7. Overview of modern

QMUC algorithms
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Modern Monte Carlo algorithms

* Which system sizes can be studied?

temperature local updates modern algorithms
3D Tc 16’000 spins 16’000°000 spins
0.1] 200 spins I’ 000’000 spins
0.005J — 50’000 spins
3D Tc 32 bosons 1'000’000 bosons
oIt 32 bosons 10°000 bosons
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When to use SSE?

* For quantum magnets
* loop cluster algorithm if there is spin inversion symmetry

* directed loops if there is no spin inversion symmetry

* For hardcore bosons:
* loop cluster algorithm if there is particle-hole symmetry

* directed loops if there is no particle-hole symmetry

e Which models?

* 2-site interactions are rather straightforward

* multi-site interactions require more thought
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When to use path integrals?

e For Bose-Hubbard models

e Use the worm algorithm in continuous time path integrals

* 'This expands only in the hopping £. and not the much larger
repulsion U

¢ For non-local in time actions

e Appear in dissipative (Caldeira-Legget type) models, coupling to
phonons, DMFT, ...

* C(luster algorithms are again possible in case of spin-inversion
symmetry
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8. Wang-Landau sampling and
optimized ensembles for quantum
systems

- il

Friday, 9 July 2010



First order phase transitions

Tunneling out of meta-stable state is suppressed exponentially

\ liquid gas /

N \
Coexp(oclIT) \ / AN

How can we tunnel 5 \

out of metastable state? : g

gas

Critical slowing down
solved by cluster updates

critical
point
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First order phase transitions

* 'Tunneling problem at a first order phase transition is solved
by changing the ensemble to create a flat energy landscape

* Multicanonical sampling (Berg and Neuhaus, Phys. Rev. Lett. 1992)
* Wang-Landau sampling (Wang and Landau, Phys. Rev. Lett. 2001)
* Quantum version (MT, Wessel and Alet, Phys. Rev. Lett. 2003)

e Optimized ensembles (Trebst, Huse and MT, Phys. Rev. E 2004)

| N |
VAN g

<

liquid solid
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Quantum systems

= Ze—EC [ kT _ ZP(E)e—E/kBT
¢ E

e (lassical:

* Quantum: p(E) is not accessible

e formulation in terms of high-temperature series

Z="Tri(e )= Z% Tr(-H)" = Y, [i -8(n)

® or perturbation series

Z =Tre P = Tre PH4) = Zﬂ,”g(n)

n=0

e Flat histogram, parallel tempering, histogram reweighting,
etc done in order 7 of series expansion instead of energy
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Stochastic Series Expansion (SSE)
* based on high temperature expansion, (A. Sandvik, 1991)

Z=Tre"")= ii—’;Tr[(—H)"}

* also has a graphical representation in terms of world lines

Hb2
Hb1
Hb,

¢ is very similar to path integrals
y p g

* perturb in all terms of the Hamiltonian, not just oft-diagonal terms
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Wang-Landau sampling for quantum systems

o SSE: 2= =X il HY ]
-3 IS (ol-loen - ]aw) (o - ]
=Y %g(n)

* compare to classical Monte Carlo:

= ze—Ec [kgT _ ZP(E)e—E/kBT
c E

* flat histogram obtained by changing the ensemble:

* classically: T
p(E)

e quantum: B° 1
nl  g(n)
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Wang-Landau updates in SSE

* We want flat histogram in order n

e Use the Wang-Landau algorithm to get

Z= 2[3 g(n) from Z= ZZ 2 (A~ n),B O“H( H,) o)

”0‘>b1 wby)

* Small change in acceptance rates for diagonal updates

P[l—) )] mll‘{ ﬁNbonds< ‘ (i,)) >} Wang—Landau mll][ bonds< ‘ (i,}) 05> g(l’l) }
(i,

A—n A—n gn+1)

P[H (z n— 1= mln[ A-n+l 1 Wang Landan >min[1 A-n+l g(n) ]

