
7. Overview of modern 
QMC algorithms
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Modern Monte Carlo algorithms

• Which system sizes can be studied?

temperature local updates modern algorithms

3D Tc 16’000 spins 16’000’000 spins

0.1 J 200 spins 1’000’000 spins

0.005 J ––– 50’000 spins

3D Tc 32 bosons 1’000’000 bosons

0.1 t 32 bosons 10’000 bosons
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When to use SSE?

• For quantum magnets
• loop cluster algorithm if there is spin inversion symmetry
• directed loops if there is no spin inversion symmetry

• For hardcore bosons: 
• loop cluster algorithm if there is particle-hole symmetry
• directed loops if there is no  particle-hole symmetry

• Which models?
• 2-site interactions are rather straightforward
• multi-site interactions require more thought
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When to use path integrals?

• For Bose-Hubbard models
• Use the worm algorithm in continuous time path integrals
• This expands only in the hopping t  and not the much larger 

repulsion U

• For non-local in time actions
• Appear in dissipative (Caldeira-Legget type) models, coupling to 

phonons, DMFT, ...
• Cluster algorithms are again possible in case of spin-inversion 

symmetry
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8. Wang-Landau sampling and 
optimized ensembles for quantum 

systems
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First order phase transitions
Tunneling out of meta-stable state is suppressed exponentially 

T

P

gas

liquid
critical
point

How can we tunnel
out of metastable state? ?

liquid gas

� 

τ ∝exp(−cLd−1 /T)

liquid
gas

Critical slowing down
solved by cluster updates
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• Tunneling problem at a first order phase transition is solved 
by changing the ensemble to create a flat energy landscape
• Multicanonical sampling (Berg and Neuhaus, Phys. Rev. Lett. 1992)
• Wang-Landau sampling (Wang and Landau, Phys. Rev. Lett. 2001)
• Quantum version (MT, Wessel and Alet, Phys. Rev. Lett. 2003)
• Optimized ensembles (Trebst, Huse and MT, Phys. Rev. E 2004)

First order phase transitions

? ?
liquid solid
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• Classical:

• Quantum: ρ(E) is not accessible
• formulation in terms of high-temperature series

• or perturbation series

• Flat histogram, parallel tempering, histogram reweighting, 
etc done in order n of series expansion instead of energy

Quantum systems

Z = e−Ec / kBT = ρ(E)e−E / kBT
E
∑

c
∑

Z = Tr(e−βH ) = β n

n!n= 0

∞

∑ Tr(−H)n = β n

n!n= 0

∞

∑ g(n)

Z = Tre−βH = Tre−β (H0 +λV ) = λn
n= 0

∞

∑ g(n)
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• based on high temperature expansion, (A. Sandvik, 1991)

• also has a graphical representation in terms of world lines

• is very similar to path integrals
• perturb in all terms of the Hamiltonian, not just off-diagonal terms

Stochastic Series Expansion (SSE)

Hb1 Hb1

Hb2

Z = Tr(e−βH ) = β n

n!n=0

∞

∑ Tr (−H )n⎡⎣ ⎤⎦

=
β n

n!n=0

∞

∑ α1 − H α2 α2 − H α3 ⋅ ⋅ ⋅ α n − H α1
α1 ,...,αn

∑

Friday, 9 July 2010



• SSE:

• compare to classical Monte Carlo:

• flat histogram obtained by changing the ensemble:
• classically:

• quantum: 

Wang-Landau sampling for quantum systems
Z = Tr(e−βH ) = β n

n!n=0

∞

∑ Tr (−H )n⎡⎣ ⎤⎦

=
β n

n!n=0

∞

∑ α1 − H α2 α2 − H α 3 ⋅ ⋅ ⋅ αn − H α1
α1 ,...,αn

∑

≡
β n

n!n=0

∞

∑ g(n)

Z = e−Ec / kBT = ρ(E)e−E / kBT
E
∑

c
∑

e−βEc → 1
ρ(E)

β n

n!
→

1
g(n)
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• We want flat histogram in order n
• Use the Wang-Landau algorithm to get

, , , from

• Small change in acceptance rates for diagonal updates

• Loop update does not change n and is thus unchanged!

