUME 77, 1996163

In order to understand this conclusion we need to note that in the ordered state pair breaking is *NOT* from isolated spin flip scattering. The Cooper pair has to interact with magnetic excitations.

The effects of this can be seen in the T < T_N resistivity. As Lu is added to $(Lu_{1-x}Dy_x)Ni_2B_2C$ the "loss of spin-disorder scattering" decreases dramatically and rapidly. This is consistent with having the Lu not only suppress T_N , but also soften the magnetic lattice, allowing many more, low temperature excitations.

B. K. Cho,* P. C. Canfield, and D. C. Johnston PHYSICAL REVIEW LETTEIVOLUME 77, 1996163

The increase of magnetic excitations with the addition of Lu is further confirmed by comparisons of the magnetic susceptibilities of $(Lu_{1-x}Dy_x)Ni_2B_2C$ and $(Ho_{1-x}Dy_x)Ni_2B_2C$. Whereas the $\chi(T < T_N)$ remains low for the Ho substitution, it rises rapidly for the Lu substitution.

B.K. Cho,* P.C. Canfield, and D.C. Johnston PHYSICAL REVIEW LETTEIVOLUME 77, 1996163

We can look at the T-x phase diagram of $Lu_{1-x}Dy_{x}Ni_{2}B_{2}C$ from both ends. As we add Dy to $LuNi_{2}B_{2}C$ we suppress T_{c} via the paramagnetic Dy breaking Cooper pairs.

On the other hand, as we add Lu to $DyNi_2B_2C$ T_N is suppressed rapidly and pair breaking from low-energy excitations is enhanced dramatically.

If DyNi₂B₂C only superconducts because it is antiferromagnetic, then any degradation of the antiferromagnetic state is very bad for the superconductivity.

B.K. Cho,* P.C. Canfield, and D.C. Johnston PHYSICAL REVIEW LETTEIVOLUME 77, 1996163

In addition to the interplay between superconductivity and local moment magnetism, the RNi₂B₂C series has:

Heavy Fermion for YbNi₂B₂C T_K ~ 10 K; T_{ΔCEF} ~ 100 K; T_C, T_N < 100 mK (possibly 0 K)

Flux Line Lattice phase transitions

Great tunability: T_N , H_{C2} , ℓ , ξ_0 , H_2

This series offers a wonderful playground for the study of the interactions between conduction electrons (normal or superconducting) and 4f-electrons (localized or itinerant).

But for this lecture, let's return to some of the old prejudices: remember #2, highest T_c near a structural phase transition.

LuNi₂B₂C (and YNi₂B₂C) are about as close to a CDW transition as they can be....Electron-phonon coupling is nearly optimized.

FIG. 1. Room-temperature acoustic and lowest-lying optical phonon dispersion curves of LuNi₂B₂C along the [ξ 00] and [00 ξ] symmetry directions. The lines are intended as guides to the eye. The size of the symbols is a measure of the estimated uncertainties in the measured frequencies.

Dervenagas et al. PRB **52** (1995) 9839

FIG. 2. The Δ_4 [$\xi 00$] branches at 295 and 10 K. The lines through the 10 K points are intended as guides to the eye.

Near the end of what

 $k_{\rm B}T_{\rm C} = 1.13\hbar\omega_{\rm D}e^{-1/{\rm VN}({\rm E}_{\rm F})}$

has to offer.

If the electron phonon coupling were increased further, then the phonon would soften further and there would be a structural phase transition.... This is consistent with the higher T_c and metastability of YPd_2B_2C.

In the late 1990's the question arose:

So, what to do next?

Based on the wealth of physics, as well as the high T_c values, found in the RNi_2B_2C family many groups decided to look for other intermetallics with light elements and see if similar (or even higher) T_c values could be found.

Several groups (including Ames group) were examining compounds with combinations of Li, Be, B, C, Mg, Al, Si and other (often transition metal) elements.

In late 2000 the group lead by Prof. J. Akimitsu examined the Ti-Mg-B ternary (*Ti because we got to have those 3-d electrons*) and found...a binary: MgB₂.

In mid-January, 2001 Prof. Akimitsu announced an ~40 K T_c in MgB₂ as part of a passing reference in a talk at a meeting....

