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1 Introduction

The importance of phase-coherence effects in normal electron transport has been ap-
preciated for some time through the study of localisation, and particularly weak lo-
calisation, in macroscopic conductors {Anderson 1958, Lee and Ramakrishnan 1985a,
Bergmann 1984). Nonetheless. the dramatic improvement in fabrication of ultrasmall
(mesoscopic) conducting devices has increased interest in this subject because of the
experimenial accessibility of novel phenomena associated with quantum interference in
such systems, and the potential applicability of these phenomena to new microelectronic
devices in the (admittedly distant) future.

Quantum coherence in the diffusive limit

If we exclude from discussion phase-coherence phenomena directly rclated to interac-
tion (e.g. superconductivity, or the Coulomb suppression in the electronic density of
states), we are now able to identify three distinct classes of quantum coherence effects
in conductors in the diffusive limit. Here ‘diffusive’ means that the elastic mean free
path, /, is smaller than the dimensions of the device.

First there are the weak localisation (WL) effects on the average conductance, known
since the work of Abrahams et al. (1979), which arise due to the coherent back-scattering
of diffusing electrons in the presence of time-reversal symmetry. Because of this coherent
back-scattering the average low temperature conductance of a film or wire of arbitrary
size was shown to be sensitive to a weak magnetic field or weak spin-orbit scattering
(Figure 1). The sensitivity to magnetic fleld was understood theoretically (Altshuler
et al. 1980, 1981) to be a manifestation of the Aharonov-Bohm eflect for multiply-
scattered electrons. with the average over disorder leading to an effective doubling of
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Figure 1: Norma! metal Aharonov-Bohm effect with period hf2e in magnesium (top
left) and lithium (top right) cylinders, from Aronov and Sharvin (1987). Weak local-
isalion magnetoresistance of a magnesium film coated with gold to enhance spin-orbit
scattering (bottom), from Bergmann (1984). Note the reversal of sign due to spin-orbit
scattering.

the electron charge (¢ — 2¢). We shall review this briefly below. Recently it has been
shown (Mathur and Stone 1991) that the sensitivity to weak spin-orbit scattering is a
manifestation of the Aharonov-Casher effect in which an electric field couples to the
phase of the wavefunction by its influence on the spin magnetic moment (Aharonov and
Casher 1984),

In both cases the wL effects arise from the influence of dynamically negligible per-
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Figure 2: Universal conductance fluctuations in a simulation of the Schrodinger equa-
tion (top) and in a gold-palladium wire of length 790 nm and width 50 nm (bottom);
from Stone (1985).

turbations on the phase of the wavefunctions, and hence are interference effects in the
purest sense. The weak localisation effects depend on dimensionality and on the inelas-
tic scattering length, &, but not on the the size of the sample. They are a manifestation
of time-reversal symmetry, and are completely suppressed by a moderate magnetic field.
Because they are corrections to the average conductance they are generic: two samples
of the same material will show the same WL effect.

The second class of quantum coherence effects in disordered conductors are the
sample-specific variations in the transport properties of mesoscopic devices at low tem-
perature (Washburn and Webb 1986; see Figure 2). These are described statistically by
the theory of universal conductance fluctuations (UCF) (Altshuler 1985, Lee and Stone
1985, Stone 1985, Altshuler and Shklovskii 1986, Lee et al. 1987). In this theory the
conductance, g, of a phase-coherent device is shown to be sensitive to small changes
in magnetic field, Fermi energy or impurity configuration. The maximum degree of
sensitivity is given by the condition

e?

independent of (g). The scale of variation of the control parameter needed to achieve
this maximal fluctuation is simply that needed to alter the action (phase) along a
typical diffusive path by order unity (see, for example, Stone and Imry 1986). Hence
the conductance fluctuations and related effects show a sensitivity to weak magnetic
field and spin-orbit scattering as do the WL effects. This sensitivity appears in two
ways. First, in a given sample the resistance oscillates on a small field scale, typically
around 100G at 1K (Figure 2); second, the magnitude of the variance of g depends
on the time-reversal and spin symmetry of the scattering processes. The breaking of
either symmetry leads to universal reduction factors for the variance of g (Altshuler
and Shklovskii 1986, Stone 1989), but not (as in WL) to a complete suppression of
the effect. Again the effects of a magnetic field arise completely from coupling to the
phase of the wavefunction, and not from dynamical effects such as Landau quantisation,
which was completely neglected in the standard theory. In fact studies of semiconductor
\
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Figure 3: Magnetoresistance traces showing co-ezistence of Shubnikov-de Haas oscil-
lations with UCF; from Geim et al. (1991).

microstructures show that UCF effects coexist with the Shubnikov—de Haas oscillations
arising from Landau-level quantisation (Figure 3) and even in the transition region
between quantum Hall steps. Below we shall show how to generalise UCF theory to the
high-field limit within the self-consistent Born approximation.

In general, UCF effects depend on the ratio of the inelastic length to the sample
dimensions and are not observable in macroscopic samples. However they do not de-
pend on time-reversal or any other symmetry for their existence and are robust against
magnetic field

A third class of phenomena which has recently received a great deal of theoreti-
cal attention relate to quantum coherence effects in the thermodynamic properties of
mesoscopic samples, such as the persistent current or orbital magnetic response. The
sample-to-sample fluctuations of these quantities are conceptually quite similar to UCF,
but it has recently been predicted theoretically that there should be an average effect as
well due to the constraint of fixed particle number in such isolated mesoscopic systems
(Altshuler et al. 1991). This average effect is unlike UCF in that it should be observable
in large arrays of isolated mesoscopic elements (e.g. quantum dots), but would also
be unlike WL in that the amplitude will decay with the ratio of the size of individual
elements to the inelastic mean free path. Although average persistent currents have
been observed experimentally by Levy et al. (1990), it is unclear whether their origin
is this new type of quantum coherence effect. Nonetheless I believe that the prediction
of such effects opens a new and fascinating area for future work.

Quantum coherence in the ballistic limit

All of the above interference phenomena involve diffusing electrons and have their math-
ematical origin in the properties of the disorder-averaged two-particle Green function,
and in particular in the dominance of the contributions in the cooperon or diffuson chan-
nels at long distances and low temperatures. A fourth class of phenomena at present
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outside of this type of description are coherent effects in ballistic transport, where the
motion may not be diffusive and there is no obvious ensemble over which to average.
Initially it was assumed that such devices would show rather elementary wave-guide
interference effects, equivalent to microwave interferometers. However we have recently
shown that fluctuating interference phenomena very similar to UCF occur in ballistic
systems at low temperatures if the sample geometry is sufficiently complex so that the
classical scattering from such a confining potential is chaotic (Jalabert et al. 1990); thus
it remains an open question whether such simple interference effects are achievable in
ballistic conductors.

In addition to interference effects, there are other novel transport phenomena in
the ballistic limit which are essentially classical in origin. These include the quenching
of the Hall resistance or four-probe bend resistance (see, for example, Beenakker and
van Houten 1989), as well as effects related to mode quantisation such as the quantised
conductance of a point contact (van Houten et al. 1990).

Finally one must mention the quantised Hall effect (Prange and Girvin 1987). Al-
though not a phenomenon that requires phase coherence across the sample, we shall see
below that the occurence of Hall quantisation and vanishing longitudinal resistance in a
two-dimensional electron gas (2DEG) can be understood quite simply by the Landauer-
Biittiker approach commonly used in studying phase-coherent transport. Moreover the
stability of this phenomenon against disorder, and the occurence of plateaus, can only
be understood by invoking localisation effects related to phase coherence. Unfortu-
nately in this case a detailed physical picture has not yet been developed comparable
with the theory of weak localisation.

Formalism for quantum transport

Since all the phenomena discussed above are directly related to interference of multiply-
scattered electron waves, they are not described by the conventional approach to trans-
port in solids based on the Boltzmann equation. Instead they require a formalism in
which quantum coherence may be incorporated from the beginning. Linear response
theory (Kubo 1957) has traditionally been employed to treat such situations, although
often with some cost to physical intuition due to its complexity. An alternative ap-
proach which has proved extremely useful in the study of mesoscopic transport was
pioneered by Landauer over thirty years ago (Landauer 1957, 1970). Using a count-
ing argument and the Einstein relation, he related the resistance of a 1D conductor to
the quantum transmission probability for the conductor (treated as a single compos-
ite scattering center); in principle the exact transmission coefficient will contain all of
the interference effects associated with multiple scattering of the electrons. Landauer’s
original work did not consider in detail the nature of the resistance measurement, but
experimental progress in the study of mesoscopic conductors rapidly uncovered the im-
portant role of the contacts and the measuring geometry in determining the results
of transport measurements (Benoit et al. 1983, Skocpol et al. 1986). For example, a
qualitative difference was found between two-probe and four-probe measurements of re-
sistance with respect to their symmetry under reversing the magnetic field (Stone and
Szafer 1988). This discovery motivated a crucial generalisation of the original Landauer
approach, due to Bittiker (1986), in which all the measurement probes are treated on
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an equal footing and the correct reciprocity relations for multi-probe measurements in
magnetic fields arise naturally. It was subsequently shown that Bittiker's multi-probe
formula could be derived from a version of Kubo linear response theory (Stone and
Szafer 1988, Baranger and Stone 1989). Although the Green function formulation is
often more convenient for microscopic calculations, the Landauer-Bittiker (LB) formu-
lation in terms of transmission coefficients has often proven useful and more congenial
to physical intuition. We review briefly the physical assumptions of this approach and
its derivation from linear response theory below.