ﬁNbondS< ‘ (i,)) >J bondS< ‘ (i,)) >g(7l—1)

* Loop update does not change n and is thus unchanged!

o Cutoff A limits temperatures to B <A/ E,
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The first test

e L=10 site Heisenberg chain with A = 250
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Wang-Landau sampling for quantum systems

* Example: 3D quantum Heisenberg antiferromagnet
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Speedup at first order phase transition

* Greatly reduced tunneling times at free energy barriers

* Example: stripe rotation in 2D hard-core bosons

H=—i3(a
(i.J)

10°
a.aj+hc.)+V2 annj 8x8
<<i,j>> 106 > Vz/l‘=3
conventional
SSE
4
>10
10° . ]
Wang-Landau sampling
0
10 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.0 0.5 1.0 1.5 2.0
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Perturbation expansion

* Instead of temperature a coupling constant can be changed

* Based on finite temperature perturbation expansion

with H = H, + AV = Z)L”W')H

/= Tr(e_BH 2( ﬁ) Z 2 OC‘H( H, )‘ lw(b1 ..... b,)

bl ..... b,) =1

~zz z (A — n)ﬁ O“H( H, )‘ A‘nl(bl by)

n0‘>b] N

- z)‘nlg(nl) n,(b,,....b,) counts # of A terms

ny=

e Flat histogram in order n, of perturbation expansion
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Perturbation series by Wang-Landau

e We want flat histogram in order n,

* Use the Wang- Landau algorithm to get
2= S from z-3% 3 B ], yeje

n,=0 n=0|a) (b ..y Al

* Small change in acceptance rates for diagonal updates

P[l — H ] mi ﬁNbOnds< ‘ (i,)) > Wang-Landau smi ﬁNbonds< ‘ (i,7) > g(i’ll)
l]) A—n g(n,+An))

)
P[ (lj) %1]21111 A I’l+1 Wang-Landau )I'Ill A i’l+1 g(n%)
[))Nbonds< ‘ (i,j) >) [))Nbonds< ‘ (i,)) > g(nl _Anl)

* Loop update does not change n and is thus unchanged!

e Cutoff A limits value of A for which the series converges
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The antiferromagnetic bilayer

J << J,: spin gap, no long range order J>>J, :long range order

AL Al Al
...rlllll’lllll’lllll"

' “'Il'lIIIIIIF'HIIIIIF’II

|

"I |2 Illldllll_l’ ’
l‘l 1%

Quantum phase transition at J /| J = 2.524(2)

Spin gap vanishes
Magnetic order vanishes
Universal properties
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Quantum phase transition

* Quantum phase transition in bilayer quantum Heisenberg

antiferromagnet
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Summary

* Extension of Wang-Landau sampling to quantum systems

* Stochastically evaluate series expansion coefhicients

* High-temperature series Z= Zﬁ, g(n)
n=o 1
* Perturbation series Z= ) Ng(n,)
n,;=0
e Features

* Flat histogram in the expansion order
* Allows calculation of free energy

* Like classical systems, allows tunneling through free energy barriers

* Optimized ensembles are also possible
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9. The negative sign problem in
quantum Monte Carlo
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Quantum Monte Carlo

* Not as easy as classical Monte Carlo

—E_ kgT
7=Fer
(&

e (alculating the eigenvalues E, is equivalent to solving the problem

* Need to find a mapping of the quantum partition function
to a classical problem

Z=Tre ™ = ch

e “Negative sign” problem if some p, < 0
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The negative sign problem

* In mapping of quantum to classical system
Z = Tre PH = sz-

e there is a “sign problem” if some of the p; <0

* Appears e.g. in simulation of electrons when two electrons exchange

places (Pauli principle) /

li ;> /

|l4>

liz> /

|i2> /
li;>
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The negative sign problem

e Sample with respect to absolute values of the weights

ZAi Sgnpi‘pi‘/Z‘pi‘ <A- Sign>
<A>=zi,A,-Pi/zi,Pi: ngnpi‘pi‘/Z‘pi‘ - <sign>p

* Exponentially growing cancellation in the sign

p|

- Zz Pi _ _
sign) = bt = 212 = VU

e Exponential growth of errors

Asign _ +/(sign?) — (sign)? _ e®V{=Tinl)

(sign) \/M<sign> - VM

* NP-hard problem (no general solution) [Troyer and Wiese, PRL 20051
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Is the sign problem exponentially hard?

