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1. Monte Carlo Integration




Integrating a function

* Convert the integral to a discrete sum

J.f(x)dx: bNaif(a+l

* Higher order integrators: mﬂé

) +O(1/N) S

* ’Trapezoidal rule:
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* Simpson rule:

/ b—a
{f(x)dx= ~

( fla)+ 2(3 —(=D)) f(a w g ;}“) + f(b)) +O(1/NY




High dimensional integrals

Simpson rule with M points per dimension
* one dimension the error is O(M*)

* 4 dimensions we need N = M? points
the error is order O(M*) = O(N-4/4)

An order - 7. scheme in 1 dimension
is order - n/d d in d dimensions!

In a statistical mechanics model with N particles we have
6N-dimensional integrals 3N positions and 3N momenta).

Integration becomes extremely inefhicient!




Ulam: the Monte Carlo Method

* What is the probability to win in Solitaire?

e Ulam’s answer: play it 100 times, count the number of wins and
you have a pretty good estimate

f solitaire
Game Help

Score: 64 Time: 242




Throwing stones into a pond

* How can we calculate it by throwing stones?

* Take a square surrounding the area we want to measure:

/4

* Choose M pairs of random numbers (%, y ) and count how
many points ( x, y) lie in the interesting area




Monte Carlo integration

Consider an integral (f)= J F(X)dx / J- dx
Q Q

Instead of evaluating it at equally spaced points
evaluate it at M points x; chosen randomly in €:

The error is statistical:

In 4>8 dimensions Monte Carlo is better than Simpson!




Sharply peaked functions

wasted effort

N I

* In many cases a function is large only in a tiny region
* Lots of time wasted in regions where the function is small

* The sampling error is large since the variance is large




Importance sampling

F0)/p(x)

p(x)%

e Choose points not uniformly but with probability p(x):

(f)= <£> [ L9 pwya / [ a

2 p(X)

* The error is now determined by Var f/p

* Find p similar to f and such that p-distributed random numbers are
easily available




2. Generating Random Numbers
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Random numbers

* Real random numbers are hard to obtain
 classical chaos (atmospheric noise)
* quantum mechanics
* Commercial products: quantum random number generators

* based on photons and semi-transparent mirror

* 4 Mbit/s from a USB device, too slow for most MC simulations

e N EIEICIGIE

http://www.idquantique.com/
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Pseudo Random numbers

Are generated by an algorithm
Not random at all, but completely deterministic

Look nearly random however when algorithm is not
known and may be good enough for our purposes

Never trust pseudo random numbers however!
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Linear congruential generators

are of the simple form x,...=f(x,.)

A reasonably good choice is the GGL generator

x, ., =(ax +c)modm

with @ = 16807, ¢ = 0, m = 231

quality depends sensitively on a,c,72.

Periodicity is a problem with such 32-bit generators
* The sequence repeats identically after 23'-1 iterations
e With 500 million numbers per second that is just 4 seconds!

* Should not be used anymore!
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Lagged Fibonacci generators

X, =X, ,®x, modm

n

Good choices are
° (2281,1252,+)
* (9689,5502,+)
* (44497,23463,+)

Seed blocks usually generated by linear congruential
Has very long periods since large block of seeds

A very fast generator: vectorizes and pipelines very well
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More advanced generators

* Aswell-established generators fail new tests, better and
better generators get developed

* Mersenne twister (Matsumoto & Nishimura, 1997)

e Well generator (Panneton and LEcuyer , 2004)

* Number theory enters the generator design:
predicting the next number is equivalent to solving a very
hard mathematical problem
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Are these numbers really random?

e No!

* Are they random enough?’
* Maybe?

e Statistical tests for distribution and correlations

* Are these tests enough?

* No! Your calculation could depend in a subtle way on hidden
correlations!

e What is the ultimate test?

* Run your simulation with various random number generators and
compare the results
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Marsaglia’s diehard tests

Birthday spacings: Choose random points on a large interval. The spacings
between the points should be asymptotically Poisson distributed. The name is
based on the birthday paradox.

Overlapping permutations: Analyze sequences of five consecutive random
numbers. The 120 possible orderings should occur with statistically equal

probability.

