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1. Monte Carlo Integration
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Integrating a function
• Convert the integral to a discrete sum

• Higher order integrators:
• Trapezoidal rule:

• Simpson rule:
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High dimensional integrals
• Simpson rule with M points per dimension

• one dimension the error is O(M-4 )

• d dimensions we need N = Md points
the error is order O(M-4 ) = O(N-4/d )

• An order - n  scheme in 1 dimension
is order - n/d d in d dimensions!

• In a statistical mechanics model with N particles we have 
6N-dimensional integrals (3N positions and 3N momenta).

• Integration becomes extremely inefficient!
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• What is the probability to win in Solitaire?
• Ulam’s answer: play it 100 times, count the number of wins and 

you have a pretty good estimate

Ulam: the Monte Carlo Method
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Throwing stones into a pond

• How can we calculate π by throwing stones?
• Take a square surrounding the area we want to measure:

• Choose M pairs of random numbers ( x, y ) and count how 
many points ( x, y ) lie in the interesting area

π/4
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Monte Carlo integration
• Consider an integral

• Instead of evaluating it at equally spaced points 
evaluate it at M points xi chosen randomly in Ω:

• The error is statistical:

• In d>8 dimensions Monte Carlo is better than Simpson!
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Sharply peaked functions

• In many cases a function is large only in a tiny region
• Lots of time wasted in regions where the function is small
• The sampling error is large since the variance is large

wasted effort
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Importance sampling

• Choose points not uniformly but with probability p(x):

• The error is now determined by Var f/p
• Find p similar to f and such that p-distributed random numbers are 

easily available 
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2. Generating Random Numbers
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Random numbers
• Real random numbers are hard to obtain

• classical chaos (atmospheric noise)
• quantum mechanics

• Commercial products: quantum random number generators
• based on photons and semi-transparent mirror
• 4 Mbit/s from a USB device, too slow for most MC simulations

http://www.idquantique.com/
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Pseudo Random numbers

• Are generated by an algorithm

• Not random at all, but completely deterministic

• Look nearly random however when algorithm is not 
known and may be good enough for our purposes

• Never trust pseudo random numbers however!
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Linear congruential generators
• are of the simple form xn+1=f(xn)
• A reasonably good choice is the GGL generator

with a = 16807, c = 0, m = 231-1
• quality depends sensitively on a,c,m

• Periodicity is a problem with such 32-bit generators
• The sequence repeats identically after 231-1 iterations
• With 500 million numbers per second that is just 4 seconds!
• Should not be used anymore!

xn +1 = (axn + c)modm
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Lagged Fibonacci generators

• Good choices are 
• (2281,1252,+)
• (9689,5502,+)
• (44497,23463,+)

• Seed blocks usually generated by linear congruential
• Has very long periods since large block of seeds
• A very fast generator: vectorizes and pipelines very well

xn = xn− p ⊗ xn− qmodm
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More advanced generators
• As well-established generators fail new tests, better and 

better generators get developed
• Mersenne twister (Matsumoto & Nishimura, 1997)
• Well generator (Panneton and L'Ecuyer , 2004)

• Number theory enters the generator design:
predicting the next number is equivalent to solving a very 
hard mathematical problem
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Are these numbers really random?
• No!

• Are they random enough?
• Maybe?

• Statistical tests for distribution and correlations

• Are these tests enough?
• No! Your calculation could depend in a subtle way on hidden 

correlations!

• What is the ultimate test?
• Run your simulation with various random number generators and 

compare the results
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Marsaglia’s diehard tests

• Birthday spacings: Choose random points on a large interval. The spacings 
between the points should be asymptotically Poisson distributed. The name is 
based on the birthday paradox. 

• Overlapping permutations: Analyze sequences of five consecutive random 
numbers. The 120 possible orderings should occur with statistically equal 
probability.

• Ranks of matrices: Select some number of bits from some number of random 
numbers to form a matrix over {0,1}, then determine the rank of the matrix. Count 
the ranks.