2 Landauer-Bittiker approach to transport

2.1 Counting argument

The basic physical idea of the LB approach is to consider the sample whose resistance
is being measured as a single phase-coherent unit attached to perfect reservoirs serving
as current source and sink and as voltage probes. In an ideal two-probe measurement
the sample is attached between two perfect reservoirs with electrochemical potentials,
i and py = py + eV respectively, where V is the applied voltage; these reservoirs
serve both as current source and sink and as voltage terminals. In the energy interval
eV between p; and p;, electrons are injected into right-going states emerging from
reservoir 1, but none are injected into left-going states emerging from reservoir 2. Thus
there is a net right-going current proportional to the number of states in the interval

u2 — p, given by
Ne 2 N

dn; Ne [
]=ezv;~EcVZ:T;,'= (IET,J) v, (2)
B J W

where N, is the number of propagating channels including spin in the sample, v; is the
the longitudinal velocity for the ith momentum channel at the Fermi surface, T}; is the
transmission probability from j to 1, and we have used the fact that dn;/de = 1/hv;
for a quasi-1D density of states. Equation (2) yields an expression for the two-probe
conductance in terms of the total transmissioa coeflicient (normalised to N,),

€ €
g=72Ti=+T. (3)

Many experimental measurements are not made in a two-probe configuration, but in
a multi-probe configuration in which current and voltage probes are different. Bittiker
(1986) generalised the above argument to calculate the current in a phase-coherent
system connected to Ny reservoirs, where any two can serve as current source and
sink, and a voltage can be applied (or induced) between any two. The currents and
voltages on all the leads are now related by a2 matrix whose elements, gmn, are known
as conductance coefficients. Biittiker showed that an argument exactly analogous to
that leading to Equation (3) yields the result

Ny e? Ny
Im = ngnvrl = I Z(T"m - Ncém")‘/" ’ (4)
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where I, is the total current into lead m, V, is the voltage applied at lead n, and T},
is the total transmission coefficient (or reflection coefficient for the case m = n) at the
Fermi energy for electrons injected at lead n to be collected at lead m (summed over
all channel indices, which have been suppressed for clarity). In the case Ny = 2 this
formula reduces exactly to Equation (3); for four or more probes it can be inverted to
yield the Hall resistance if the T\nn are known. This formula is very appealing because
it provides a simple Fermi-surface expression for the Hall resistance, Ry, which is valid
in an arbitrary magnetic field. This property is noteworthy in view of the fact that the
Hall conductance in the Kubo formulation is commonly expressed in terms of all the
states below the Fermi surface. In fact until recently the conditions under which the
LB approach (which is based on the above physical argument, and not on a derivation
from an underlying Hamiltonian) and the Kubo approach were equivalent were unclear.
Hence a derivation of the LB formulas from linear response theory became of interest.

2.2 Derivation from linear response theory

Derivations of Equation (3) for the two-probe conductance from linear response theory
began with the work of Economou and Soukoulis (1981) and Fisher and Lee (1981),
although the interpretation in terms of two-probe measurements was not understood
until later (Imry 1986). Derivations of this type were generalised to the multi-probe case
by Stone and Szafer (1988) for zero magnetic fleld, and by Baranger and Stone (1989)
for arbitrary magnetic field. Here we sketch only the simpler version of the derivation
for multi-probe systems for B = 0. One considers a non-interacting electron system
under the influence of an arbitrary potential V(r) in a finite region of space, defined to
be the ‘sample’. Electrons can flow out of the sample to infinity along Ny, strips or bars
of finite width which are translationally invariant in the longitudinal direction (‘perfect
leads’). The infinite perfect leads serve to make the spectrum continuous in energy,
with eigenstates in the form of a wave approaching the sample from infinity in a single
mode and a given lead and transmitted and reflected waves leaving the sample in all
the leads and modes (the so-called scattering-wave states). Since the system is infinite
a d.c. current can flow through the sample in response to a potential difference imposed
between two edges of the sample. The perfect leads are assumed to be equipotentials
out to infinity and unaffected by the current flow; these assumptions combined with the
lack of back-scattering in the leads allows them to function like the perfect reservoirs
in the LB argument.

Since we are treating our system as approximately non-interacting, the many-body
eigenstates are Slater determinants of single-particle wavefunctions. The expecta-
tion value of any single-body operator O, evolves according to the time-dependent
Schrodinger equation, and can be expressed as (O)) = Tr{p(t)D,}, where p(t) is the
single-particle density matrix satisfying the equation of motion ih(dp/dt) = [H, p]. The
unperturbed system is described by

po= [ da flea) 0a) (bl (%)

where f(c,) is the Fermi function, |1,) are the exact scattering-wave states of the
equilibrium system with energy ¢., and we have written an integral over & to emphasise
that the energies are continuous.
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We assume that the system is perturbed by an external scalar potential oscillating
with frequency w, which is turned on adiabatically from ¢ = —oo; the potential is
arbitrary in the sample and approaches a different constant value in each lead. By
solving the equation of motion for p to obtain the correction to py to linear order in the
perturbation, and then taking its trace with the current operator in the limit w — 0,

one obtains
() = [ olr) - B, (6)

where the local Kubo conductivity tensor is given by
fBa '
a(r,t') = =k [ dadf | f'(ea)7é(ega) +x ” Jsa(r) Jap(r'). (7N
fo

In Equation (7) €po = €5 — €a, f' = 0f]0¢, foa = f(€5) — f(€.) and P denotes the
principal value of the integral. Jgo(r) is the matrix element of the current operator
between exact eigenstates,

zeh

Jga(r) = 5— [$3(r)D¥a(r) = Yu(r) D" ¥5(x)] , ®)

where D = [V — (ie/fzc)A(r)] is the gauge-invariant derivative. It is convenient to
introduce a double-sided derivative D defined such that

39a(e) = e [43(6) B wale)]

Note that the §-function term in Equation (7) only involves states at the Fermi sur-
face as T' — 0, whereas the principal value term involves a sum over all states. Un-
der time-reversal symmetry, T, the matrix elements of current satisfy 7 (Jga(r, B)) =
Jip(r,—B). By applying time-reversal symmetry and interchanging indices a,f in
Equation (7) we see that the principal value term is anti-symmetric in magnetic field
whereas the §-function term is symmetric. At B = 0 this means that the principal
value term must vanish.

The current I, through probe m is obtained by integrating (J(r)) over a cross-
section of lead m. One can then express E(r) as V¢, and use the divergence theorem
to express I, in terms only of the voltage at the boundaries as in Equation (4) [current
conservation must be used in this step to eliminate additional terms involving volume
integrals (Baranger and Stone 1989)]. Ore obtains the intuitive result

= /dS,,,/dSnr‘n ca(rr) i, (9)

where 1 and 1 are unit vectors normal to the cross-section. The task now is to show
that this expression with g given by Equation (7) is equivalent to gmn = (¢*/h)Tmn.
We only consider here the case of zero magnetic field in which the principal value term
of Equation (7) vanishes. In this case one can immediately perform the integration over
energy and take the limit T — 0 in Equation (7) so that the integral over a, 8 becomes
a sum over the discrete states at €, of the form

\ ;—h Z; [ dSmth - 3gae) [ dSut- 3op(r), (10)
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where we have included in Equation (10) the appropriate normalisation factor (27A)~?
arising from the integrations over energy.

Thus we need to evaluate the current matrix elements of the exact eigenstates Jgo(r)
integrated over the cross-sections of leads m.n. Since their energy is now fixed at ¢,
states a, 3 are specified by a mode index a,b and a lead index p, ¢ denoting the lead
and mode which contains an incoming wave from infinity. Assume that p,q¢ # m,n
for simplicity. In lead m, a(r) = L. tem,ap 87 (r), and $5(r) = Ty tim s, $37(r), where
tem.sp 18 the transmission amplitude for an incident wave in lead p and mode a to scatter
to lead m and mode ¢, and ¢F(r) are the wavefunctions of the infinite perfect leads,
consisting of a longitudinal plane wave traveling away from the sample multiplied by
the transverse wavefunction for mode c; since the leads are translationally invariant we
can always choose the longitudinal part to be a plane wave; the transverse part need
not be specified. For B = 0 the transverse wavefunctions are orthogonal and we have
[dS,h-Jq = ebq4 (where we have normalised these states to unit flux); for B # 0
the same identity holds, but one needs to use current conservation to obtain it as the
transverse wavefunctions are not orthogonal (Baranger and Stone 1989). Using this one

finds
/ dSm 111+ Tga(r) = 3 temap Lo po- (1)

The summation over o, in Equation (10) will now be equivalent to summing Equa-
tion (11) over modes a,b and leads p,q except for the case p = ¢ = m, which simply
brings in an additional Kronecker delta term due to the incoming wave with unit flux.
Hence we can express the conductance coeflicient g, entirely in terms of summations
over the transmission and reflection amplitudes for waves incident in all the leads and
all the modes. This expression is then easily simplified using the unitarity relations for
the scattering matrix to yield

Trn. (12)

=%,

62
Gmn = 2_h (Tmn + Tnm) =

where we have used fact that the scattering matrix is symmetric in the presence of
time-reversal symmetry. In the presence of a magnetic field the derivation involving
the 6-function term proceeds exactly as above except that Tpnn # Thm; however a much
more involved argument (Baranger and Stone 1989) shows that the principal value term
gives rise to a term (Trn — Tam) /2 which again yields Bittiker’s result when added to
the symmetric term. Hence the derivation from linear response theory shows that the
LB equations are valid in an arbitrary magnetic field and that one can always think of
phase-coherent quantum transport as a scattering problem between electronic states at
the Fermi surface.

