^-

Iron Arsenic Based Superconductors: Three months with reduced sleep....(and counting).

Paul C. Canfield Distinguished Professor of Physics Senior Physicist, Ames Lab Iowa State University

Boulder 2008 Summer School

^-

Fe-As based superconductors part I

The end of the tyranny of copper

 $RFeAs(O_{1-x}F_{x})$ $RFeAsO_{1-x}$

 T_c up to 55 K T_c up to ~50 K

Hard to make, is this oxide physics, intermetallic physics, both, neither...????? What is role of O / F? What is the nature of the superconductivity, what is the symmetry of the gap?

Received May 15, 2006; E-mail: hosono@msl.titech.ac.jp

Iron-Based Layered Superconductor: LaOFeP

ublished on Web 07/15/2006

Yoichi Kamihara,[†] Hidenori Hiramatsu,[†] Masahiro Hirano,^{†,‡} Ryuto Kawamura,[§] Hiroshi Yanagi,[§] Toshio Kamiya,^{†,§} and Hideo Hosono^{*,†,‡}

Published on Web 02/23/2008

Iron-Based Layered Superconductor La[O_{1-x}F_x]FeAs (x = 0.05-0.12) with $T_c = 26$ K

Yoichi Kamihara,*.† Takumi Watanabe,‡ Masahiro Hirano,†.§ and Hideo Hosono†.‡.§

An other way to change the volume of a RXY compound's unit cell is to change R....Use the lanthanide contraction.

Phase Diagram and Quantum Critical Point in Newly Discovered Superconductors: $SmO_{1-x}F_xFeAs$

R. H. Liu¹, G. Wu¹, T. Wu¹, D. F. Fang¹, H. Chen¹, S. Y. Li², K. Liu¹, Y. L. Xie¹, X. F. Wang¹, R. L. Yang¹, C. He², D. L. Feng² and X. H. Chen^{1*}

High pressure synthesis

T_C ~ 51-53 K

NOT single phased

Can find and isolate ${\sim}400$ μm on a side plates/ grains

Using single grains we can perform ARPES and find Fermi surface and compare with band structure calculations....

arXiv:0806.2147v3 [cond-mat.supr-con] 17 Jun 2008

C. Liu,¹ T. Kondo,¹ M. E. Tillman,¹ R. Gordon,¹ G. D. Samolyuk,¹ Y. Lee,¹ C. Martin,¹ J. L. McChesney,² S. Bud'ko,¹ M. A. Tanatar,¹ E. Rotenberg,² P. C. Canfield,¹ R. Prozorov,¹ B. N. Harmon,¹ and A. Kaminski¹

Using single grains we can perform ARPES and find the superconducting gap and study its (lack of) anisotropy

arXiv:0807.0815v1 [cond-mat.supr-con] 6 Jul 2008

Takeshi Kondo,¹ A. F. Santander-Syro,^{2,3} O. Copie,⁴ Chang Liu,¹ M. E. Tillman,¹ E. D. Mun,¹ J. Schmalian,¹ S. L. Bud'ko,¹ M. A. Tanatar,¹ P. C. Canfield,¹ and A. Kaminski¹

Nodeless superconducting gap in NdFeAsO_{0.9}F_{0.1} single crystals from anisotropic penetration depth studies

C. Martin, R. T. Gordon, M. A. Tanatar, M. D. Vannette, M. E. Tillman, E. D. Mun, P. C. Canfield, V. G. Kogan, G. D. Samolvuk, J. Schmalian, and R. Prozorov* arXiv:0807.0876v1 [cond-mat.supr-con] 5 Jul 2008

Nodeless superconducting gap in NdFeAsO_{0.9}F_{0.1} single crystals from anisotropic penetration depth studies

arXiv:0807.0876v1 [cond-mat.supr-con] 5 Jul 2008

FIG. 3: (Color online)Low temperature region of $\Delta \lambda_{ab}/\lambda_0$. The solid line is the best fit to Eq. (1). The inset shows $\lambda_{ab}(T)$ and $\lambda_c(T)$. The smaller inset shows the ratio $\gamma_{\lambda} = \lambda_c(T)/\lambda_{ab}(T)$.

$$\frac{\Delta\lambda\left(T\right)}{\lambda\left(0\right)} = \sqrt{\frac{\pi\Delta_0}{2T}} \exp\left(-\frac{\Delta_0}{T}\right). \tag{1}$$

FIG. 4: (Color online)The in-plane superfluid density vs. temperature (symbols). Solid line is a fit to an anisotropic gap described by Eq. 3. The inset shows the angular dependence of the fitting gap. The s-wave BCS (lines and dots) and pure d-wave (dotted line) superfluid densities are plotted for comparison.

$$\Delta(\varphi, T) = \Delta(T) \ \frac{1 + \varepsilon \cos(4\varphi)}{1 + \varepsilon}, \tag{3}$$

Final comments on current state of RFeAsO samples and data.