• Cutoff Λ limits temperatures to β < Λ / E0� 

P[H(i, j )
d →1] =min 1, Λ − n +1

βNbonds α H(i, j )
d α

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

Wang-Landau⎯ → ⎯ ⎯ ⎯ ⎯ min 1, Λ − n +1
Nbonds α H( i, j )

d α
g(n)
g(n −1)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

Wang-Landau updates in SSE

� 

P[1→ H(i, j )
d ] =min 1,

βNbonds α H(i, j )
d α

Λ − n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Wang−Landau⎯ → ⎯ ⎯ ⎯ ⎯ min 1,

Nbonds α H( i, j )
d α

Λ − n
g(n)

g(n +1)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

� 

Z = (Λ − n)!β n

Λ!
α

b1 ,...,bΛ( )
∑

α
∑ (−Hbi

)
i=1

Λ

∏ α
n= 0

Λ

∑

� 

Z = β ng(n)
n= 0

Λ

∑
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The first test
• L=10 site Heisenberg chain with Λ = 250

temperature cutoff due to finite L
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Wang-Landau sampling for quantum systems

•  Example: 3D quantum Heisenberg antiferromagnet
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Speedup at first order phase transition

� 

H = −t ai
†a j + h.c.( )

i, j
∑ +V2 nin j

i, j
∑

• Greatly reduced tunneling times at free energy barriers
• Example: stripe rotation in 2D hard-core bosons
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• Instead of temperature a coupling constant can be changed
• Based on finite temperature perturbation expansion

• Flat histogram in order nλ  of perturbation expansion

Perturbation expansion

� 

Z = Tr(e−βH ) = (−β)n

n!n= 0

∞

∑ α
b1 ,...,bn( )
∑

α
∑ (−Hbi

)
i=1

n

∏ α λnλ (b1 ,...,bn )

≈ (Λ − n)!β n

Λ!
α

b1 ,...,bΛ( )
∑

α
∑ (−Hbi

)
i=1

Λ

∏ α
n= 0

Λ

∑ λnλ (b1 ,...,bΛ )

= λnλ
nλ = 0

Λ

∑ g(nλ)

� 

nλ(b1,...,bn ) counts #  of λ terms

� 

with H = H0 + λV = λnλ (i)Hi
i
∑
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• We want flat histogram in order nλ
• Use the Wang-Landau algorithm to get
, , , from

• Small change in acceptance rates for diagonal updates

• Loop update does not change n and is thus unchanged!

• Cutoff Λ limits value of λ for which the series converges� 

P[H(i, j )
d →1] =min 1, Λ − n +1

βNbonds α H(i, j )
d α

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

Wang-Landau⎯ → ⎯ ⎯ ⎯ ⎯ min 1, Λ − n +1
βNbonds α H(i, j )

d α
g(nλ)

g(nλ − Δnλ)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

� 

P[1→ H(i, j )
d ] =min 1,

βNbonds α H(i, j )
d α

Λ − n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Wang−Landau⎯ → ⎯ ⎯ ⎯ ⎯ min 1,

βNbonds α H(i, j )
d α

Λ − n
g(nλ)

g(nλ + Δnλ)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Perturbation series by Wang-Landau

� 

Z = (Λ − n)!β n

Λ!
α

b1 ,...,bΛ( )
∑

α
∑ (−Hbi

)
i=1

Λ

∏ α
n= 0

Λ

∑ λnλ (b1 ,...,bΛ )

� 

Z = λnλ
nλ = 0

Λ

∑ g(nλ)
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The antiferromagnetic bilayer

⊥J

J

J >> J⊥ : long range orderJ << J⊥: spin gap, no long range order

Quantum phase transition at J⊥ / J ≈ 2.524(2)
Spin gap vanishes

Magnetic order vanishes
Universal properties
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Quantum phase transition
• Quantum phase transition in bilayer quantum Heisenberg 

antiferromagnet

0.0 0.2 0.4 0.6 0.8 1.0
J/Jʼ

0.0
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Summary
• Extension of Wang-Landau sampling to quantum systems
• Stochastically evaluate series expansion coefficients

• High-temperature series

• Perturbation series

• Features
• Flat histogram in the expansion order
• Allows calculation of free energy
• Like classical systems, allows tunneling through free energy barriers

• Optimized ensembles are also possible

� 

Z = λnλ
nλ = 0

∞

∑ g(nλ)

� 

Z = β n

n!n= 0

∞

∑ g(n)
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9. The negative sign problem in 
quantum Monte Carlo
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• Not as easy as classical Monte Carlo

• Calculating the eigenvalues Ec is equivalent to solving the problem

• Need to find a mapping of the quantum partition function 
to a classical problem