2.3 Two-probe conductance

The Kubo-type expression for g12 = g is simplified in the case of a two-probe mea-
surement because the principal value term is zero even in the presence of a magnetic
field. This may be seen by noting that time-reversal symmetry for the current matrix
elements applied to Equation (7) implies that gmn(B) = gnm(—B), hence gnm(B) is
symmetric in field. But in the two-probe case g13 = —g;, follows from the requirement
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that no current flow in response to zero voltage difference. Hence g is symmetric in
field and the principal value term must vanish. In addition the total current flowing
through the sample is independent of the cross-sections Sm, S, in Equation (9) which
can be chosen inside the sample as well. Since it is often more convenient in microscopic
calculations to express g in terms of integrals over the entire volume, we may integrate
Equation (9) over the positions of S, Sn and simply divide by L2 (where henceforth we
choose the z-axis to lie in the longitudinal direction). It is also convenient to express
the exact current matrix elements in terms of a derivative of the advanced and retarded
Green functions, G*(E, r,1') = Lo ¥a(r) ¥ () (E — €4 £ in)™'. Define

AG(E,r,v') = G¥(r,r') = G™(r,1') = =211 ) o (r)¥ (r')6(E — €a). (13)

Substitution of this relation into Equations (7) and (9) yields (at T = 0)

P —~ o~
g= —m/dr dr' AG(e,,r,v')D; D AG(e,, 1, r). (14)
Since we are now integrating over r and r’, the double-sided derivatives in Equation (14)
are equivalent by integration by parts to twice the velocity operator. Hence Equa-
tion (14) can be written in operator form as

2
9= —;r—ngr {v: AGv. AG), (15)
an expression which dates back to the early work of Greenwood (1958) and Kube (1965)
where it is interpreted as the longitudinal conductivity. Thus we see that two-probe
conductance is essentially equal to the spatially-averaged symmetric conductivity ten-
sor, whereas the four-probe resistance is a more complicated quantity, which in general
receives contributions from the symmetric and anti-symmetric part of the conductivity
tensor.

3 Physical consequences of the LB formula

A number of physical consequences can be obtained without detailed calculations based
on the LB formula.

3.1 Quantised contact resistance

Since the conductance coefficients are expressed as the fundamental quantum of conduc-
tance, e?/h, multiplied by transmission coefficients, it is easily seen that quantisation
of these transmission coefficients leads to quantisation of transport coefficients in units
of e?/h. The simplest example is the two-probe conductance in the ballistic limit. In
the absence of scattering in the sample we will have T;; = §;; in Equation (3), leading

to

62

v g= 2Nq, (16)
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L H

Figure 4: Standard geometry for Hall effect measurements.

where [ have explicitly introduced a factor of two for spin degeneracy. This is the
‘quantised contact resistance' which has now been widely observed in semiconductor
point contacts in GaAs heterostructures (van Houten et al. 1990). Typically a 2DEG in
such systems is divided into two regions by a constriction of variable width created by a
split gate. As the width is varied, steps in g of height 2e?/h are observed, separated by
reasonably flat plateaus. The experimental observations indicate that the wide regions
of the 2DEG behave remarkably like the perfect reservoirs invoked in the LB approach.
In particular the existence of fairly sharp steps as a new channel opens is somewhat
surprising in a real system where no attempt was made to eliminate impedance mis-
match at the interface between the wide and narrow regions. A number of theoretical
calculations have now been performed to understand this point (see, for example, Glaz-
man et al. 1988, Szafer et al. 1989). Although robust with respect to the geometry of
the interface, the quantised point contact resistance is quite sensitive to disorder and
disappears for constrictions longer than few thousand Angstroms (Timp et al. 1989).

3.2 Quantised Hall effect

A more spectacular and robust example of quantised transport coefficients which can
be understood by the LB approach is the integer quantised Hall effect. Here one must of
course use the multi-probe formula, Equation (4). The resistance is obtained from this
formula by assuming that a current [ is fed in from the source probe and withdrawn
through the sink, and that the net current in the voltage probes is zero, and inverting
Equation (4) to find the voltage difference of interest. Zero current in the voltage probes
in steady state is achieved by adjusting their voltages to null any transient current.

Now, consider a two-dimensional electron gas in high magnetic field with the stan-
dard Hall geometry as shown in Figure 4. The high field causes the formation of Landau
levels with large degeneracy and low velocity throughout the bulk of the 2DEG; how-
ever for each bulk Landau level (LL) there exists a current-carrying quantum state at
the edge of the sample with (roughly speaking) the the same cyclotron energy and an
additional kinetic energy due to its skipping motion along the edge of the sample (see,
for example, Streda et al. 1987, Biittiker 1988). Assume that the Fermi energy is above
the centre of the Nth LL so that a current N{e/h)yu, is being carried into the sample by
these states from reservoir 1 along the upper edge. There is disorder in the sample which
in general can cause scattering; however if all the current continues to flow along that
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edge and into voltage probe 2 (i.e. To; = N), then we must have N(e/h)(p1 — p2) =0
in order for the total current into probe 2 to vanish, i.e. gy = p2 = piource- By repeating
this argument for y; one immediately sees that all voltage probes on this side of the
current path will adjust their chemical potentials to be equal to that of the source. The
current sink, on the other hand, is maintained at a different chemical potential gy,
and by the same argument all probes on the lower side of the current path will be at
the potential pynk. Thus we see that a net current I = N(e/h)(ptsource — Psink) can flow
from source to sink with no voltage appearing between any two probes on the same side
of the current path, i.e. the longitudinal resistance Ry vanishes, The Hall resistance is
just the ratio of the voltage induced between any two probes separated by the current
path, which is (fsource — Hsink)/€, divided by the net current, giving Ry = (h/Ne?).
Since N, the number of states at the Fermi level, is equal to the number of Landau
levels below the Fermi surface, this formula yields the familiar quantised Hall resistance.
This argument establishes that if the trarsmission coefficients T, .-, are quantised to
N, and if all other transmission coefficients are zero, then one obtains at the same
time the quantised Hall resistance and the vanishing longitudinal resistance (which is
normally not treated on the same footing by Laughlin's famous argument).

It is easy to see how these quantised transmission values can occur when all the
states at the Fermi level are true edge states. Electrons are injected near one edge, and
in order to back-scatter they must be removed at the other edge; as long as the cyclotron
radius is short compared to the width of the sample, and the disordered potential is
weak, it will be unable to scatter them across the sample (Streda e? al. 1987, Jain and
Kivelson 1988, Biittiker 1988). An arbitrary amount of forward scattering between edge
states will not break the quantisation, since by unitarity the transmission coefficients
must still sum to N. However it must be emphasised that the Fermi level is typically
pinned near the center of the LL due to its high density of states in a macroscopic 2DEG
of the type typically used for quantum Hall measurements, and the Fermi level resides
in the region of edge states only very briefly at the center of a plateau. Hence the
existence of plateaus cannot be explained by this simple argument; they arise due to
localisation, which prevent states near the center of the LL from carrying current across
the sample [see Stone et al. (1990) for a detailed discussion of this point).

3.3 Reciprocity symmetry of resistance

Although I derived Hall quantisation from a more detailed physical argument above, it
is possible simply to solve Equation (4) in general for a four-probe measurement with
the total current / through the current probes and zero current in the voltage probes.
The conductance matrix gmn is non-invertible in the whole vector space because its rows
all sum to zero, but since the currents considered also always sum to zero it is invertible
in the relevant subspace, and it is easy to confirm that voltage differences are always
uniquely determined (Stone and Szafer 1988). If the current probes are designated 1,3
and the voltage probes are 2,4, one finds the resistance

h [ThTy— TaTas
[ )

where S is any 3 x 3 sub-determinant of the conductance matrix. If one substitutes
into Equation (17) the conditions Tnm = Nép ny1, considered in our physical argument

R13.24 =
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above, it is easily seen to yield a quantised Hall resistance &/(Ne?).

Equation (17) is also useful in establishing the exact time-reversal symmetry of
quantum transport measurements (Biittiker 1986). As noted above, the scattering
matrix is not only unitary but symmetric in the presence of time-reversal symmetry,
hence gma(B) = gam(—B). It is then easily seen from Equation (17) that

R13,24(—B) = R24.13(B) (18)

undér field-reversal, i.e. time-reversal symmetry connects two different measurementsin
which current and voltage probes are interchanged and the field is reversed. This rela-
tion is referred to as reciprocily symmetry and was known prior to the work of Buttiker,
although not on such a fundamental basis. The familiar symmetry of longitudinal re-
sistance and antisymmetry of Hall resistance measurements under field reversal results
not simply from time-reversal symmetry but from additional spatial symmetries of the
scattering potential in the sample. Such symmetries exist on average in macroscopic
samples, but are essentially always violated in mesoscopic samples at low temperatures
where interference effects dominate. It was strikingly shown by Benoit et al. (1986)
that there is a complete absence of symmetry under field-reversal for a fixed measuring
configuration in samples with well-developed UCF effects, but that the reciprocity sym-
metry of Equation (18) is satisfied within experimental accuracy upon interchanging
voltage and current probes.

3.4 Interference effects

The relationship between S-matrix coefficients and transport coefficients makes it clear
that the latter will show significant interference effects in phase-coherent samples, even
in the presence of static disorder. For example it was shown in the original work of
Aharonov and Bohm that the scattering matrix of a doubly-connected system threaded
by a flux will oscillate periodically with the enclosed flux due to the coupling between
the vector potential and the phase of the quantum wavefunctions. It is straightforward
then to show that for a one-dimensional ring-shaped conductor connected to leads
one expects Aharonov-Bohm oscillations of order the average conductance even with
additional scattering in the ring (Gefen et al. 1984). The crucial point is that elastic
scattering only alters the phase of the wavefunction in a fixed, sample-specific manner,
without averaging over that phase. An additional source of averaging, such as the energy
fluctuations associated with inelastic scattering, is needed to eliminate the contributions
due to interference. However in mesoscopic samples at low temperatures the inelastic
scattering time can be much longer than the diffusive transit time across the sample, and
the full sample-specific interference effects will show up in transport measurements. A
physical analogy is to a laser beam transmitted through a static medium with randomly-
varying dielectric constant; such a beam when detected will create a speckle pattern in
which the spatial intensity varies rapidly due to the complex interference of the various
light paths to a given point.