In mid-January, 2001 my group heard rumors of this announcement: i.e. that there may be superconductivity in MgB_2 .

Immediately there were four basic questions.

Can we make it?

Can we confirm T_C ?

Can we address the mechanism of superconductivity?

Can we delineate its basic properties?

Can we make it?

This is a very inauspicious phase diagram. There is no exposed liquid—solidus line at all.

This is not promising for crystal growth.

VAPOR PRESSURE CURVES OF THE ELEMENTS **Temperature Degrees Centigrade** 200 400 500 600 800 Often 50 100 300 1000 1500 2000 3000 4000 5000 6000 7000 BOILING 103 vapor 10² pressure 10 Fe is a 10 10-2 problem I 10-3 Cd d 10 10-4 At 950 C 10 10-5 Mg has E /// ø TORR ~ 1/3 atm - 10-6 VAPOR PRESSURE IN vapor 10 - 10-7 pressure 105 10-8 10 10-9 This time IÓ 10-10 we use it 10 -10-11 to our 109 10-12 advantage! 1.00 10-13 10 200 300 400 500 1500 2000 3000 600 1000 4000 5000 6000 8000

At 950 C the B powder is no where close to melting, but we found that it will react with Mg vapor (~1/3 atm. at 950 C) to form (MgB_2) within as little as 2 hours.

Boron comes in many form. MgB₂ can be made as sintered pellets, thin films and...

MgB₂ from boron filament Canfield et al., PRL 86 (2001) 2423

Dense MgB₂ Wires

MgB₂ grains illuminate under polarized light.

Sometimes you can do a lot with polycrystalline samples....

Volume 86, Number 9	PHYSICAL REVIEW LETTERS	26 February 2001
В	oron Isotope Effect in Superconducting ${\rm MgB}_2$	
Volume 86, Number 11	PHYSICAL REVIEW LETTERS	12 March 2001
Thermodyna	mic and Transport Properties of Superconduc	ting Mg ¹⁰ B ₂
Volume 86, Number 11	PHYSICAL REVIEW LETTERS	12 March 2001
	Superconductivity in Dense MgB_2 Wires	
Volume 87, Number 4	PHYSICAL REVIEW LETTERS	23 July 2001

Anisotropy of Superconducting MgB₂ as Seen in Electron Spin Resonance and Magnetization Data

P.C. Canfield, D.K. Finnemore, S.L. Bud'ko, J.E. Ostenson, G. Lapertot,* C.E. Cunningham,[†] and C. Petrovic PHYSICAL REVIEW LETTERS VOLUME 86, NUMBER 11 2423 12 MARCH 2001
Can we address the mechanism of superconductivity?

If we start with the BCS equation for T_C : $k_B T_C = 1.13\hbar\omega_D e^{-1/VN(E_F)}$ we can see that T_C is directly proportional to ω_D .

So, within this cascade of gross assumptions, T_c should vary as $1/\sqrt{m}$

VOLUME 86, NUMBER 9

26 February 2001

200 - 30

35

40

T (K)

45

the triangles....

How was superconductivity in MgB₂ missed?

Hard to make by simple methods (cannot arc-melt it) Did not fit prejudice (no d-shell electrons to boost N(E_F))(Old data did not show superconductivity)....

MgB_2 forces a shift in emphasis when looking for other higher T_C compounds

 $k_B T_C = 1.13\hbar\omega_D e^{-1/VN(E_F)}$

Old prejudice: Need to have large ω_D and large N(E_F) and hope for good V

But MgB₂ has a very small N(E_F) ($\gamma \sim 2.5$ mJ/mole-K²)

So, MgB_2 is a low $N(E_F)$ superconductor

For searches for MgB₂ like compounds we should look for large ω_D and large V and not obsess about N(E_F) so much....

This is a much harder search algorithm.

Canfield et al., PRL 86 (2001) 2423

- Over 90% dense => good grain to grain coupling.
- T_c above 39K
- Full diamagnetic screening.
- Low normal state resistivity.

H_{c2} of MgB₂

Using resistivity data we can determine H_{c2} of the polycrystalline sample.

Two questions arise:

Are we missing hidden anisotropies?