Ranks of matrices: Select some number of bits from some number of random
numbers to form a matrix over {0,1}, then determine the rank of the matrix. Count
the ranks.

Monkey tests: Treat sequences of some number of bits as "words". Count the
overlapping words in a stream. The number of "words" that don't appear should
follow a known distribution. The name is based on the infinite monkey theorem.

Count the 1s: Count the 1 bits in each of either successive or chosen bytes.
Convert the counts to "letters", and count the occurrences of five-letter "words".

Parking lot test: Randomly place unit circles in a 100 x 100 square. If the circle
overlaps an existing one, try again. After 12,000 tries, the number of successfully
"parked" circles should follow a certain normal distribution.
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Marsaglia’s diehard tests (cont.)

Minimum distance test: Randomly place 8,000 points in a 10,000 x 10,000
square, then find the minimum distance between the pairs. The square of this
distance should be exponentially distributed with a certain mean.

Random spheres test: Randomly choose 4,000 points in a cube of edge 1,000.
Center a sphere on each point, whose radius is the minimum distance to another
point. The smallest sphere's volume should be exponentially distributed with a
certain mean.

The squeeze test: Multiply 231 by random floats on {0,1) until you reach 1.
Repeat this 100,000 times. The number of floats needed to reach 1 should follow a
certain distribution.

Overlapping sums test: Generate a long sequence of random floats on {o,1).
Add sequences of 100 consecutive floats. The sums should be normally distributed
with characteristic mean and sigma.

Runs test: Generate a long sequence of random floats on {0,1). Count ascending
and descending runs. The counts should follow a certain distribution.

The craps test: Play 200,000 games of craps, counting the wins and the number
of throws per game. Each count should follow a certain distribution.
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Non-uniform random numbers

* we found ways to generate pseudo random numbers u in
the interval {o,1]

* How do we get other uniform distributions?

e uniformxin{abl: x=a+(b-a)u

¢ Other distributions:

* Inversion of integrated distribution

* Rejection method
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Non-uniform distributions

* How can we get a random number x distributed with flx) in
the interval {2, from a uniform random number #?

* Look at probabilities:

Ple<y1= [ f(0di=: F(y) =Plu< F(y)]

=x=F"'(u)

* This method is feasible if the integral can be inverted easily
* exponential distribution f(x)=A exp(-Ax)

* can be obtained from uniform by x=-1/A In(1-u)
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Normally distributed numbers

¢ The normal distribution

J(0)= n exp(—xz)

* cannot easily be integrated in one dimension but can be
easily integrated in 2 dimensions!

* We can obtain two normally distributed numbers from
two uniform ones (Box-Muller method)

n = ‘/—2 In(l —u,) sinu,
n, = ‘/—2 In(l —u,) cosu,
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Rejection method (von Neumann)
f15 /

reject

< U
JER

Q U
Jacceptk

X X
* Look for a simple distribution 4 that bounds f: flx) < Ah(x)

e (Choose an h-distributed number x

e (Choose a uniform random number number o < # <1

* Accept xif u < flx)/ Mb(x),

otherwise reject x and get a new pair (x,)

* Needs a good guess » to be efficient, numerical inversion of integral
might be faster if no suitable » can be found
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3. The Metropolis Algorithm




Monte Carlo for classical systems

* Evaluate phase space integral by importance sampling

JA(c)p(c)dc B 1 M
<A>:Q > <A>%A:MZACZ
jp(c)dc 1=1

* Pick configurations with the correct Boltzmann weight

p(c) _ exp(-BE(c))

Plel== Z

* But how do we create configurations with that distribution?
The key problem in statistical mechanics!
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* Metropolis Algorithm for Monte Carlo

e Simplex Method for Linear Programming

* Krylov Subspace Iteration Methods

* The Decompositional Approach to Matrix
Computations

* The Fortran Optimizing Compiler

* QR Algorithm for Computing Eigenvalues

* Quicksort Algorithm for Sorting

* Fast Fourier Transform

* Integer Relation Detection om
* Fast Multipole Method

inSCIENCE
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The Metropolis Algorithm (1953)