It is then natural to consider the electronic system using the analogue of ray optics,
which is the semi-classical path integral formulation of quantum mechanics. To consider
transmission and d.c. conductance we are interested in the Green function at fixed
energy, €,, instead of at a fixed time, so we employ the formulation of Gutzwiller
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(1990) in which the semiclassical (WKB) Green function is expressed as a sum over
classical paths from r to r’ at energy E. Since from Equation (14) we are interested in
derivatives of the product of two Green functions, we use Gutzwiller’s expression and
define the electronic intensity as

I(r,v) = G(E,r,r')G(E,r,r)

XS ¥ VDo {5 (5:(B) - Bl - i), (19)

p(r.r') g(r,c’)

where S, is the action integral along classical path p at energy E, D, is a positive
amplitude given by the stability of the path with respect to variations in its initial
momentum and p,, is the difference of the Maslov indices of the paths p and ¢, equal
to the number of conjugate points along each trajectory (the details of this formulation
will not be relevant for the qualitative discussion here, so we need not go into them in
depth). The terms in the double sum for which p # ¢ represent the interference of the
different paths between the points r and r'.

To get a feeling for how important such interference might be in a disordered but
weak potential in which many paths may exist between any two points, assume that
there are N, paths with equal amplitudes (which we take to be unity) and equal Maslov
indices, so that .

Ir)= ¥ % en{3(5(8)- S(B)}. (20)
p(rr’) g(r.r)
Assume that the phases of all terms with p # ¢ are uncorrelated and vanish upon
averaging over disorder. It is then a trivial exercise to show that

Gm_,, 1
UER A

the local relative intensity fluctuations are order unity. In fact many speckle patterns
obey Equation (21) to good accuracy even though the argument was over-simplified,
and we expect similarly complex local transmission fluctuations in electronic systems.

(21)

As noted above, the particular interference pattern should be sensitive to external
parameters which couple to the phase, such as energy or magnetic field, and of course
to the particular realisation of the random scattering potential. To estimate the scale
of sensitivity to E and B one need only consider the change in phase of a given path
as these parameters are varied. Let A represent an external parameter upon which the
action depends, and assume that the classical path smoothly evolves as a function of this
parameter over the scale of interest (so that its identification remains unambiguous).

Then 1 195
= _ ~ 20 -
A= h [Sp(A + AAY— S,(A)] 2 OA (AA). (22)
When A = E, we have from classical mechanics the relation 85,/0A = T, the time
required to traverse the path. The interference pattern will fluctuate when most paths
which traverse a sample of length L have changed their phase by order unity, so esti-
mating the correlation scale E, by A$(AE = E.) = 1 yields
! h
‘ E .~ ——, 23
<~ T )
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where (T,) is the mean traversal time. The mean time is of order D/L? in the diffusive
case, where D is the diffusion constant, so we have

kD
(Ec)aia = Iz (24)

When the parameter A is a uniform field B perpendicular to the plane of motion,
the action depends on the field through a term (e/c) f A-dl where the line integral is
along the path. If we assume that change in field AB has a negligible effect on the
path, we have

A4(aB) = = </ AA. dl). (25)

For a diffusive trajectory which intersects itself many times, the line integral will just
give AB times the area enclosed, which for a path crossing the sample will be of order

the sample area. Hence
2

(B:)aw = mAB.

(26)

A slightly more complicated argument along these lines can be used in the diffusive
limit to estimate the sensitivity of the interfe;ence pattern to changes in the scattering
potential (Feng et al. 1986). Without reproducing the detailed argument here, let me
note that it is clear from the above analysis that a change in the scattering phase shift of
order unity anywhere in a given path will alter its phase sufficiently. Since in diffusion
a number of scattering event of order L? occurs in traversing the sample, a change of
this magnitude in the scattering potential anywhere in the sample will be sufficient
to alter the phase of a fraction of order unity of all the paths in 2D and 1D. Hence
a phase-coherent 2D conductor will be sensitive to the motion of a single impurity in
a manner which is independent of the size of the system. This extreme sensitivity to
small changes in the sample leads to a new kind of quantum low-frequency noise (Feng
et al. 1986) which has now been convincingly observed in a number of experiments (see,
for example, Birge et al. 1989). I will not discuss this aspect of the theory further.

Finally, it is worth noting that these general ideas concerning the sensitivity of
interference effects to changing parameters have recently been shown to apply to the
ballistic as well as the diffusive regime (Jalabert et al. 1990). It is only necessary to
evaluate the average of 3S/3A for the particular classical dynamics relevant to the
system of interest.

In addition to the fluctuations arising from the interference of unrelated classical
paths between r and r’ in Equation (19), there are interference effects associated with
paths related by time-reversal symmetry, which lead to weak localisation. By a well-
known argument which I shall not repeat here (Bergmann 1984), these effects double the
intensity J(r,r) in the absence of magnetic field and spin-orbit scattering. The suppres-
sion of these effects by a magnetic field gives the distinctive negative magnetoresistance
associated with weak localisation. A quantitative theory of weak localisation based on
the semiclassical approach has been developed by Chakravarty and Schmid (1986).

Although it is possible to estimate the local fluctuations in intensity and the cor-
relation lengths from elementary considerations using the semiclassical approach, one
needs to evaluate the amplitudes in Equation (19), and most importantly to under-
stand the spatial correlations in the intensity, to evaluate the interference effects in the
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total transmission coefficient (i.e. the conductance). This is a difficult task which has
not been accomplished so far using the semiclassical technique. Hence we leave this
approach at this point and employ the impurity-averaged Green function technique,
which provides a systematic perturbation theory for the quantities of interest.

4 Impurity-average technique in real space

Below I will review the aspects of the impurity-average Green function technique re-
quired to develop the theory of universal conductance fluctuations. Almost identical
calculations arise in the theory of weak localisation and persistent currents, so the tech-
niques are of wide applicability. I choose to use the less common formulation in real
space primarily because we have recently shown (Xiong and Stone 1991) that this ap-
proach can be generalised to arbitrary magnetic fields which satisfy N 3> 1 (where N
is the Landau level index) within the self-consistent Born approximation, whereas the
previous theory only applied at fields for which the cyclotron radius was much larger
than the elastic mean free path. The condition r. 3> [ is viclated at moderate fields
in most two-dimensional electron gas systems, so the generalisation of the theory is of
some importance.

4.1 Historical background

The impurity-averaging formalism dates back to Edwards (1958), having been proposed
and used to derive the Drude conductivity only a few months after Greenwood's paper
in which he first derived Equation (15) for the conductivity. At zero magnetic field and
weak disorder the technique provides a systematic expansion in the small parameter
(e,7/R)Y, where T is the elastic mean free time (see, for example, Abrikosov et al.
1965). The Drude conductivity can be obtained by treating a particular contribution
known as the ladder diagrams. The technique was used in the study of superconduc-
tivity during the 60's, and Langer and Neal (1966) discovered that the perturbation
theory for the conductivity was formally divergent in dimensions d < 2, in the sense
that there existed contributions of lower order in (¢,7)~! which depended upon the
lower momentum cut-off and scaled with the system size. However it was not until
the work of Abrahams et al. (1979) that this divergence was shown to indicate the
nonexistence of extended states in the infinite system at T = 0 in 2D. The divergent
contribution studied by Langer and Neal, referred to either as the maximally-crossed
graphs or as the cooperon contribution because of its role in the study of superconduc-
tivity, then became the basis of the theory of weak localisation, The divergence of such
contributions is always ultimately cut off by finite temperature effects, and thus only
leads to a small correction to g in good 2D conductors at any practical temperature.

In 1985 Altshuler, and Lee and Stone, independently discovered that the ladder
or diffuson contribution, which was well-behaved for the average conductivity, was
divergent in d < 4 for the variance of g. This led to conductance fluctuations in phase-
coherent metals that are anomalously large from the classical point of view, and formed
the basis of the theory of universal conductance fluctuations. The theories of WL and
UCF only included the effect of 2 magnetic field through its coupling to the phase of
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the wavefunction, as discussed in Section 3.4. A version of the impurity-averaging
technique appropriate for a 2DEG in a high field where Landau level (LL) quantisation
is important was developed by Ando (1974, 1975) based on the self-consistent Born
approzimation (SCBA). Carra, Chalker and Benedict (1989) showed that this was a
systematic expansion in 1/N in the limit of a short-ranged potential, where N is the LL
index. Again the expansion for the conductivity was shown to contain divergences in
terms of lower order, indicating the importance of the localisation effects in such systems
which are essential to the quantum Hall effect as discussed above. Hence this theory
is also not expected to apply to the infinite system at T = 0; nonetheless for systems
at finite temperature the perturbation theory appears to have a reasonable range of
validity near the center of the LL. For example the SCBA predicts that the height of the
peaks in o, is linear in the Landau index, N, in the limit of a short-ranged potential,
and this prediction is often quantitatively satisfied in 2DEG's (see, for example, Luo
et al. 1989). The perturbation theory should be even better near the center of the LL in
mesoscopic systems which are of course far from the limit of an infinite volume. Below
we will show for the first time that the there exists a generalisation of UCF theory to
arbitrary magnetic field, valid to order (£,7)! when the cyclotron radius r. > I, and
valid to order 1/N when r. < [.

4.2 White noise model for average Green function

The basic principles of the impurity-averaging technique are as follows.

1. To express quantities of physical interest in terms of the electronic Green functions
for a given configuration of the random impurity potential V'(r). If the system
is assumed non-interacting, all such quantities will be expressible as products of
the advanced and retarded one-particle Green functions (1PGF), G*, introduced
above before Equation (15).

2. To express the Green functions as a perturbation expansion in V(r) using the
Dyson equation for the 1PGF.

3. To average the quantities of interest over these realisations; this averaging is
equivalent to introducing a special kind of static two-body interaction between
electrons which leads to a non-trivial perturbation expansion.