• “Negative sign” problem if some pc < 0

Quantum Monte Carlo

� 

Z = e−Ec / kBT
c
∑

� 

Z = Tre−βH ≡ pc
c
∑
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• In mapping of quantum to classical system

• there is a “sign problem” if some of the pi < 0
• Appears e.g. in simulation of electrons when two electrons exchange 

places (Pauli principle) 

The negative sign problem

Z = Tre−βH
=

∑

i

pi

|i1>

|i2>

|i3>

|i4>

|i1>
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• Sample with respect to absolute values of the weights 

• Exponentially growing cancellation in the sign

• Exponential growth of errors

• NP-hard problem (no general solution) [Troyer and Wiese, PRL 2005]

The negative sign problem

� 

A = Aipi
i
∑ pi

i
∑ =

Ai sgn pi pi
i
∑ pi

i
∑

sgn pi pi
i
∑ pi

i
∑

≡
A ⋅ sign p

sign p

〈sign〉 =

∑
i pi∑

i |pi|
= Z/Z|p| = e−βV (f−f|p|)

∆sign

〈sign〉
=

√

〈sign2〉 − 〈sign〉2√
M〈sign〉

≈
eβV (f−f|p|)

√
M
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Is the sign problem exponentially hard?
• The sign problem is basis-dependent

• Diagonalize the Hamiltonian matrix

• All weights are positive
• But this is an exponentially hard problem since dim(H)=2N ! 
• Good news: the sign problem is basis-dependent!

• But: the sign problem is still not solved
• Despite decades of attempts

• Reminiscent of the NP-hard problems
• No proof that they are exponentially hard
• No polynomial solution either

 

A = Tr Aexp(!"H)[ ] Tr exp(!"H)[ ] = i A
i
i exp(!"#

i
)

i

$ exp(!"#
i
)

i

$
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What is a solution of the sign problem?
• Consider a fermionic quantum system with a sign problem (some pi < 0

• Where the sampling of the bosonic system with respect to |pi| scales 
polynomially

• A solution of the sign problem is defined as an algorithm that can 
calculate the average with respect to pi also in polynomial time

• Note that changing basis to make all pi ≥ 0 might not be enough:
the algorithm might still exhibit exponential scaling

� 

A = Tr Aexp(−βH )[ ] Tr exp(−βH )[ ] = Ai pi
i
∑ pi

i
∑

� 

T ∝ε−2Nnβm

Friday, 9 July 2010



Complexity of decision problems
• Partial hierarchy of decision problems 

• Undecidable (“This sentence is false”)

• Partially decidable (halting problem of Turing machines)

• EXPSPACE

• Exponential space and time complexity: 
diagonalization of Hamiltonian

• PSPACE

• Exponential time, polynomial space complexity: Monte Carlo

• NP

• Polynomial complexity on non-deterministic machine

• Traveling salesman problem

• 3D Ising spin glass

• P

• Polynomial complexity on Turing machine
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Complexity of decision problems
• Some problems are harder than others:

• Complexity class P
• Can be solved in polynomial time on a Turing machine

• Eulerian circuit problem

• Minimum spanning Tree (decision version)

• Detecting primality

• Complexity class NP
• Polynomial complexity using non-deterministic algorithms

• Hamiltonian cirlce problem

• Traveling salesman problem (decision version)

• Factorization of integers

• 3D spin glasses
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The complexity class P
• The Eulerian circuit problem

• Seven bridges in Königsberg (now Kaliningrad) crossed the river Pregel
• Can we do a roundtrip by crossing each bridge exactly once?
• Is there a closed walk on the graph going through each edge exactly once?

• Looks like an expensive task by testing all possible paths.
• Euler: Desired path exits only if the coordination of each edge is even.
• This is of order O(N2)
• Concering Königsberg: NO!
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• The Hamiltonian cycle problem
• Sir Hamilton's Icosian game:

• Is there a closed walk on going through each vertex exactly once?

• Looks like an expensive task by testing all possible paths.