Exact knowledge of how much F goes in or how much O is missing are qualitative at best.

All polycrystalline samples are mixed phase to some extent (in many cases to a very large extent).

Grow of the RFeAsO compounds is very complicated and controlling O or F exacerbates this problem.

Largest single crystals / single grains are on the order of 200-400 $\mu\text{m}.$

A lot of work needs to be done to get samples "under control".

There may be an intrinsic O-deficiency in these materials.

Fe-As based superconductors part II

Not even oxide physics!!!!

$$(AE_{1-x}A_x)Fe_2As_2 T_C \sim 40 K$$

AE = Ba, Sr, Ca A = K, Na, Li

Much easier to make (there are not oxides but true intermetallics) What is role of A doping? What is the nature of the superconductivity, what is the symmetry of the gap? Superconductivity at 38 K in the iron arsenide $(Ba_{1-x}K_x)Fe_2As_2$

Marianne Rotter, Marcus Tegel and Dirk Johrendt*

arXiv:0805.4630v1 [cond-mat.supr-con] 29 May 2008

FIG. 1: Crystal structure of BaFe₂As₂.

In both of these structures there is a square planar sheet of Fe that is capped top and bottom with As. The A or RO layers separate these FeAs units.

FIG. 1: Crystal structure of BaFe₂As₂.

Within two days of reading Rotter's discovery we had grown large single crystals. Now single crystal work can really begin.

Anisotropic thermodynamic and transport properties of single

crystalline $(Ba_{1-x}K_x)Fe_2As_2$ (x = 0 and 0.45).

N. Ni^{1,2}, S. L. Bud'ko^{1,2}, A. Kreyssig^{1,2}, S. Nandi^{1,2}, G. E. Rustan^{1,2}, A. I.

Goldman^{1,2}, S. Gupta^{1,3}, J. D. Corbett^{1,3}, A. Kracher¹, and P. C. Canfield^{1,2}

arXiv:0806.1874v1 [cond-mat.supr-con] 11 Jun 2008

^-

Anisotropic thermodynamic and transport properties of single crystalline $(Ba_{1-x}K_x)Fe_2As_2$ (x = 0 and 0.45).

arXiv:0806.1874v1 [cond-mat.supr-con] 11 Jun 2008

 $BaFe_2As_2$ has ~1% Sn substituted for As. Phase transition at ~ 80 K

Anisotropic thermodynamic and transport properties of single crystalline $(Ba_{1-x}K_x)Fe_2As_2$ (x = 0 and 0.45).

P. C. Canfield^{1,2} i Ą. Rustan^{1,2}, A. Kracher¹, and ਸ਼ੁੰ Ġ Nandi^{1,2}, Ś Gupta^{1,3}, J. D. Corbett^{1,3}, Kreyssig^{1,2}, Ā Bud'ko^{1,2}, Ŀ. s. s. Goldman^{1,2}, N. Ni^{1,2},

^-

Anisotropic thermodynamic and transport properties of single crystalline $(Ba_{1-x}K_x)Fe_2As_2$ (x = 0 and 0.45).

N. Ni^{1,2}, S. L. Bud'ko^{1,2}, A. Kreyssig^{1,2}, S. Nandi^{1,2}, G. E. Rustan^{1,2}, A. I. Goldman^{1,2}, S. Gupta^{1,3}, J. D. Corbett^{1,3}, A. Kracher¹, and P. C. Canfield^{1,2}

When K is substituted for Ba we get $T_{\rm C}$ of 30 K for ~40% K.

NOTE: from elemental analysis K values vary from plane to plane 40 +- 7 %

Anisotropic thermodynamic and transport properties of single crystalline ($Ba_{1-x}K_x$)Fe₂As₂ (x = 0 and 0.45). N. Ni^{1,2}, S. L. Bud'ko^{1,2}, A. Kreyssig^{1,2}, S. Nandi^{1,2}, G. E. Rustan^{1,2}, A. I. Goldman^{1,2}, S. Gupta^{1,3}, J. D. Corbett^{1,3}, A. Kracher¹, and P. C. Canfield^{1,2} crystal B 0.32 160 թ (mΩ cm) H=140 kOe 0 kOe 0 0.16 crystal B 120 H∥c 0 НĹс I || [100] H⊥c 0 0.00 н (kOe) 0.32 Ο ж թ (mΩ cm) > 40 H=140 kOe 0 kOe 0 0.16 28.5 T (K) 29.0 29.5 28.0 I || [100] 0 25 27 28 24 26 29 30 H || c T (K) 0.00 32 22 24 26 28 30 34 T (K)