• Monkey tests: Treat sequences of some number of bits as "words". Count the 
overlapping words in a stream. The number of "words" that don't appear should 
follow a known distribution. The name is based on the infinite monkey theorem.

• Count the 1s: Count the 1 bits in each of either successive or chosen bytes. 
Convert the counts to "letters", and count the occurrences of five-letter "words".

• Parking lot test: Randomly place unit circles in a 100 x 100 square. If the circle 
overlaps an existing one, try again. After 12,000 tries, the number of successfully 
"parked" circles should follow a certain normal distribution.
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Marsaglia’s diehard tests (cont.)

• Minimum distance test: Randomly place 8,000 points in a 10,000 x 10,000 
square, then find the minimum distance between the pairs. The square of this 
distance should be exponentially distributed with a certain mean.

• Random spheres test: Randomly choose 4,000 points in a cube of edge 1,000. 
Center a sphere on each point, whose radius is the minimum distance to another 
point. The smallest sphere's volume should be exponentially distributed with a 
certain mean.

• The squeeze test: Multiply 231 by random floats on [0,1) until you reach 1. 
Repeat this 100,000 times. The number of floats needed to reach 1 should follow a 
certain distribution.

• Overlapping sums test: Generate a long sequence of random floats on [0,1). 
Add sequences of 100 consecutive floats. The sums should be normally distributed 
with characteristic mean and sigma.

• Runs test: Generate a long sequence of random floats on [0,1). Count ascending 
and descending runs. The counts should follow a certain distribution.

• The craps test: Play 200,000 games of craps, counting the wins and the number 
of throws per game. Each count should follow a certain distribution.
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Non-uniform random numbers

• we found ways to generate pseudo random numbers u in 
the interval [0,1[

• How do we get other uniform distributions?
• uniform x in [a,b[:     x = a+(b-a) u

• Other distributions:
• Inversion of integrated distribution 
• Rejection method
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Non-uniform distributions

• How can we get a random number x distributed with f(x) in 
the interval [a,b[ from a uniform random number u?

• Look at probabilities:

• This method is feasible if the integral can be inverted easily
• exponential distribution f(x)=λ exp(-λx)

• can be obtained from uniform by x=-1/λ ln(1-u)

P[x < y] = f (t)dt =: F(y) ≡
a

y

∫ P[u < F(y)]

⇒ x = F−1(u)
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Normally distributed numbers
• The normal distribution

• cannot easily be integrated in one dimension but can be 
easily integrated in 2 dimensions!

• We can obtain  two normally distributed numbers from 
two uniform ones (Box-Muller method)

f (x) = 1
2π
exp −x 2( )

n1 = −2 ln(1 − u1) sinu2
n2 = −2 ln(1 − u1) cosu2
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Rejection method (von Neumann)

• Look for a simple distribution h that bounds f: f(x) < λh(x)
• Choose an h-distributed number x

• Choose a uniform random number number 0 ≤ u < 1

• Accept x if u < f(x)/ λh(x), 
otherwise reject x and get a new pair (x,u)

• Needs a good guess h to be efficient, numerical inversion of integral 
might be faster if no suitable h can be found

f / h

x
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accept

u

x

u
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3. The Metropolis Algorithm
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• Evaluate phase space integral by importance sampling

• Pick configurations with the correct Boltzmann weight

• But how do we create configurations with that distribution?
The key problem in statistical mechanics!

Monte Carlo for classical systems

�A� ≈ A =
1
M

M�

i=1

Aci

�

� 

A =
A(c)p(c)dc

Ω
∫

p(c)dc
Ω
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Z
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exp(−βE(c))

Z

24



I

G U E S T  E D I T O R S ’  

I N T R O D U C T I O N

the Top

• Metropolis Algorithm for Monte Carlo
• Simplex Method for Linear Programming
• Krylov Subspace Iteration Methods
• The Decompositional Approach to Matrix

Computations
• The Fortran Optimizing Compiler
• QR Algorithm for Computing Eigenvalues
• Quicksort Algorithm for Sorting
• Fast Fourier Transform
• Integer Relation Detection
• Fast Multipole Method
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The Metropolis Algorithm (1953)
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• Instead of drawing independent samples ci we build a Markov chain

• Transition probabilities Wx,y for transition x → y need to satisfy:

• Normalization: 

• Ergodicity: any configuration reachable from any other

• Balance: the distribution should be stationary

• Detailed balance is sufficient but not necessary for balance

Markov chain Monte Carlo

� 

c1 → c2 → ...→ ci → ci+1 → ...