Can we improve H_{c2} to be better than the ~30 T of Nb₃Sn?

 $H_{c2}^{max}(T)$ ${\rm H_{c2}}^{\rm min}({\rm T})$ T_c^{max}(H) H 22 N [<mark>S</mark>stH sη I__N Н T_c^{min}(H) T_{c} Т 0 Т χ

Given our experience with single crystals and anisotropy we were motivated to develop a new method for inferring H_{c2} anisotropy from polycrystalline data. We tested it on YNi_2B_2C and $LuNi_2B_2C$ since we could measure directly on these samples as well.

S. L. Bud'ko, V. G. Kogan, and P. C. Canfield PHYSICAL REVIEW B, VOLUME 64, 180506(R) 12 October 2001

We used this method to deduce that MgB_2 had an exceptionally large anisotropy in H_{c2} .

Anisotropic H_{c2}(T) data inferred from polycrystalline measurements! dM/dT (emu/cm³ K)

From O. Jepsen as appeared in Canfield et. al. Physics Today, March 2003, p.34

$\label{eq:mgB2} MgB_2 \\ \mbox{Origins of } \sigma \mbox{ and } \pi \mbox{ Bands}$

Korus et. al. Phys. Rev. Lett. 86 (2001) 4656

As in benzene molecule, the planar bonds are called σ -bonds, for MgB₂ these become σ -bands and are the cylindrical Fermi surfaces above. The π -bands are more 3-D.

H_{C2} anisotropy and Fermi Surfaces in MgB₂

S.L. Bud'ko et. al., Phys. Rev. B 64 (2001) 180506.

*
$$\gamma_{\rm H} = {\rm H_{c2}}^{\rm max}/{\rm H_{c2}}^{\rm min} = {\rm H_{c2}}^{\rm ab}/{\rm H_{c2}}^{\rm c} \sim 6$$

> $\gamma = \sqrt{\langle v_{\rm ab}^2 \rangle}/{\langle v_{\rm c}^2 \rangle}$

> Average over entire Fermi surface: $\gamma \sim 1$

> Using anisotropy in σ band: $\gamma \sim \sqrt{40} \sim 6$

Kortus et. al. Phys. Rev. Lett. 86 (2001) 4656

R.A. Fisher et al. Physica C 385 (2003) 180

- Shoulder in C_e indicates presence of second gap.
- Point contact spectroscopy: Δ_{σ} = 7.1 meV, Δ_{π} = 2.9 meV
- $2\Delta_{\sigma}/k_{b}T_{c} \sim 4$; $2\Delta_{\pi}/k_{b}T_{c} \sim 1.7$

Samuely et al. Physica C 385 (2003) 244.

The other H_{c2} related question was, can we improve it? This can sometimes be done by adding non-magnetic impurities....Which one and how?

Recall we make MgB₂ by diffusing the Mg vapor into B. Any viable dopant will need to be compatible with this synthesis technique.

- B₄C only stable Binary
- Width of formation allows for ~ 8-19% C doping

B/C Phase Diagram

Ribeiro et al.: 5Mg + $2B_4C \rightarrow Mg(B_{1-x}C_x)_2$

Ribeiro et al. Physica C 384 (2003) 227.

• Sharp superconducting phase transition with $\rm T_{c}$ ~ 22K.

X-ray spectra indicate presence of MgB₂C₂

• x in Mg(B_{1-x}C_x)₂ determined to be 0.10±0.02 by Rietveld Analysis of neutron diffraction pattern on Mg($^{11}B_{1-x}C_x$)₂.

Phase	Weight fraction
$Mg(B_{1-x}C_x)_2$	73.4(1)
MgB ₂ C ₂	20.4(1)
Mg	4.6(2)
MgO	1.6(1)

Avdeev et al. Physica C 387 (2003) 301

$Mg(B_{.9}C_{.1})_{2}$

Even with T_c reduced to ~20 K H_{c2} is clearly enhanced!!

What would lower C-doping levels give?