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

Nicnoras METROPOLIS, ARIANNA W, RoOsSENBLUTH, MARsHALL N. ROSENBLUTH, AND AvucusTA H. TELLER

’

Los Alamos Scientific Laboralory, Los Alamos, New Mexico

AND

EpwARD TELLER,* Department of Physics, Universily of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,

II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number V' may be as high as
several hundred. Our system consists of a squaref con-
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Markov chain Monte Carlo

* Instead of drawing independent samples ¢; we build a Markov chain

C,L—>C)—> e C; >>Cppy = .
e 'Transition probabilities W,  for transition x = y need to satisfy:
* Normalization: ZWW =1
* Ergodicity: any Conﬁgﬁration reachable from any other
Vx,ydn : (W”)x,y #0

e Balance: the distribution should be stationary

d
0=—p(x)= D pOIW, =D p(x)W,, = p(x)= D p(W,,
* Detailed balance is sufficient but not necessary for balance

Wiy _ POY)
W,.. pXx)
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The Metropolis algorithm

* Teller’s proposal was to use rejection sampling:

e Propose a change with an a-priori proposal rate A, |
e Accept the proposal with a probability P,

e The total transition rate is W.,=A, P,

* The choice

A
Px’y: IniIl|:1, yxp(y):|

A, p(x)

satisfies detailed balance and was first proposed by
Metropolis et a/
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Metropolis algorithm for the Ising model

[

1. Pick a random spin and propose to flip it
2. Accept the flip with probability P = min[l,e‘(E"eW 2 T]

3. Perform a measurement independent of whether the
proposed flip was accepted or rejected!

A @ A
A A

I

I
I

1

!
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Equilibration

Starting from a random initial configuration it takes a while to reach
the equilibrium distribution

The desired equilibrium distribution is a left eigenvector with
eigenvalue 1 (this is just the balance condition)

p(x)= 2, POV, ,
Yy
Convergence is controlled by the second largest eigenvalue
p(x.1) = p(x) + O(exp(=4,1))

We need to run the simulation for a while to equilibrate and only
then start measuring
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Monte Carlo error analysis

The simple formula  ,, _ [Vard
M

is valid only for independent samples

=

I'he Metropolis algorithm gives us correlated samples!

=

I'he number of independent samples is reduced

Var A
AAz\/ ?\2 (1+21,)

The autocorrelation time is defined by

g(<Ai+tAi> B <A>2)

Var A
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Binning analysis

* Take averages of consecutive measurements: averages become less
correlated and naive error estimates converge to real error

AIA2A3A4A5AAAAAAAAAAA
\/ N/ NN N N N\ R
AI(I) AZ(I) A @) A4(I) AS(I) A 69) A7(1) Ag (6)) Ai = — ( Azi—l -+ Azi)
N/ N/ N/ \/ 2
AI(z) Az(z) A (3] A @
\ / \ / ! 0.004 , , , T
AB A0 Dl |- not converged
0.003 |- o L=4 . ]
o L=48
AD =\[Var A/ MD —== A = A+ 27, )VarA/M O] : |
= 0002 | ]
(1) -
T, _hml(z Var‘?o) _1] 0.0015 | = i
! .
72 Var4 0.001 - : converged 1
00005 . 5 o ° ° ° ° ° |
a smart implementation needs only O(log ol
0 2 4 6 8 10

(N\N)) memory for N measurements pinning level
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Seeing convergence in ALPS

* Look at the ALPS output in the first hands-on session

* 48 x 48 Ising model at the critical point

local updates:

Name Count Mean IError Tau Method

Susceptibility 52529 401.08 _ 99.1 binning
* cluster updates:

Name Count Mean Error Tau Method

Susceptibility 113433 421.642 1.57 0.821 binning

34



Correlated quantities

e How do we calculate the errors of functions of correlated
measurements?

* specific heat V=TT
. | (m*)
¢ Binder cumulant ratio UJ=—— |

* 'The naive way of assuming uncorrelated errors is wrong!