Since our system is non-interacting the 1PGF is just the inverse of the one-body
hamiltonian which we take to be H = Hp + V(r), with

1 e \?
Ho= 5 (P-2a) &0

with m the effective mass and A(r) the vector potential of a uniform magnetic field
perpendicular to the transport direction. Let GE = [E— Ho%in]~! where the superscript
+ gives the sign of the infinitesimal n which fixes the analytic properties of G, but will
be suppressed:henceforth except where it is needed to resolve an ambiguity.
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Figure 5: Dyson equation for the one-particle Green function for a given configuration
of impurities, before averaging.
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Figure 6: Dyson equation for the one-particle Green function after averaging; dashed
lines connected by a circle denote the effective interaction.

The operator form of the Dyson equation for G* before averaging is
G(E) [E - Ho - V]!
[65' - Gov)]™

[i(covy'] Go

J=0

= Go+ GoVG. (28)

This equation is represented by the sequence of diagrams in Figure 5, where the crosses
represent interactions with the random potential. Consider the third term in Figure 6,
representing the term with j = 2 in tke third line of Equation (28). Upon averaging
this over impurity configurations in a real space representation this takes the form

/ dry dr; Go(r, 11) Go(ry, 13) Golr2, ') (V(r1)V (r2)), (29)

where we see that the statistical average (denoted either by angle brackets or an overbar
below) of the random potential at two points in space enters as an effective elastic two-
body interaction (since the energy is unchanged along each line). Diagrammatically
we represent this by joining the two crosses to make a single dashed line as shown in
Figure 6. Different statistical models for the correlation of moments of the potential are
known to give essentially identical results in the low-field limit, so we use the simplest
one, the white noise model, which yields a particularly simple theory in the limit of
high B. In the WN model

(V) =0 (30)
(V(r)V(r") cu?s(r —r'). (31)
All odd higher moments are zero, and all even higher moments are pairwise decomposi-

tions in terms of the second moment; ¢; is the number density of impurities and u? may
be regarded as the mean-squared strength of the scattering potential in Fourier space.
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Figure 7: Diagrammatic representation of the self-consistent equation for the Green
function in the self-consistent Born approzimation.

5 Average Green function in SCBA

In the WN model the disorder average is identical to a static two-body interaction for
all terms in the perturbation expansion for the disorder-averaged 1pGF, G(r, r'). Hence

G(r,r’) satisfies an integral equation in terms of the proper self-energy insertion of the
usual type:

Glr.r') = Golr,r') + / dry dry Go(r, 1)) E(r1,13) G(ra, ). (32)

The self-consistent Born approximation for the self-energy is to approximate £ as fol-
lows:

I(r,r'") = cu? G(r, ') §(r — r'); (33)
this is shown diagramatically in Figure 7. When inserted into Equation (32) the ap-
proximation yields the self-consistent equation for G(r, '),

Glr.r') = Golr, ') + / dry Go(r,11) ciu? G(ry, 11) G(ry, ). (34)

The significance of this equation can be understood by applying (E — Ho) to both sides
and using (r|(E ~ Hy)Golr') = §(r — 1) to obtain ‘

[E - ¢u?’G(r,r) - Ho] G(r,r') = §(r - 1). (35)

Since the system is translationally invariant on average, G(r,r, E) is just a complex
function of energy, independent of r, and we shall denote this function simply by G(E)
henceforth. It follows that G(r, r') satisfies exactly the same equation as Go(r, r') except
that the energy E is replaced by the complex energy z(E) = E — ¢;u? G(r, r). Hence

G(r,r', E) = Go(r, ¥', 2). (36)

This is the fundamental result of the SCBA for the 1PGF in the WN limit.

From now on we specialise to the two-dimensional case; generalisation to 3D is
straightforward. Using Equation (35) we can immediately write. an expression for
G(r,r’) in the sCBA valid for arbitrary field by transcription into the expression for
Go: :
ad Pi(r,r')
G(r,x',E) = 2 ,

(r, ) ZE—En—c{u7@(E)

n=0

(37)



84 A Douglas Stone

where G(E) = G(r,r, E), and Py(r,r’) is the projection operator onto the nth LL in
real space, and E, = (n + 3)Aw, is the energy of the nth LL. It is possible to calculate
P, exactly in 2D [see the article by Haldane in Prange (1986)] and one finds

o R\, (B ie v
Pn(r,r) = 27r—/\5exp (—m) L, (2—/\2') exp (——c- ‘/r’ A dl) \ (38)

where R = |r — |, A? = (hc/eB) is the square of the magnetic length and L, is the nth

Laguerre polynomial. The line integral in the phase factor is taken along the straight

line from r’ to r. Note that P,(0) = 1/(27?), since Ln(0) =1 for all n. Using this fact

and setting r = r’ in Equation (37) we obtain the self-consistent equation for G(E),
had 1

2NC(E) = Y FF e G(E)

n=0

(39)

To obtain G(r,r') in the limit of high fields, in which the broadening of the LLs by
disorder is much less than their spacing hw., we note that in this case £ = ¢, will be
pinned near a particular LL with energy Ex = (N + %) hw,, and G(E) in Equation (37)
will be dominated by the term with n = N in the sum:

2eNC(0, B ~ Ex) ~ 27NN (E) ¥ —p —lc.‘UQEN(E)' (40)
Solving this quadratic equation for Gn(E) gives the explicit result
s £219(E)
GN(E) = 557, (41)

where v? = cu?/27)? and cos0(E) = (E — En)/2v. Substitution into Equation (37)
with terms n # N neglected then yields

G(r,¥', E) = Pu(r,r')G%(E). (42)

The spatial range of Pn(r,r’) is obtained by maximising a polynomial of degree N
against the gaussian fall-off with range A. Just as for the wavefunctions this gives a
maximum at the cyclotron radius r. = (V¥ + )*/2A. This approximation for G(r,r’)
is valid when r. < | and shows explicitly that the range of G(r,r’) is of order r.
and not ! in this limit. From the imaginary part of this expression one can obtain
the shape of the broadened LL in the WN limit, which is simply a semi-circle of radius
v & (h*we/7)"/? (Ando et al. 1975). In the high field limit the self-consistent calculation
of the Green function is crucial because the LL is infinitely degenerate without disorder,
and substitution of Go on the LHS of Equation (35) would give an infinite spike at
¢, = En and zero elsewhere.

In the zero-field limit the mean density of states is not altered by disorder to leading
order, and it is permissible to replace G(E) by Go(E) on the Liis of Equation (35) and
neglect the real part of Go. Since ImG# = Frpr, and by definition the elastic scattering
rate in Born approximation is 1/7 = 27¢;u’pr, where pr is the density of states at the
Fermi energy, we have

! GXE(r,r',e,,B=0)=GE(r,r',e, £i/2r,B =0). » (43)
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Figure 8: Class of polarisation diagrams in real space whose sum gives the diffuson
contribution.

The rapidly-varying part of G&(r,1') ~ exp(+ikr|r — r'|), where kr = (2me, [8%)}/? is
the Fermi wave-vector, so substituting e, — €, +1/27 and expanding to leading order
in (e,7)7! one obtains the familiar result

GE(r,r',e,,B =0) = Gz(r,r' e, B = 0)exp(—|r - r[/2]). (44)

The decay of G on a scale [ is due to averaging over the random phase-shift of G for
a given impurity configuration; it does not mean that the modulus of G decays this
rapidly for a given configuration. Nonetheless we see that the average Green function
is short-ranged for arbitrary field within the SCBA, with a range given by the shorter
of r. and ! which we shall refer to as ly,.

5.1 Diffuson correlator

Referring back to Equation (14) one sees that the averages of products of two Green
functions are needed in order to calculate the average conductance. This is done by
expanding each factor G(r,r') in a power series in V(r) using Equation (28), and then
averaging the product of these two series. Two types of terms result. The first type
only involve impurity interactions along each line separately; this corresponds to the
factorisation GG = G G, and all such contributions can be accounted for by making
the appropriate self-energy insertion in eack line separately in the manner described
above. The second type of term arises from the creation of interaction lines that join
the two Green functions as shown in Figure 8, and correspond to a non-factorisable
contribution. These vertex or polarisation corrections can introduce qualitatively new
features because now it is possible to correlate Green functions with different energy,
magnetic field and analyticity. These correlators can also be long-ranged in space
compared to G G, each factor of which must decay over a distance of Imi. In particular,
the correlator G¥G- can have long-ranged behaviour because of the relation G*(r.r’) =
[G~(r',r)])", which makes it possible for the phase shift at each scattering event to cancel.

This is true for the particular infinite class of diagrams known as the diffuson di-
agrams shown in Figure 8 which contribute to the correlator G*(r,r’) G-(r’,r). Note
that in the WN model each impurity interaction line has a single point in space as-
sociated with it, so it is tempting to associate a given polarisation diagram (before

integrating over intermediate positions) with a particular pair of trajectories in space
\
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which visit the same set of impurity sites in some order. With this interpretation
the diffuson contribution is precisely the interference of a given trajectory with itself
(complex conjugated) and corresponds to the diagonal approximation discussed in Sec-
tion 3.4 above. Define the contribution of these diagrams to be c;ju®d(r,r’); then it is
clear that d satisfies the integral equation

d(r,r')=6(r—r") + jdl‘l do(r,ry)d(ry, "), (45)

where

do(r, ') = u® G (r, T, A + AA) G (v, 1, A), (46)
and A represent the external parameters such as Fermi energy, frequency, or magnetic

field which may be different along each line. Equation (45) is just a geometric series in
the operator do and may be solved easily in operator form

d=1+dod; d=[1~-do]". (47)

Introduce the eigenfunctions, x;(r), and eigenvalues, 1 — £}, of the integral operator do
defined by

/dr' do(r, r')x;(r") = (1 - f,?)Xj(r)- (48)

Then we can write a spectral representation of d,

drr) =3 X5 (')

2
Jj=1 {J

(49)

First consider the case where AA = 0 so dp is given by the real positive function
|C‘:(|r - r’|)]2 whose range is lmn. We follow a technique introduced by Altshuler ef al.
(1980) in order to convert the integral equation (45) into a diffusion equation. Since do
is short-ranged we can regard the eigenfunction x(r) in Equation (45) as slowly-varying
and expand it around r:

x(F) = x(r) + Vx - (r=r') +3 vaava (r=r)alr=r)s+....  (50)

Substitution of this expansion into Equation (45) yields a differential equation of the
form

(CQV2 + Cl) xj(r) = (1- E})X}'(r)r (51)

where Cz and C; are constants and we have used the fact that dp is even inr — ¢’ to
eliminate terms linear in r — r’ and simplify the quadratic terms. The constant C} is,
from Equations (46) and (48), )

C =cqu? /dr’ [ﬁ(]r - r'|)l2 . (52)

Equation (37) shows that in general the spatial dependence of G(r,r") comes only from
the projection operators Pu(r,r’), which satisfy
!