* The sign problem is basis-dependent

* Diagonalize the Hamiltonian matrix H i) =¢]i)

(4)=Trl Aexp(-H)]/ Trlexp(-HD] = 2. (lAli)exp(-Pe) /2 expi-Pe)

i

e All weights are positive
* But this is an exponentially hard problem since dim(H)=2N
* Good news: the sign problem is basis-dependent!
* But: the sign problem is still not solved
* Despite decades of attempts
* Reminiscent of the NP-hard problems

* No proof that they are exponentially hard

* No polynomial solution either
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What is a solution of the sign problem?

e Consider a fermionic quantum system with a sign problem (some p; < 0

(A)=Tr[Aexp(—BH )]/ Tr[exp(—BH)] = ZAipi/Zpi

e Where the sampling of the bosonic system with respect to Ip,| scales
polynomially

TOCS_ZNnﬁm

* A solution of the sign problem is defined as an algorithm that can
calculate the average with respect to p; also in polynomial time

e Note that changing basis to make all p; = 0 might not be enough:
the algorithm might still exhibit exponential scaling
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Complexity of decision problems

Partial hierarchy of decision problems

Undecidable (“This sentence is false”)

Partially decidable (halting problem of Turing machines) oy decidae
EXPSPACE e II,”—
* Exponential space and time complexity: l
diagonalization of Hamiltonian | EXPSPACE
PSPACE

PSPACE

* Exponential time, polynomial space complexity: Monte C

NP L

* Polynomial complexity on non-deterministic machine
* Traveling salesman problem

* 3D Ising spin glass

* Polynomial complexity on Turing machine

Decision problem l

| Undecidable l

NP-complete
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Complexity of decision problems

* Some problems are harder than others:

* Complexity class P
e (Can be solved in polynomial time on a Turing machine
* Eulerian circuit problem
* Minimum spanning Tree (decision version)

* Detecting primality

* Complexity class NP
* Polynomial complexity using non-deterministic algorithms
e Hamiltonian cirlce problem
e Traveling salesman problem (decision version)
* Factorization of integers

* 3D spin glasses
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The complexity class P

* The Eulerian circuit problem

Seven bridges in Konigsberg (now Kaliningrad) crossed the river Pregel
Can we do a roundtrip by crossing each bridge exactly once?

Is there a closed walk on the graph going through each edge exactly once?

Looks like an expensive task by testing all possible paths.
Euler: Desired path exits only if the coordination of each edge is even.

This is of order O(N?)
Concering Ko6nigsberg: NO!
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The complexity class NP

* The Hamiltonian cycle problem

e Sir Hamilton's Icosian game:

e s there a closed walk on going through each vertex exactly once?

e Looks like an expensive task by testing all possible paths.

e No polynomial algorithm is known, nor a proof that it cannot be
constructed
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The complexity class NP

* Polynomial time complexity on a nondeterministic machine

e (Can execute both branches of an if-statement, but branches cannot
merge again

e Has exponential number of CPUs but no communication

* [t can in polynomial time

e 'Test all possible paths on the graph to see whether there is a
Hamiltonian cycle

e Test all possible configurations of a spin glass for a configuration
smaller than a given energy de:E.<E

e |t cannot

e (alculate a partition function since the sum over all states cannot be
performed M
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NP-hardness and NP-completeness

* Polynomial reduction
* 'Two decision problems Q and P:
e () < P: there is an polynomial algorithm for Q, provided there is one for P
* ’Typical proof: Use the algorithm for P as a subroutine in an algorithm for P