* [t is not even enough to calculate all crosscorrelations due
to nonlinearities except if the errors are tiny!
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Splitting the time series

Simplest idea: split the time series and evaluate for each segment

X
X1 X2 X3 XM

Y
Y: Y> Y3 YMm

U=f(X,Y)
Ui U> Us Uwm

_ 1 i
<U>zU=— U,
>

1 A —\2
AU::\/M(M_D;(U,.—U)

Problem: can be unstable and noisy for nonlinear functions such as X/Y




Jackknife-analysis

Evaluate the function on all and all but one segment

U, = %Zf(Xsz)
= X)) fiXaY2)  fiXs,Y3)

1 M
U1=M—_§2,f(XiaYi) ><| | | |

fiX1,Y1) f(X2,Y2) f(X3,Y3) fiXm,Ym)
1 < | | L I~ | | |
U;=—2— LX) | | | —<J | |
oy f(X1,Y1) f(X2,Y2)  f(X3,Y3) J(Xm,Ym)
({UY=U, — (M -1)T -U,) Uz%ZU,.
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ALPS Alea library in C++

* The ALPS class library implements reliable error analysis

Adding a measurement:

alps::RealObservable mag;

mag << new value;

Evaluating measurements

std::cout << mag.mean() << “ +/- “ << mag.error();
std::cout “Autocorrelation time: *“ << mag.tau();

* (Correlated quantities?

Such as in Binder cumulant ratios < m* > / < m2>2

ALPS library uses jackknife analysis to get correct errors

alps::RealObsEvaluator binder = mag4/(mag2*mag2);
std::cout << binder.mean() << “ +/- “ << binder.error();
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ALPS Alea library in Python

* The ALPS class library implements reliable error analysis

* Adding a measurement:
mag = pyalps.pyalea.RealObservable(‘Magnetization’);
mag << new value;

i Evaluating measurements

print mag.mean, “ +/- “, mag.error;
print “Autocorrelation time: “, mag.tau;

* (Correlated quantities?

e Such as in Binder cumulant ratios <m ‘ >/ <m 2>2

e ALPS library uses jackknife analysis to get correct errors

print mag4/(mag2*mag2)
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5. Cluster updates:
The Swendsen-Wang algorithm
The loop algorithm




Autocorrelation effects

The Metropolis algorithm creates a Markov chain

C,—>Ch—>.C, —Ciy = ..

i+1

successive configurations are correlated, leading to an
increased statistical error

AA = \/<(Z ~(4)’) = \/ V;ZA (1+27,)

Critical slowing down. at second order phase transition
Toc [

Exponential tunneling problem. at first order phase transition
Tocexp(L'™)
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Problems with local updates

* Local updates cannot change global topological properties

e number of world lines (particles, magnetization) conserved
e winding conserved
e braiding conserved

e cannot sample grand-canonical ensemble

* (Ciritical slowing down at second order phase transitions

* solved by cluster updates (today)

* 'Tunneling problem at first order phase transitions

* solved by extended sampling techniques (Thursday)
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From local to cluster updates

* Energy of configurations in Ising model
o — Jif parallel: 11 1
* + Jifanti-parallel: | | | 1

* Probability for flip

* Anti-parallel: flipping lowers energy, always accepted

@T [ AE=-2/= P=min(Le™")=1

e Parallel—
@ T RS l T AE =+2J = P = min(l,e‘ZAE/T) =exp(—25J)

no change with probability 1—exp(=2f/) !!!

Alternative: flip both!

- | ] P =exp(-2J/T)

@T ~ @ — | P=1-exp(-2J/T)
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Swendsen-Wang Cluster-Updates

* No critical slowing down (Swendsen and Wang, 1987) !!!

* Ask for each spin: “do we want to flip it against its neighbor?”

* antiparallel: yes

e parallel: costs energy P =exp(-2pJ)

* Accept with P =1—exp(-28])

e Otherwise: also flip neighbor!

* Repeat for all flipped spins => cluster updates

b v l vol— vV v Shall we flip neighbor?
‘ \ 4 ‘/ y 1/ y
v v
vl 7 Ve Done building cluster
Vo s Flip all spins in cluster
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The secret of Monte Carlo

* Small ideas are enough to make big progress

* However one needs the right idea - most unfortunately fail
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