/ dr' Po(r, &) P (t',1) = bunPa(r,) = (2032) 6pns.
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Thus one can simplify Equation (52) to

2 1
C, = 2% . 53
P ; E—-E,— c,-u"@*'(E)l2 (58)
If we now use the identity
* 1
by E - E,—cu?T(E)|
1 i [ 1 _ 1
cu? [GH(E) -G (B)| ¥ |E - E.—cw*G*(E) E - E.-c®G (E)

- ! 22X [GH(B) - T (B)], (54)

cu? A[Cf"(E) -G (B)

we find that C; = 1. In deriving this result we have used the self-consistent Equa-
tion (39) relating the Green function G(E) and the self-energy c;u? G(E), valid for an
arbitrary magnetic field. The exact cancellation giving C; = 1 is a manifestation of
a general Ward identity relating the polarisation vertex (here represented just by the
prefactor c;u?) and the Green function that will be valid even in the presence of in-
teractions if a consistent approximation is made for all quantities. We shall see below
that C, = 1 is required for there to be a diffusion pole in d(r,r'); the robustness of
this condition with respect to interactions ensures that diffusive behaviour occurs at
long wavelengths even in the presence of interactions as we expect for a Fermi liquid
(neglecting localisation effects).

The constant C; has the dimensions of length squared so we define C; = &, where
2
2 _ Gy TR 3 rar1 BRI s
B = 5 /dr (r - ¥P[GF(Ir = )|
2
- 2 R eER) ;
- 2 /dRR cFr)|"- ()
From this we see that the length lo is just the spatial range of the average Green

function. Hence the differential equation that we need to solve to obtain the diffuson
with the same external parameters on each line is simply

— 15V 7x;(r) = & x;(r). (56)
It is easily found from Equations (41) and (44) that
2, l<r
2 _ y c -
o = {rz, re > (57)

consistent with our earlier explicit results for G(r, r').

Consider a rectangular 2D sample of length L, and width L,. The appropriate
boundary conditions are that the diffuson must vanish on the surfaces normal to the
direction of current flow (which we take to be the z-direction) since no excess density
can build up in the leads (reservoirs), and the derivative of the diffuson must vanish
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at the walls because the current there (which is proportional to the derivative of the
excess density) must vanish. Solving Equation (56) explicitly and substituting into
Equation (49) yields
: an(l') X;rm(rl)

HEE X
where ¢, = nr/L,, km = mn/L;, and the eigenfunctions xmn are appropriately nor-
malised products of sin(kwmz)cos(g.y). Hence we have the familiar diffusion pole di-
verging as Q2 for arbitrary magnetic field. If we take the B = 0 limit Ij — Dr (where
D = I*/2r is the elastic diffusion constant), and at high field we find i§ — ADx /v, where
v is the LL broadening mentioned above and Dy = r2v/h is the diffusion constant for a
single LL in SCBA (Ando 1975). Note that the Q=% divergence is automatically cut off
by the sample size due to the boundary conditions imposed on Equation (56), which
meant that the summation over k., starts from m =1 and not m = 0.

d(r.r'y =

m=1,n=0

(58)

5.2 GGeneralised diffuson

For the theory of UCF we need to consider the generalised kernel dq of Equation (45) with
the factor G taken at shifted values of the energy and magnetic field. The generalisa-
tion to finite AF is straightforward. The analysis leading to Equation (51) is unchanged,
except that the expressions for C) and C; now contain the generalised kernel. It is easy
to see that the correction to C; is negligible in the limit of interest, small @, so we need
only consider C; explicitly. The calculation of C; proceeds as before up to Equation (53)

with the only difference that instead of the factor |E - E, —cul!GT(E) *in the denom-
inator one has the factor [E +AE-E,—cu®G'(E + AE)] [E - E, —cu? @_(E)]
which requires the use of a slight generalisation of the identity used to derive C; above,
Again using the self-consistent equation for G one finds

ciu? i 1

21X 7 [E+ AE - Eo - u?G' (E + AE)| [E - B, - cu? G (E))
G'(E + AE) -G (E)

GYE + AE) -G (E) - (AB/cu?)

1 —i(AET/R), (59)

Ci(AE)

2

where we defined the generalised scattering time
" _ .
2 = [GY(E) -G (B)], (60)
To ‘

and we can now ignore the energy difference in G* because as usual we are assuming
AE € hfr. It is easy to check from our above results that 7o — 7 for | <« r., and
70 — k2 for r. € l and g, = En.

To generalise the diffusion equation (51) to finite AB at arbitrary field we note that
each term in Equation (37) for G(r,r') contains an overall phase factor from P,,

exp [% /,,r A dl] = exp [;—T:AA(r) o(r— r')] , (61)
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where we have evaluated the line integral explicitly assuming a uniform field in the
z-direction. This phase factor is the same for @i(r, r’) but of course changes sign when
r and r’ are interchanged as they are in the product defining do; hence dy(r,r’, B+ AB)
involves the difference of this phase (which cancels when AB = 0). If we assume that
the most rapid variation of dp with AB comes from this factor then we have

do(r,v’ . AB) = ¢u*G'(r,v',B+AB)G (r'.r,B)

;I—CAA(r) (r=r")|. (62)

do(r, ') exp

To check that this is indeed the leading dependence on AB we recall that at low field
the only dependence on B comes through this phase (Section 3), while at high field this
phase is of order ABrl/(kc/e) = NAB/B. Since N > 1 by assumption, this phase
can be of order unity for AB « B, whereas the denominators in Equation (37) only
vary on the scale AB =~ B and may be treated as constant on this scale.

We shall see that the contribution of this phase term to the diffusion equation will
become important for ABr?/(he/e) < 1, so we can assume that the phase is small in
Equation (62), expand it,

te

do(r, ', AB) = do(r,1") {l + e

AA(r)-(r = 1) + % ;;—ZAA(r)-(r - r’)]2 + } ,

(63)
and multiply this expansion with the Taylor expansion of the x(r) in Equation (48). As
before we use the symmetry of do(r,r’) to eliminate terms odd in r—r’ and simplify the
quadratic terms, and we find unsurprisingly that the effect on the diffusion equation is
just to make the minimal substitution, —iV — [-iV — (e/fic)AA(r)].

The final generalisation of the equation for the diffuson relevant to UCF concerns
the effect of inelastic scattering, which can be taken into account by dressing the Green
functions with appropriate interaction corrections to the self-energy and polarisation
vertex. Unfortunately there is no general answer to the effect of inelastic processes on
the diffuson, since this effect depends on the physical quantity which is being averaged.
For the average diffusion constant we noted above that the Ward identity used to obtain
Ci =1 and hence diffusive behaviour was valid in the presence of interactions if the self-
energy and vertex are treated consistently. However, when calculating the mesoscopic
fluctuations of g and other quantities, the diffuson typically represents the statistical
correlation of different measurements, and the two Green functions involved cannot be
connected by interaction lines. Hence interaction corrections appear in the imaginary
part of the self-energy which do not cancel with the undressed vertex, and i/7, appears
as an imaginary energy shift for the diffuson (Lee et al. 1987).

Thus the generalisation of Equation (36) valid in an arbitrary magnetic field, with
non-zero AE, AB and 7,, is

{1?, [—iv - %:AA(r)]2 += - iAfT"} x3(r) = € x;(r). (64)

T
Tin

The generalised diffuson is then given by the spectral representation of Equation (49)
with the eigenvalues and eigenfunction obtained from this equation.
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Figure 9: Class of polarisation diagrams in real space whose sum gives the cooperon
contribution.

6 Cooperon correlator

The other important contribution to the average of the product of two Green func-
tions comes from the cooperon diagrams shown in Figure 9. These contribute to
G*(r,r')G~(r,r’) (note that the second factor is no longer the complex conjugate of
the first in general). If we define this contribution as c;u’¢(r, r’), it satisfies an integral
equation of exactly the same form as the diffuson,

e(r,r') = 8(r,r) +/dr| co(r,r1) e(r, 1), (65)
where
co(r, ') = cu® G (r, ', A+ AA)G (r, ', A). (66)

Equation (65) is again solved in operator form by ¢ = {1 — ¢o] ™! and if we introduce the
eigenfunctions 7;(r) and eigenvalues 1 — (7 of the integral operator co, defined by

[ s’ cale ) a5 = (1 = (D), (67)
then we can write a spectral representation of ¢,
oG . b l.,I
er,r') =3 "—(’l’# (68)
i=1 )

Consider ¢o(r,r’, B = 0). Since we have time-reversal symmetry at B = 0 the
wavefunctions can be chosen real, and it follows from their spectral representation that
the Green functions are symmetric in their spatial arguments, Ei(r,r’) =G (v,r).
Hence G (r,r’) is the complex conjugate of §+(r, ), and we have ¢(r,’, B = 0) =
do(r,r’', B = 0); the same conclusion can be reached by noting that G is a function
only of [r —r'| at B = 0. Thus all the steps used above for dy (including those involving
a finite energy or frequency difference) go through to yield the differential equation

AE
N (—Drv’ + Ti —~ z—h—T) n;(r) = n(r), (69)

mn
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where we have used 7o = 7 since this equation is only valid for B = 0 unlike that for
the diffuson. This equation will then yield a Q=2 pole which does not cancel in the
conductivity and gives the weak localisation corrections.