* Many problems have been reduced to other problems

e NP-hardness
* Aproblem Pis NP-hard if VOQeNP: Q<P

* This means that solving it in polynomial time solves all problems in NP too

* NP-completeness

* A problem P is NP-complete, if P is NP-hard and P e NP

* Most Problems in NP were shown to be NP-complete
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The P versus NP problem

* Hundreds of important NP-complete problems in computer science
e Despite decades of research no polynomial time algorithm was found

e Exponential complexity has not been proven either

* The P versus NP problem

* Is P=NNP oris P+NP’
* One of the millenium challenges

of the Clay Math Foundation
http://www.claymath.org

* 1 million USS$ for proving

either P=NP or P+tNP

* The situation is similar to the sign problem
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The Ising spin glass: NP-complete

* 3D Ising spin glass H=-) 1,00, withJ, =0zl
(i)

* The NP-complete question is: “Is there a configuration
with energy < E,?”

* Solution by Monte Carlo:
. . 3 1
¢ Perform a Monte Carlo simulation at B=NIn2+InN + ln5 +

* Measure the energy: <E > <E,+ % if there exists a state with energy < E,

(E)> E,+1 otherwise

* A Monte Carlo simulation can decide the question
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The Ising spin glass: NP-complete

* 3D Ising spin glass is NP-complete H=->J,0,0, withJ, =041
(i)

¢ Frustration leads to NP-hardness of Monte Carlo
f"k
/
|—

* Exponentially long tunneling and autocorrelation times

Cl %C2 > cee >Cl >Cl+1 % cee M

AA=\/<(Z —<A>)2> =\/V?‘2A 1+27,) R
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Frustration

* Antiferronmagnetic couplings on a triangle:

T?k
e Leads to “frustration”, cannot have each bond in lowest energy state

e With random couplings finding the ground state is NP-hard

* (Quantum mechanical:

* negative probabilities for a world line configuration

e Due to exchange of fermions l/l\
-J

Negative weight (-J)3
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Solving an NP-hard problem by QMC

;0 0, with J,, =0,x1

* Take 3D Ising spin glass w=>J
(i)

* View it as a quantum problem in basis where H it is not
diagonal
H®® =) J,0%0"; with J, =01

(i.j)
* The randomness ends up in the sign of offdiagonal matrix elements
* Ignoring the sign gives the ferromagnet and loop algorithm is in P

M) — _ZGXijj

(i.j)

* The sign problem causes NP-hardness

* solving the sign problem solves all the NP-complete
problems and prove NP=P
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Summary

* A “solution to the sign problem” solves all problems in NP

* Hence a general solution to the sign problem does not
exist unless P=NP

* Ifyou still find one and thus prove that NP=P you will get
e 1 million US §!
* A Nobel prize?
* A Fields medal?

* What does this imply?
* A general method cannot exist

* Look for specific solutions to the sign problem or model-specific
methods
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The origin of the sign problem

* We sample with the wrong distribution by ignoring the sign!

* We simulate bosons and expect to learn about fermions?

* will only work in insulators and superfluids

* We simulate a ferromagnet and expect to learn something
useful about a frustrated antiferromagnet?

* We simulate a ferromagnet and expect to learn something
about a spin glass?

® 'This is the idea behind the proof of NP-hardness
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Working around the sign problem

1. Simulate “bosonic” systems
* Bosonic atoms in optical lattices
* Helium-4 supersolids

* Nonfrustrated magnets

2. Simulate sign-problem free fermionic systems

e Attractive on-site interactions

e Half-filled Mott insulators

3. Restriction to quasi-1D systems

e Use the density matrix renormalization group method (DMRG)

4. Use approximate methods
e Dynamical mean field theory (DMFT)
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The secret of Monte Carlo

* Small ideas are enough to make big progress

* However one needs the right idea - most unfortunately fail
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