• No polynomial algorithm is known, nor a proof that it cannot be 
constructed

The complexity class NP
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The complexity class NP

• Polynomial time complexity on a nondeterministic machine
• Can execute both branches of an if-statement, but branches cannot 

merge again

• Has exponential number of CPUs but no communication

• It can in polynomial time
• Test all possible paths on the graph to see whether there is a 

Hamiltonian cycle

• Test all possible configurations of a spin glass for a configuration 
smaller than a given energy

• It cannot
• Calculate a partition function since the sum over all states cannot be 

performed

� 

Z = exp(−βεc )
c
∑� 

∃c : Ec < E
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NP-hardness and NP-completeness
• Polynomial reduction

• Two decision problems Q and P: 

•               : there is an polynomial algorithm for Q, provided there is one for P

• Typical proof: Use the algorithm for P as a subroutine in an algorithm for P

• Many problems have been reduced to other problems

•  NP-hardness
• A problem P is  NP-hard if 

• This means that solving it in polynomial time solves all problems in NP too

• NP-completeness
• A problem P is NP-complete, if P is NP-hard and 

• Most Problems in NP were shown to be NP-complete

Q ≤ P

∀Q ∈NP :   Q ≤ P

P ∈NP
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The P versus NP problem
• Hundreds of important NP-complete problems in computer science

• Despite decades of research no polynomial time algorithm was found

• Exponential complexity has not been proven either

• The P versus NP problem
• Is P=NP or is P≠NP ?
• One of the millenium challenges

     of the Clay Math Foundation 
http://www.claymath.org

• 1 million US$ for proving 
     either P=NP or P≠NP

• The situation is similar to the sign problem

?
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The Ising spin glass: NP-complete

• 3D Ising spin glass

• The NP-complete question is: “Is there a configuration 
with energy  ≤ E0?”

• Solution by Monte Carlo:
• Perform a Monte Carlo simulation at

• Measure the energy:

• A Monte Carlo simulation can decide the question

� 

H = − Jijσ jσ j
i, j
∑  with Jij = 0,±1

� 

β = N ln2 + lnN + ln 3
2

+ 1
2

� 

E < E0 + 1
2

 if there exists a state with energy ≤ E0

E > E0 + 1 otherwise
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The Ising spin glass: NP-complete
• 3D Ising spin glass is  NP-complete

• Frustration leads to NP-hardness of Monte Carlo

• Exponentially long tunneling and autocorrelation times

?

� 

ΔA = A − A( )2 = Var A
M

(1+ 2τA )

� 

H = − Jijσ jσ j
i, j
∑  with Jij = 0,±1

 

c
1
! c

2
! ...! c

i
! c

i+1
! ...

Friday, 9 July 2010



• Antiferronmagnetic couplings on a triangle:

• Leads to “frustration”, cannot have each bond in lowest energy state

• With random couplings finding the ground state is NP-hard

• Quantum mechanical: 
• negative probabilities for a world line configuration

• Due to exchange of fermions

?

Frustration

Negative weight (-J)3

-J!

-J!

-J!
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Solving an NP-hard problem by QMC

• Take 3D Ising spin glass

• View it as a quantum problem in basis where H it is not 
diagonal

• The randomness ends up in the sign of offdiagonal matrix elements
• Ignoring the sign gives the ferromagnet and loop algorithm is in P

• The sign problem causes NP-hardness

• solving the sign problem solves all the NP-complete 
problems and prove NP=P

� 

H = Jijσ jσ j
i, j
∑  with Jij = 0,±1

� 

H (SG ) = Jijσ
x
jσ x

j

i, j
∑  with Jij = 0,±1

� 

H (FM ) = − σ x
jσ x

j

i, j
∑  
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Summary

• A “solution to the sign problem” solves all problems in NP
• Hence a general solution to the sign problem does not 

exist unless P=NP
• If you still find one and thus prove that NP=P you will get

• 1 million US $!

• A Nobel prize?

• A Fields medal?

• What does this imply?
• A general method cannot exist
• Look for specific solutions to the sign problem or model-specific 

methods
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The origin of the sign problem

• We sample with the wrong distribution by ignoring the sign!

• We simulate bosons and expect to learn about fermions?
• will only work in insulators and superfluids

• We simulate a ferromagnet and expect to learn something 
useful about a frustrated antiferromagnet?

• We simulate a ferromagnet and expect to learn something 
about a spin glass?
• This is the idea behind the proof of NP-hardness
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Working around the sign problem
1. Simulate “bosonic” systems

• Bosonic atoms in optical lattices

• Helium-4 supersolids

• Nonfrustrated magnets

2. Simulate sign-problem free fermionic systems
• Attractive on-site interactions

• Half-filled Mott insulators

3. Restriction to quasi-1D systems
• Use the density matrix renormalization group method (DMRG)

4. Use approximate methods
• Dynamical mean field theory (DMFT)
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The secret of Monte Carlo

• Small ideas are enough to make big progress
• However one needs the right idea - most unfortunately fail
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