However, as soon as one considers non-zero B the analysis differs importantly from
that leading to Equations (56) and (64) for the diffuson. For B # 0 the phase factors
[Equation (61)) in the product G (r.r')G (r,r') do not cancel but rather add to give

co(r,r',B,AB) = cu*Gt(r.v', B+AB)G (r,r', B)
co(r,r', B = 0) exp {;Ti [2A(r) + AA(R)] - (r — r')}. (70)

As before we are interested in points separated by at most the spatial range of ¢o which
is approximately equal to { for small B, and we would like to expand this phase factor
in the integral equation to yield a differential equation of the diffusion type. However
the the typical phase in ¢o even for AB = 0 is of order BI*/(kc/2e), and is only small
compared to unity when {? < A%, Since A ~ 1000 A at B = 1kG, this condition will
usually not be satisfied in a 2DEG at fields larger than 1T and fails for much weaker
fields in almost all GaAs heterostructures. It is well known (and we shall see below) that
the main effect of the low-temperature divergence in the cooperon channel is removed
by even weaker fields such that BIZ =~ (hcf2e¢), where [}, = (Dn,) is the inelastic
scattering length. Hence the cooperon contribution is always negligible at the fields
where Landau level quantisation becomes important, and there is no high-field (r. < !)
analogue of Equations (56) and (64) for the diffuson. However, if we restrict ourselves
to fields where (B + AB)!? < (hc/2e), then the analysis does go through exactly as for
the generalised diffuson with AA — 2A + AA to yield

{Dr [—iV - h%(QA + AA) ’ + ,L - i%} ni(r) = ¢ n;(r). (1)

This is the famous diffusion equation for the cooperon first derived by Altshuler
et al. (1980), except that usually AA is taken to be zero and AFE is replaced by the
external frequency of the electric field. Note that when AA = 0 we have a Schrédinger-
type equation for a particle of charge 2¢; hence in a doubly-connected geometry with an
Aharonov-Bohm flux the solutions are periodic with period hc/2e, half the period of the
conventional electronic Aharonov-Bohm effect. Thus the weak-localisation correction
due to the cooperon oscillates with flux period hec/2e and not hc/e, a dramatic effect
first observed by Sharvin and Sharvin (1981).

7 Weak localisation magnetoresistance

Having developed this generalised real-space formulation of impurity-averaged pertur-
bation theory, we now apply it to transport. We review the wi effects before moving on
to the more novel UCF effects. Although well known, the Wi calculation in real-space
will have immediate applications to UCF,

The WL magnetoresistance (neglecting spin effects) is obtained by calculating the
impurity-averag?d conductance with the cooperon vertex correction. Equation (14)
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Figure 10: Conductance diagram with a cooperon polarisation insertion which leads to
weak localisation. Wavy lines at the end of the bubble represent the velocity operators.

for the conductance is the most convenient starting point, and the set of diagrams
included is indicated in real-space formulation in Figure 10. Although in principle each
of the two Green function lines can correspond to G* or G~ due to the factors AG
in Equation (14), the cooperon divergence only occurs when averaging G*C™ terms
and not G* Ei, so we may drop these from the outset. The two remaining terms from
Equation (14) are complex conjugates of each other so we may take only twice the real
part of one term. And finally, since the contribution from one term turns out to be real
(for w = 0), we may omit taking the real part for simplicity of notation. With these
simplifications the weak localisation magnetoconductance correction Agwi(B) is given
by

Agwi(B) =

5 L‘ /drdr J(r,r") c(r, ', B), (72)

where

J(r,r') = c;u’/drl dry u,(r,)a_(r',r1)§+(r1, r)vs(r) G (rar), (73)

and I have already integrated the double-sided derivatives by parts to replace them by
velocity operators acting only to the right.

The factor Jo(r,r’) arises from the external portions of the diagrams and the crucial
point here is that it is short-ranged since it only involves factors of G, and will be small
for points r, r’ separated by more than . Thus to leading order in (kr!)~! we can make
the approximation

J(r,r"} = Job(r — r') (74)

with the constant Jy given by integrating J(r,r') over both arguments and dividing by
the sample area:

.yl — — -
Jo = %/drdr' dry dravo(r)) G (2, 1) G (r1, 0) GH (', 1) ve(r2) G (ray 1) (75)

This expression for Jy can be put in a more useful general form by noting that the
phase factors from the field, (2ie/hc)A-(r — r’), will be small for points separated by
less than ! and can be neglected, so that all factors G are symmetnc in their spatial
arguments. By interchanging spatial arguments in the factors (el (ry,r)and G~ (r’ r1),
Jo can be written as the trace of an operator

= LT T T T - L e e T T} ()
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where in the second step we have used the fact that G© commute.

This expression can then be simplified using the ldentxty v = ( i/h)[Hp, z] for the

velocity operator. and the operator equation LE R ea (E) - ] = (Z¥)G = 1.
Because Zj is just a constant shift of Hy which cancels in the commutator we have

= %‘[Zg:,:r]. (77)

If we substitute this identity with the choice Z§ for the first occurence of v, in Equa-
tion (76), and Z; for the second occurence, we easily obtain

Jo = ;C;:;QTr (xa+ —@J'm) (a:é- - 6_2)}

= Af’ /drdr (z =Gt (e,t) G (r'.1)

dAh,/drdr (r =V G (r, )G (', )

212
= (8)
where we have used the definition of {, Equation (55). Note that the derivation is
completely general once expressed as a trace of this form, and zapplies to an arbitrary
field. For the cooperon contribution to be important, however, we need to consider the
weak-field limit as discussed above, in which case 213 = 12,

Having evaluated Jo we immediately find from Equations {(68) and (72)

- ‘112
AgwL(B) = Er%fz-/drc(r,r,B)
—e? 1

T 2rhLE ; & (79)

If one sets B = AB = 0 in Equation (71) the solutions are just those discussed for
the diffuson after Equation (58) with ¢} = Dr(Q? + I;;?), and changing the sum to an
integral leads to the familiar logarithmically divergent WL correction,

-t QdQ

Bowi(B=0)=omp | iy

(80)
For B # 0, AB = 0 in 2D the eigenvalues of Equation (71) correspond to Landau
levels of a particle with charge 2e and mass 4%/2Dr. Expressing the sum over j in

terms of these eigenvalues, including the appropriate degeneracy factor per LL, yields
the well-known result (Altshuler et al. 1980)

Agwn(B =1 E = + g (81)

where v, = (hc/4eBI ). This expression with the appropriate upper cut-off [deter-
mined by the range of validity of the expansion of the phase factor in Equation (70)]
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tends correctly to the limit at B = 0 and tends to zero for Bi?, > hc/e. This shows
that a magnetic field large enough to alter substantially the phase of classical paths
within a phase-coherent region is sufficient to destroy the wL effect, which relies on
the exact cancelation of phases due to time-reversal symmetry. We need not engage in
further analysis of the well-studied WL effects here; the effort paid to them is primarily
to emphasise their close affinity to the UCF effects treated below.

8 TUniversal conductance fluctuations

Having laid the groundwork carefully above, we are now able to derive the microscopic
theory of conductance fluctuations in a few lines.

8.1 Definition of correlation function

As discussed in Section (3.4), the elastic transmission coefficient through a multiple-
scattering medium is expected to have sizeable fluctuations due to random interference
effects, and these interference effects can be modulated by changing external parameters
which couple to the phase of the scattered wave. In the case of a mesoscopic solid the
two most natural external parameters to consider are the magnetic field and Fermi
energy. One needs to determine the scale over which the interference effects vary as a
function of these parameters, and the typical amplitude of the fluctuating interference
effects. In the conventional low-field theory of UCF Lee and Stone (1985) introduced
the ergodic hypothesis stating that the amplitude of the fluctuations as a function of
external parameters B, €, was equal to the variance of g (averaged over impurity
configurations) at fixed external parameters. This hypothesis was found to hold quite
well numerically for the fluctuations as a function of magnetic field in the low-field limit
(Lee and Stone 1985). However in the high-field limit this hypothesis most certainly fails
over a sufficiently large interval of field and will have to be modified in a2 manner to be
discussed below. Nonetheless we shall see that typically the scale of the fluctuations is
significantly less than the scale over which the ergodic hypothesis breaks down, allowing
its use over this interval.

If the ergedic hypothesis holds, the typical amplitude and scale of the sample-specific
fluctuations may be obtained from the conductance correlation function
F(AE,AB) = (bg9(e, + AE, B+ AB) §g(e,, B)), (82)

where 8g(¢,, B) = g(&,, B)—g(e,, B). Thestatistical variance of g is given by F(0,0) =
(6g%) = var(g). which by the ergodic hypothesis is the mean-squared variation as a
function of €,., B. The decay width of F(AE,0) gives the correlation range, E., of the
fluctuations with Fermi energy; similarly the width of F(0, AB) gives the correlation
range, B,, of the fluctuations with magnetic field.