- If Mg(B_{.9}C_{.1})₂ has T_c ~ 22K and H_{c2}(T=0) near 25T, Mg(B_{1-x}C_x)₂ may have maximum H_{c2} for x<0.10.
- Width of formation in B_4C limits C doping to above 8%.
- Carbon incorporation: add CH_4 to gas stream. Methane flow rates 15, 30, 60, and 100 ccpm (3000 ccpm BCI_3)

^-

 $Mg(B_{1-x}C_x)_2$ Filaments

• Shift of (110) peak yields calculated carbon concentrations of x = 0.004, 0.021, 0.038, and 0.052.

 $T_{c}(K)$

Ω

- independent of carbon level.
- $\Delta_{\sigma},\,\Delta_{\pi}$ may persist for all T $_{C}$ and clearly exist for T $_{C}$ ~ 20 K

LOW-TEMPERATURE SUPERCONDUCTIVITY IS

Magnesium diboride defies the once conventional wisdom about what makes a good superconductor. It becomes superconducting near the relatively warm temperature of 40 kelvins—which promises a variety of applications

By PAUL C. CANFIELD AND SERGEY L. BUD'KO

NOTE:

This article is available on our web page in nine differrent languages.

^-

Fe-As based superconductors part I

The end of the tyranny of copper

 $RFeAs(O_{1-x}F_{x})$ $RFeAsO_{1-x}$

 T_c up to 55 K T_c up to ~50 K

Hard to make, is this oxide physics, intermetallic physics, both, neither...????? What is role of O / F? What is the nature of the superconductivity, what is the symmetry of the gap?

Received May 15, 2006; E-mail: hosono@msl.titech.ac.jp

Iron-Based Layered Superconductor: LaOFeP

ublished on Web 07/15/2006

Yoichi Kamihara,[†] Hidenori Hiramatsu,[†] Masahiro Hirano,^{†,‡} Ryuto Kawamura,[§] Hiroshi Yanagi,[§] Toshio Kamiya,^{†,§} and Hideo Hosono^{*,†,‡}

Published on Web 02/23/2008

Iron-Based Layered Superconductor La[O_{1-x}F_x]FeAs (x = 0.05-0.12) with $T_c = 26$ K

Yoichi Kamihara,*.† Takumi Watanabe,‡ Masahiro Hirano,†.§ and Hideo Hosono†.‡.§

In both of these structures there is a square planar sheet of Fe that is capped top and bottom with As. The A or RO layers separate these FeAs units.

FIG. 1: Crystal structure of BaFe₂As₂.

First order structural phase transition in CaFe₂As₂.

N. Ni, S. Nandi, A. Kreyssig, A. I. Goldman, E. D. Mun, S. L. Bud'ko, and P. C. Canfield arXiv:0806.4328v1 [cond-mat.str-el] 26 Jun 2008

First order structural phase transition in $CaFe_2As_2$.

arXiv:0806.4328v1 [cond-mat.str-el] 26 Jun 2008

11.75

20

LT

. 0 Ģ

HT

N. Ni, S. Nandi, A. Kreyssig, A. I. Goldman, E. D. Mun, S. L. Bud'ko, and P. C. Canfield

arXiv:0806.4328v1 [cond-mat.str-el] 26 Jun 2008

Lattice and magnetic instabilities in CaFe₂As₂: A single crystal neutron diffraction study

A.I. Goldman^{1,2}, D.N. Argyriou³, B. Ouladdiaf⁴, T. Chatterji⁵, A. Kreyssig^{1,2}, S. Nandi^{1,2}, N. Ni^{1,2}, S. L. Bud'ko^{1,2}, P.C. Canfield^{1,2} and R. J. McQueeney^{1,2}

Lattice and magnetic instabilities in CaFe₂As₂: A single crystal neutron diffraction study

A.I. Goldman^{1,2}, D.N. Argyriou³, B. Ouladdiaf⁴, T. Chatterji⁵, A. Kreyssig^{1,2}, S. Nandi^{1,2}, N. Ni^{1,2}, S. L. Bud'ko^{1,2}, P.C. Canfield^{1,2} and R. J. McQueeney^{1,2}

Observations and wishes about CaFe₂As₂

 $CaFe_2As_2$ appears to be similar to $SrFe_2As_2$ and $BaFe_2As_2$.