� 

∀x,y ∃n :  W n( )x,y
≠ 0

� 

Wx,y
y
∑ = 1

� 

0 =
d
dt
p(x) = p(y)Wy,x

y
∑ − p(x)Wx,y

y
∑ ⇒ p(x) = p(y)Wy,x

y
∑

� 

Wx,y

Wy,x
=
p(y)
p(x)
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• Teller’s proposal was to use rejection sampling:

• Propose a change with an a-priori proposal rate Ax,y

• Accept the proposal with a probability Px,y

• The total transition rate is Wx,y =Ax,y Px,y

• The choice

satisfies detailed balance and was first proposed by 
Metropolis et al

The Metropolis algorithm

� 

Px,y= min 1,
Ay,x p(y)
Ax,y p(x)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
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1. Pick a random spin and propose to flip it

2. Accept the flip with probability

3. Perform a measurement independent of whether the 
proposed flip was accepted or rejected!

Metropolis algorithm for the Ising model

P =min 1,e−(Enew −Eold )/T⎡⎣ ⎤⎦
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Equilibration

• Starting from a random initial configuration it takes a while to reach 
the equilibrium distribution

• The desired equilibrium distribution is a left eigenvector with 
eigenvalue 1 (this is just the balance condition)

• Convergence is controlled by the second largest eigenvalue

• We need to run the simulation for a while to equilibrate and only 
then start measuring

� 

p(x, t) = p(x) + O(exp(−λ2t))� 

p(x) = p(y)Wy,x
y
∑
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4. Monte Carlo Error Analysis
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Monte Carlo error analysis
• The simple formula 

is valid only for independent samples

• The Metropolis algorithm gives us correlated samples!
The number of independent samples is reduced

• The autocorrelation time is defined by

� 

ΔA =
Var A
M

� 

ΔA =
Var A
M

1+ 2τA( )

� 

τA =
Ai+ t Ai − A 2( )

t=1

∞

∑
Var A
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Binning analysis
• Take averages of consecutive measurements: averages become less 

correlated and naive error estimates converge to real error

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

� 

Ai
(l ) = 1

2
A2i−1
( l−1) + A2i

l( )A1
(1) A2

(1) A3
(1) A4

(1) A5
(1) A6

(1) A7
(1) A8

(1)

A1
(2) A2

(2) A3
(2) A4

(2)

A1
(3) A2

(3)

� 

Δ(l ) = Var A( l ) M (l ) l→∞⎯ → ⎯ ⎯ Δ = (1+ 2τA )Var A M

τA = lim
l→∞

1
2
2lVar A(l )

Var A(0)
−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 2 4 6 8 10

L = 4
L = 48

Δ(l)
 

binning level l

a smart implementation needs only O(log
(N)) memory for N measurements

converged

not converged

33



Seeing convergence in ALPS
• Look at the ALPS output in the first hands-on session

• 48 x 48 Ising model at the critical point

• local updates:

• cluster updates:
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Correlated quantities

• How do we calculate the errors of functions of correlated 
measurements?

• specific heat

• Binder cumulant ratio

• The naïve way of assuming uncorrelated errors is wrong!
• It is not even enough to calculate all crosscorrelations due 

to nonlinearities except if the errors are tiny!