^-

Structural transition and anisotropic properties of single

crystalline SrFe₂As₂

J.-Q. Yan,¹ A. Kreyssig,^{1,2} S. Nandi,^{1,2} N. Ni,^{1,2} S. L. Bud'ko,^{1,2} A. Kracher,¹ R. J. McQueeney,^{1,2} R. W. McCallum,^{1,3} T. A. Lograsso,¹ A. I. Goldman,^{1,2} and P. C. Canfield^{1,2}

Structural transition and anisotropic properties of single

crystalline SrFe₂As₂

J.-Q. Yan,¹ A. Kreyssig,^{1,2} S. Nandi,^{1,2} N R. J. McQueeney,^{1,2} R. W. McCallum,^{1,3} and P. C. Canfield^{1,2}

Structural transition and anisotropic properties of single

crystalline SrFe₂As₂

Both $BaFe_2As_2$ and $SrFe_2As_2$ were both know members of this structure....We decided to see if a new member could be found (and explored)

Both Ba and Sr members, when substituted with K suppressed the high temp, structural (magnetic) phase transition and became superconductors....

	1																	18
1	1 H 1.008	2		6 C -	-Atom -Svml	ue nu bol	ımber	1		Metal Semi	l metal		13	14	15	16	17	2 He 4.003
2	3 Li 6.941	4 Be 9.012		1 <u>2.01</u>	-Atom	iic we	eight			Nonn	netal		5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31	3	4	5	6	7	\$	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44,96	22 Ti 47.88	23 V 50,94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63,55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74,92	34 Se 78,96	35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88,91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98,91	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
6	55 Cs 132.9	Ba 137.3	71 Lu 175.0	72 Hf 178.5	73 Ta 180,9	74 W 183,8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200,6	81 T1 204.4	82 Pb 207.2	83 Bi 209.0	84 Po 209.0	85 At 210.0	86 Rn 222.0
7	87 Fr 223.0	88 Ra 226.0	103 Lr 262.1	104 Rf 261.1	105 Db 262.1	106 Sg 263.1	107 Bh 264.1	108 Hs 265.1	109 Mt 268	110 Uun 269	111 Uuu 272	112 Uub 277	113 Uut	114 Uuq 289	115 Uup	116 Uuh 289	117 Uus	118 Uuo 293
		6	57 La 138. 89 A	58 9 140 9 140 C T1	e Pr 1 140.9 h Pa	60 No 144. 92 U	61 2 146. 93 N	n 62 9 150.4 9 94 9 P ŭ	63 E1 152. 95 An	64 1 G(0 1573 96 1 Cn	65 1 Th 158 97 n Bl	66 Dy 162 98 Cf	67 H 5 164. 99	68 9 E 167. 100 5 F	69 7 3 168. 103 1 1 1 1 1 1 1 1	n Yb 9 1730 1 102 d No		(=)1998
			227.	.0 232.	.0 231.)	J 238.	.0 237.	V 244.	1 243	.1 247.	.1 247.	.1 251.	.1 252	.0 257.	.1 258	.1 259.	ЦК	omor Pau

First order structural phase transition in CaFe₂As₂.

N. Ni, S. Nandi, A. Kreyssig, A. I. Goldman, E. D. Mun, S. L. Bud'ko, and P. C. Canfield arXiv:0806.4328v1 [cond-mat.str-el] 26 Jun 2008

First order structural phase transition in $CaFe_2As_2$.

arXiv:0806.4328v1 [cond-mat.str-el] 26 Jun 2008

11.75

20

LT

. 0 Ģ

HT

N. Ni, S. Nandi, A. Kreyssig, A. I. Goldman, E. D. Mun, S. L. Bud'ko, and P. C. Canfield

arXiv:0806.4328v1 [cond-mat.str-el] 26 Jun 2008

Lattice and magnetic instabilities in CaFe₂As₂: A single crystal neutron diffraction study

A.I. Goldman^{1,2}, D.N. Argyriou³, B. Ouladdiaf⁴, T. Chatterji⁵, A. Kreyssig^{1,2}, S. Nandi^{1,2}, N. Ni^{1,2}, S. L. Bud'ko^{1,2}, P.C. Canfield^{1,2} and R. J. McQueeney^{1,2}

Lattice and magnetic instabilities in CaFe₂As₂: A single crystal neutron diffraction study

A.I. Goldman^{1,2}, D.N. Argyriou³, B. Ouladdiaf⁴, T. Chatterji⁵, A. Kreyssig^{1,2}, S. Nandi^{1,2}, N. Ni^{1,2}, S. L. Bud'ko^{1,2}, P.C. Canfield^{1,2} and R. J. McQueeney^{1,2}

Observations and wishes about CaFe₂As₂

 $CaFe_2As_2$ appears to be similar to $SrFe_2As_2$ and $BaFe_2As_2$.