8.2 Evaluation of diagrams

Diagrammatically the correlation function is obtained by considering two conductance
bubbles with\diﬂ'erent values of the external parameters A = B, ¢, (corresponding
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Figure 11: Diagram representing one of the two diffuson contributions to the conduc-
tance correlation function.

to two different conductance measurements) connected by impurity-averaging lines as
shown in Figure 11. All diagrams in which the two bubbles are not connected are
contributions to the square of the average conductance and will cancel by definition
of var(g). Not surprisingly the leading contribution to F' comes from diagrams where
the two bubbles are connected by diffuson ladders or cooperon ladders as shown in
Figure 11. When B is greater than a few hundred Gauss the cooperon contribution is
negligible for the reasons discussed above, whereas for B = 0 it gives a contribution
identical to that of the diffuson. Its detailed treatment involves a trivial extension of
the analysis of the diffuson contribution, and we will not discuss it in detail here. For
the diffuson contribution there are only two types of diagrams, one of which is shown in
Figure 11. The two types give very similar contributions to F and so we only consider
the simpler kind shown in Figure 11, which we denote by F.

This diagram consists of two diffuson ladders and two external vertices on each side
of the diagram involving two factors Z?, G~ and two velocity vertices. As before, each
Green function line can be G or G~ but they must be chosen so that the diffuson
connects G'G . Diffusons with different signs of the term iA E7g result from different
pairing, but this is irrelevant in the external vertices Jo which only involve G and are
short-ranged, so that the small energy or field difference may be neglected. Hence all the
external vertices are equal and can be approximated as é-functions connecting r,R and -
', R’. This observation leads to the exhilarating realisation that each of these vertices
is equivalent to the vertex J(r,r') = Jo 6(r — r’) considered above, where because of the
definition of the diffuson one need not appeal to time-reversal symmetry to express it
in the trace form of Equation (76). Then by inspection

et \’ , : : :
F = (m) Jg/drdr {21d(r,x", A + 6A)] + 2Re[d(r,r', A + 6A) d(¥',r, A + §A)}
(83)

Recalling that Jo = 203/K* for arbitrary field, and using the spectral representation of
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d(r’,r, A + 6A) [Equation (49)] to perform the integrations over r,r’, yields

A

where we have used the orthonormality of the x;(r). The contribution of the other type
of diagram to F is exactly equal to the second term in the square brackets, hence

F(AE, AB)—2<2)ZII;Z[ +2Re(£4)], (83)

where the dependence on AE, AB comes through the dependence of the eigenvalues ¢}
of the diffusion equation (64) on these quantities. Equation (85) gives the full correlation
function for T = 0. It is valid at arbitrary magnetic field (except for fields near B =0
where it is straightforward to include the cooperon contribution) as long as the scBA
is reasonable. This expression is identical to the conventional theory which neglects
Landau quantisation effects. Thus we have obtained the striking new result (Xiong and
Stone 1991) that the conventional theory goes over unchanged to the high-field limit
except for the dependence of the constants I3 and 7o on the magnetic field, which we
now show does not appear in var(g) just as at low fields.

8.3 Variance of conductance

The variance of g is obtained from Equation (85) simply by setting AE = AB = 0
in the evaluation of ¢?, which we have already found above gives 'fJ = 12(k2 +4¢2) =
i2(mnx /L2 + nn/L2). Inserting this into Equation (85) we immediately see that the
factor 1§/ L? cancels to give

6 62 2 =<3 1
var(g) = F (—}:) m=lZ,n=0 [mz + Tl?(L:/Ly)z + (L:/Trlin)le’ (85)

where the generalised inelastic diffusion length is defined as

{‘l
Iizn = To Tin = DO(B)Tm (87)

In the limit i, — oo (T — 0) this equation implies that var(g) = (e?/h)?, independent
of the size of the sample, degree of disorder and magnetic field (insofar as the ergodic
hypothesis is satisfied), hence the term *universal conductance fluctuations’. At B =0
a factor of two is needed to include the cooperon contribution (which again is equal
to the diffuson by time-reversal symmetry), and a factor of 4 is needed to account
for spin degeneracy in the absence of spin-orbit interactions or Zeeman splitting larger
than kgT. Spin-orbit interactions reduce both diffuson and cooperon contributions by
a factor of 4 due to suppression of the triplet channels (Altshuler and Shklovskii 1986);
we are able to show that this suppression also occurs at high fields by an extension
of the analysis presented above. The specific value of var(g) at T = 0 can easily be
evaluated from Equation (86) but in typical experiments, which are done in multi-probe
geometries, this value depends on the probe configuration and it is not possible to make
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precise comparisons with Equation (86). When h, < L the variance of g depends on
their ratio (we assume L; = L, here), and since many terms contribute to the sum in
Equation (86) we may accurately convert it to an integral giving in 2D

24 (i, 7 le2\?
var(g) = 7(?) (T) . (88)

Note that inelastic scattering does reduce the fluctuations as a power of the system size,
making the system self-averaging as the size goes to oo.

8.4 Correlation ranges E, and B,

- The functions F(AE,0) and F(0,AB) can be obtained quantitatively from Equa-
tions (64) and (85) and plotted to find their precise half-widths in terms of the system
parameters. Detailed evaluations in various limits have been given elsewhere (Lee and
Stone 1985, Lee et al. 1987). However the parametric scale of E. can be determined
for the energy correlation function quite easily because AE appears as only a constant
shift of the eigenvalue ¢}. With no inelastic scattering the sum in Equation (85) is very
rapidly convergent and E. can be determined simply by looking at its largest term,
which is the smallest eigenvalue |32 = x*l3/L} 4 (AETo/A)?. The sum will decay
substantially when the second term is comparable to the first, i.e. AE &~ hl3/roL3.

Thus A Do( B)

E(B) =~ —Z“-,— (89)
which is the generalisation to arbitrary fisld of the well-known low-field result which
was discussed in Section 3.4. By inserting the high and low-field limits of lp and 7o one

finds
~ _ | RIP/(2rL2), &,
E. = { (FPvsinO(E))/LE, 1> r.. (90)

It is easily shown from Equation (85) that [, simply replaces L. in these relations when
lin € L:.

The determination of the magnetic field correlation length from Equation (85) is
slightly more involved as A B does not enter only as an eigenvalue shift, and one must
solve the differential equation (64) for £}(AB). As noted above in the discussion of
WL effects in 2D, the solutions will give the analogue of Landau levels when I, <«
L, in this case with the field replaced by AB and mass m = #£?/2I2, but with the
conventional charge . The correlation length can again be obtained by looking at the
lowest eigenvalue, £3(AB) = (ABI3)/(hcfe) + 7o/, and finding the scale of AB at
which the two terms become comparable. Thus

B.(B) ~ L) (91)

~ ’
Do"‘m

which again generalises the low field result discussed in Section 3.4 to arbitrary field.
In generalising the theory we obtain a field-dependent B. as recently observed in low-
mobility GaAs by Geim et al. ((1991); see Figure 3 and the chapter by Main. If 7, is
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only weakly field-dependent on a scale B, then our theory predicts that when r. < {

L L pn )
BcocDo(B)ocrgych ) (92)

where it must be noted that the WN limit for the random potential has been assumed,
and this may have a limited region of applicability to GaAs.

9 Summary and conclusions

I have discussed in detail the two types of experimentally observed quantum inter-
ference effects in disordered conductors, weak localisation and universal conductance
fluctuations. A third type of interference effect for non-interacting electrons is associ-
ated with thermodynamic properties of mesoscopic systems such as persistent currents
and can be treated by the same techniques, but has yet to be unambiguously observed.
I have shown that both weak localisation and universal conductance fluctuations can
be treated in a real-space formulation based on effective diffusion equations for the dif-
fuson and cooperon contributions, and for the case of the diffuson (which does not rely
on time-reversal symmetry) the approach can be generalised within the self-consistent
Born approximation to the limit where the Landau level spacing is much greater than
the disorder broadening. Since this generalisation is new a few comments about its
expected range of validity are in order.

It is well known from the study of the quantum Hall effect that localisation effects
become important rapidly as a function of magnetic field even in high (zero-field) mo-
bility two-dimensional electron gases. From the perturbative point of view taken above
this may be seen as due to the fact that no matter how large is krl, it is the parameter
1/N which measures the localisation effects in high field, and this parameter approaches
unity in the quantum Hall regime. Even when N = 10 the beginning of Hall plateaus
are observed and the SCBA breaks down ia these intervals of field and the theory pre-
sented here does not apply. Conversely, at the centres of the LLs one expects extended
states to exist even in the infinite system; however they are believed to be described
by a strong-coupling fixed point whose properties are different in general from those
of the perturbative unstable fixed point described by the SCBA. Nonetheless, by the
universality hypothesis one expects var(g) to be independent of size and disorder at this
fixed point as we find in the SCBA, so at most the precise constant and correlation scales
could be different. Moreover, the mesoscopic systems of interest are likely to be far from
the infinite volume behaviour (at least in the conducting region) and may reasonably be
described by perturbation theory. Thus, in summary, we expect the theory presented
here to give a reasonable description of mesoscopic transport fluctuations in a Landau
quantised 2DEG even in the quantised Hall regime in the transition region between the
plateaus, with the major caveat that the disordered potential is short-ranged compared
to the cyclotron radius.

The theory presented here highlights further the universality of the transport fluctu-
ation phenomena. The details of the bare quantum states, as long as they are extended,
are unimportant. This is because at long wavelengths the only coherent scattering (rep-
resented by the diffuson) will satisfy the same diffusion equation; only the diffusion con-
stant reflects the nature of the underlying states. Since the diffusion constant cancels
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in the variance of the conductance (and in other physical properties such as the persis-
tent current (Altshuler et al. 1991) one finds remarkably general behaviour. Recently a
theoretical study of ballistic conductors by Jalabert et al. (1990) has also found fluctua-
tion effects identical to those of disordered conductors with correlation ranges given by
expressions similar to those obtained above. Here the multiple scattering comes from
the geometry of the device which generates classically chaotic scattering for the cases
considered. I have conjectured, but not proven, that a diffuson-type approximation to
the modulus of the semi-classical propagator can be used to describe this limit also.
Thus it seems that complex quantum scattering of almost any type leads to a single
type of coherent fluctuation phenomena in normal electron transport.
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