� 

cV =
E 2 − E 2

T 2

� 

U =
m4

m2 2

35



Splitting the time series
Simplest idea: split the time series and evaluate for each segment

X

Y
X1 X2 X3 ... XM

Y1 Y2 Y3 ... YM

U=f(X,Y)
U1 U2 U3 ... UM

Problem: can be unstable and noisy for nonlinear functions such as X/Y
� 

U ≈U =
1
M

Ui
i=1

M

∑

� 

ΔU ≈
1

M(M −1)
Ui −U ( )2

i−1

M

∑
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Jackknife-analysis
Evaluate the function on all and all but one segment

f(X1,Y1) f(X2,Y2) f(X3,Y3) ... f(XM,YM)

� 

U0 =
1
M

f (Xi,Yi)
i=1

M

∑

f(X1,Y1) f(X2,Y2) f(X3,Y3) ... f(XM,YM)

� 

U1 =
1

M −1
f (Xi,Yi)

i=2

M

∑

...
f(X1,Y1) f(X2,Y2) f(X3,Y3) ... f(XM,YM)

� 

U j =
1

M −1
f (Xi,Yi)

i=1
i≠ j

M

∑

...

......

� 

ΔU ≈
M −1

M
Ui −U ( )2

i−1

M

∑
� 

U ≈U0 − (M −1)(U −U0)

� 

U =
1
M

Ui
i=1

M

∑
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ALPS Alea library in C++
• The ALPS class library implements reliable error analysis

• Adding a measurement:

alps::RealObservable mag;
…
mag << new_value;

• Evaluating measurements

std::cout << mag.mean() << “ +/- “ << mag.error();
std::cout “Autocorrelation time: “ << mag.tau();

• Correlated quantities?
• Such as in Binder cumulant ratios

• ALPS library uses jackknife analysis to get correct errors

alps::RealObsEvaluator binder = mag4/(mag2*mag2);
std::cout << binder.mean() << “ +/- “ << binder.error();

� 

m4 m2 2
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ALPS Alea library in Python
• The ALPS class library implements reliable error analysis

• Adding a measurement:

mag = pyalps.pyalea.RealObservable(‘Magnetization’);
…
mag << new_value;

• Evaluating measurements

print mag.mean, “ +/- “, mag.error;
print “Autocorrelation time: “, mag.tau;

• Correlated quantities?
• Such as in Binder cumulant ratios

• ALPS library uses jackknife analysis to get correct errors

print mag4/(mag2*mag2) � 

m4 m2 2
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5. Cluster updates:
The Swendsen-Wang algorithm

The loop algorithm
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Autocorrelation effects

• The Metropolis algorithm creates a Markov chain

• successive configurations are correlated, leading to an 
increased statistical error

• Critical slowing down at second order phase transition

• Exponential tunneling problem at first order phase transition

c1 → c2 → ...→ ci → ci+1 → ...

ΔA = A − A( )2 = Var A
M

(1+ 2τA )

τ ∝L2

τ ∝exp(Ld−1)
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• Local updates cannot change global topological properties
• number of world lines (particles, magnetization) conserved

• winding conserved

• braiding conserved

• cannot sample grand-canonical ensemble

• Critical slowing down at second order phase transitions
• solved by cluster updates (today)

• Tunneling problem at first order phase transitions
• solved by extended sampling techniques (Thursday)

Problems with local updates
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• Energy of configurations in Ising model
• – J if parallel: 
• + J if anti-parallel:

• Probability for flip
• Anti-parallel: flipping lowers energy, always accepted 

• Parallel:

no change with probability,  ,               !!!

From local to cluster updates

� 

ΔE = −2J⇒ P =min 1,e−2ΔE /T( ) =1

� 

ΔE = +2J⇒ P =min 1,e−2ΔE /T( ) = exp(−2βJ)

� 

1− exp(−2βJ)

Alternative: flip both! 

� 

P = exp(−2J /T)
P =1− exp(−2J /T)
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• No critical slowing down (Swendsen and Wang, 1987) !!! 
• Ask for each spin: “do we want to flip it against its neighbor?”

• antiparallel: yes

• parallel: costs energy

• Accept with ,            

• Otherwise: also flip neighbor!

• Repeat for all flipped spins => cluster updates

Swendsen-Wang Cluster-Updates
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Shall we flip neighbor?
 

Done building cluster
Flip all spins in cluster
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The secret of Monte Carlo

• Small ideas are enough to make big progress
• However one needs the right idea - most unfortunately fail
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