It is much softer

It has a smaller lattice parameter (Ca is smaller than Sr or Ba)

Pressure was useful in enhancing T_c in LaFeAs(O/F)

It would be wonderful to have a pure compound that could manifest all of the salient features of this system.

Pressure induced superconductivity in CaFe₂As₂.

Milton S. Torikachvili Sergey L. Bud'ko, Ni Ni, and Paul C. Canfield

arXiv:0807.0616v1 [cond-mat.supr-con] 3 Jul 2008

For low and high pressures there is no detectable superconductivity

For pressures centered about 5 kbar there are sharp SC transitions

There is a dramatic reduction of residual resistivity, r(15K), as pressure passes through the 5 kbar region.

150 150 100 50 0,000 0,00

The phase diagrams that have been mapped out for F-doped La and Sm RFeAs(O/F) bear a remarkable resemblance to what we have found in pure $CaFe_2As_2$ under accessible pressures.

Common features and hints from the data so far

Three classes of FeAs compounds with square planar Fe capped top and bottom with As and with Fe²⁺ via gross / formal counting.

In cases of RFeAsO and AFe_2As_2 a combined structural (and magnetic) phase transition needs to be suppressed for SC to emerge. This transition seems to disappear suddenly.

Single crystals of the AFe_2As_2 compounds are VERY soft. The $CaFe_2As_2$ can be rolled into a spiral with fine tweezers. Not at all hard.

All of the salient features associated with these compounds can be found in pure $CaFe_2As_2$ under pressure. This may allow for a clean sorting out of what is going on.

More FeAs compounds are being found and more ways of "doping" them are being developed.

Hopefully this can be generalized to other transition metals and other semi-metals as well.

Compounds with these elements have been avoided due to the difficulty in making them. These are precisely the compounds that will show properties that bridge between oxide and intermetallic physics.

	1	_																18
1	1 H 1,256	2	Γ	6	-Atom -Syml	ue nu bol	mber	1		Metal Semi	l metal		13	14	15	16	17	2 He 4.003
2	3 Li 6.941	4 Be 9.012		Atomic weigh						Nonn	netal		5 B 10.81	6 C 12.01	7 N 14.01	8 0 1500	9 F 19.00	10 Ne 20.18
i.	11 Na 22.99	12 Mg 24.31	3	4	5	6	7	\$	9	10	11	12	13 Al 26.98	14 Si 28.09	P 30.97	16 S 32.07	17 Cl 5.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	81 SC 41.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.6	33 As 74.92	34 Se 78.96	85 Br 7990	36 Kr 83.80
Ŧ	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91,22	41 Nb 92,91	42 Mo 95.94	43 Tc 98,91	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118,7	51 Sb 121.8	52 Te 127.6	53 [1/6,9	54 Xe 131.3
6	55 Cs	Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	65 At	86 Rn
7	Br Fr	Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub	113 Uut	114 Uuq	115 Uup	Uuh	117 Uus	118 Uuo
	223.0	<u> 220.0 </u> 	57	58	59	60	61	62 62	63	64	65 1 Th	66	- 67 - U	68	69 - T -			293
		-		9 140	<u>1 140.</u> 91	9 144. 92	2 146. 93	9 150. 94	4 152.	<u>0 157.</u> 96	3 <u>158.9</u> 97	9 162.9	<u>5 164.</u> 99	9 <u>167.</u> 10(<u>3 168.</u> D 10:	9 173. 1 103	0	
		7	227	C 11 .0 232.	1 Pa .0 231.0	U 238.	0 237.	0 244.	1 АП 1 243	1 247.	1 24 7.	CI 1 251.	1 252	5 F 1 .0 257.	n NI 1 258	a N C .1 259) _1 Кл	(c) 1998 omor Paul

To end this lecture, here is a final thought related to the search for new materials and ground states:

It is important to note that superconductivity in <u>**both**</u> RNi_2B_2C as well as MgB_2 was discovered by accident (as part of a search for other compounds), illustrating perhaps one of the most important aspects of new materials research: the importance of keeping our eyes open for new phases / ground states.

The FeAs compounds, on the other hand, actually appear to be the result of a systematic campaign to study planar Fe compounds. The need for such searches is not a new idea:

Search and you shall find -- what is unsought goes undetected. Sophocles