It is much softer

It has a smaller lattice parameter (Ca is smaller than Sr or Ba)

Pressure was useful in enhancing T_c in LaFeAs(O/F)

It would be wonderful to have a pure compound that could manifest all of the salient features of this system.

Pressure induced superconductivity in CaFe₂As₂.

Milton S. Torikachvili Sergey L. Bud'ko, Ni Ni, and Paul C. Canfield

arXiv:0807.0616v1 [cond-mat.supr-con] 3 Jul 2008

For low and high pressures there is no detectable superconductivity

For pressures centered about 5 kbar there are sharp SC transitions

There is a dramatic reduction of residual resistivity, r(15K), as pressure passes through the 5 kbar region.

^-

Reasonable H_{c2} curves for SC region.

Effect of pressure on the structural phase transition and superconductivity in $(Ba_{1-x}K_x)Fe_2As_2$ (x = 0 and 0.45) single

crystals.

M. S. Torikachvil N. Ni, S. L. Bud'ko, and P. C. Canfield arXiv:0807.1089v1 [cond-mat.supr-con] 7 Jul 2008

BaFe₂As₂ far less pressure dependent.

T (K)

Superconductivity up to 29 K in SrFe₂As₂ and BaFe₂As₂ at high pressures

Patricia L. Alireza, Jack Gillett, Y. T. Chris Ko, Suchitra E. Sebastian¹, and Gilbert G.

Lonzarich

150 150 100 50 0 0,00 0,

The phase diagrams that have been mapped out for F-doped La and Sm RFeAs(O/F) bear a remarkable resemblance to what we have found in pure $CaFe_2As_2$ under accessible pressures.

Common features and hints from the data so far

Three classes of FeAs compounds with square planar Fe capped top and bottom with As and with Fe²⁺ via gross / formal counting.

In cases of RFeAsO and AFe_2As_2 a combined structural (and magnetic) phase transition needs to be suppressed for SC to emerge. This transition seems to disappear suddenly.

Single crystals of the AFe_2As_2 compounds are VERY soft. The $CaFe_2As_2$ can be rolled into a spiral with fine tweezers. Not at all hard.

All of the salient features associated with these compounds can be found in pure $CaFe_2As_2$ under pressure. This may allow for a clean sorting out of what is going on.

More FeAs compounds are being found and more ways of "doping" them are being developed.

Hopefully this can be generalized to other transition metals and other semi-metals as well.

Compounds with these elements have been avoided due to the difficulty in making them. These are precisely the compounds that will show properties that bridge between oxide and intermetallic physics.

	1	_																18
1	1 H 1,256	2	Γ	6	-Atom -Syml	ue nu bol	mber	1		Metal Semi	l metal		13	14	15	16	17	2 He 4.003
2	3 Li 6.941	4 Be 9.012		Atomic weight						Nonn	netal		5 B 10.81	6 C 12.01	7 N 14.01	8 0 1500	9 F 19.00	10 Ne 20.18
i.	11 Na 22.99	12 Mg 24.31	3	4	5	6	7	\$	9	10	11	12	13 Al 26.98	14 Si 28.09	P 30.97	16 S 32.07	17 Cl 5.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 SC 41.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.6	33 As 74.92	34 Se 78.96	85 Br 7990	36 Kr 83.80
Ŧ	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91,22	41 Nb 92,91	42 Mo 95.94	43 Tc 98,91	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118,7	51 Sb 121.8	52 Te 127.6	53 [1/6,9	54 Xe 131.3
6	55 Cs	Ba	71 Lu	72 Hf 1785	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	65 At	86 Rn
7	Br Fr	Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub	113 Uut	114 Uuq	115 Uup	Uuh	117 Uus	118 Uuo
	223.0	<u> 220.0 </u> 	57	58	59	60	61	62 62	63	64	65 1 Th	66	- 67 - U	68	69 - T -			293
		-		9 140	<u>1 140.</u> 91	9 144. 92	2 146. 93	9 150. 94	4 152.	<u>0 157.</u> 96	3 <u>158.9</u> 97	9 162.9	<u>5 164.</u> 99	9 <u>167.</u> 10(<u>3 168.</u> D 10:	9 173. 1 103	0	
		7	227	C 11 .0 232.	1 Pa .0 231.0	U 238.	0 237.	0 244.	1 АП 1 243	1 247.	1 24 7.	CI 1 251.	1 252	5 F 1 .0 257.	n NI 1 258	a N C .1 259) _1 Кл	(c) 1998 omor Paul

