
Quantum Monte Carlo

Matthias Troyer, ETH Zürich

1

1. Monte Carlo Integration

2

Integrating a function
• Convert the integral to a discrete sum

• Higher order integrators:
• Trapezoidal rule:

• Simpson rule:

f (x)dx
a

b

! =
b " a
N

f a + i
b " a
N

$

%

&
i=1

N

' + O(1/N)

f (x)dx
a

b

! =
b " a
N

1

2
f (a) + f a + i

b " a
N

$

%

&
i=1

N "1

' +
1

2
f (b)

$
(

%

&
) + O(1/N

2
)

f (x)dx
a

b

! =
b " a
3N

f (a) + (3" ("1)i) f a + i
b " a
N

$

%

&
i=1

N "1

' + f (b)

$
(

%

&
) + O(1/N

4
)

3

High dimensional integrals
• Simpson rule with M points per dimension

• one dimension the error is O(M-4)

• d dimensions we need N = Md points
the error is order O(M-4) = O(N-4/d)

• An order - n scheme in 1 dimension
is order - n/d d in d dimensions!

• In a statistical mechanics model with N particles we have
6N-dimensional integrals (3N positions and 3N momenta).

• Integration becomes extremely inefficient!

4

• What is the probability to win in Solitaire?
• Ulam’s answer: play it 100 times, count the number of wins and

you have a pretty good estimate

Ulam: the Monte Carlo Method

5

Throwing stones into a pond

• How can we calculate π by throwing stones?
• Take a square surrounding the area we want to measure:

• Choose M pairs of random numbers (x, y) and count how
many points (x, y) lie in the interesting area

π/4

6

Monte Carlo integration
• Consider an integral

• Instead of evaluating it at equally spaced points
evaluate it at M points xi chosen randomly in Ω:

• The error is statistical:

• In d>8 dimensions Monte Carlo is better than Simpson!

f = f (
!
x)d
!
x

!

" d
!
x

!

"

f !
1

M
f (
!
x i)

i=1

M

"

! =
Var f

M
" M

#1/ 2

Var f = f
2
f

2

7

Sharply peaked functions

• In many cases a function is large only in a tiny region
• Lots of time wasted in regions where the function is small
• The sampling error is large since the variance is large

wasted effort

8

Importance sampling

• Choose points not uniformly but with probability p(x):

• The error is now determined by Var f/p
• Find p similar to f and such that p-distributed random numbers are

easily available

f =
f

p
p

:=
f (
!
x)

p(
!
x)

p(
!
x)d
!
x

!

" d
!
x

!

"

p(x)

f(x)/p(x)

9

2. Generating Random Numbers

10

Random numbers
• Real random numbers are hard to obtain

• classical chaos (atmospheric noise)
• quantum mechanics

• Commercial products: quantum random number generators
• based on photons and semi-transparent mirror
• 4 Mbit/s from a USB device, too slow for most MC simulations

http://www.idquantique.com/
11

http://www.idquantique.com
http://www.idquantique.com

Pseudo Random numbers

• Are generated by an algorithm

• Not random at all, but completely deterministic

• Look nearly random however when algorithm is not
known and may be good enough for our purposes

• Never trust pseudo random numbers however!

12

Linear congruential generators
• are of the simple form xn+1=f(xn)
• A reasonably good choice is the GGL generator

with a = 16807, c = 0, m = 231-1
• quality depends sensitively on a,c,m

• Periodicity is a problem with such 32-bit generators
• The sequence repeats identically after 231-1 iterations
• With 500 million numbers per second that is just 4 seconds!
• Should not be used anymore!

xn +1 = (axn + c)modm

13

Lagged Fibonacci generators

• Good choices are
• (2281,1252,+)
• (9689,5502,+)
• (44497,23463,+)

• Seed blocks usually generated by linear congruential
• Has very long periods since large block of seeds
• A very fast generator: vectorizes and pipelines very well

xn = xn− p ⊗ xn− qmodm

14

More advanced generators
• As well-established generators fail new tests, better and

better generators get developed
• Mersenne twister (Matsumoto & Nishimura, 1997)
• Well generator (Panneton and L'Ecuyer , 2004)

• Number theory enters the generator design:
predicting the next number is equivalent to solving a very
hard mathematical problem

15

Are these numbers really random?
• No!

• Are they random enough?
• Maybe?

• Statistical tests for distribution and correlations

• Are these tests enough?
• No! Your calculation could depend in a subtle way on hidden

correlations!

• What is the ultimate test?
• Run your simulation with various random number generators and

compare the results

16

Marsaglia’s diehard tests

• Birthday spacings: Choose random points on a large interval. The spacings
between the points should be asymptotically Poisson distributed. The name is
based on the birthday paradox.

• Overlapping permutations: Analyze sequences of five consecutive random
numbers. The 120 possible orderings should occur with statistically equal
probability.

• Ranks of matrices: Select some number of bits from some number of random
numbers to form a matrix over {0,1}, then determine the rank of the matrix. Count
the ranks.

• Monkey tests: Treat sequences of some number of bits as "words". Count the
overlapping words in a stream. The number of "words" that don't appear should
follow a known distribution. The name is based on the infinite monkey theorem.

• Count the 1s: Count the 1 bits in each of either successive or chosen bytes.
Convert the counts to "letters", and count the occurrences of five-letter "words".

• Parking lot test: Randomly place unit circles in a 100 x 100 square. If the circle
overlaps an existing one, try again. After 12,000 tries, the number of successfully
"parked" circles should follow a certain normal distribution.

17

http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Birthday_paradox
http://en.wikipedia.org/wiki/Birthday_paradox
http://en.wikipedia.org/wiki/Rank_%28linear_algebra%29
http://en.wikipedia.org/wiki/Rank_%28linear_algebra%29
http://en.wikipedia.org/wiki/Infinite_monkey_theorem
http://en.wikipedia.org/wiki/Infinite_monkey_theorem
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution

Marsaglia’s diehard tests (cont.)

• Minimum distance test: Randomly place 8,000 points in a 10,000 x 10,000
square, then find the minimum distance between the pairs. The square of this
distance should be exponentially distributed with a certain mean.

• Random spheres test: Randomly choose 4,000 points in a cube of edge 1,000.
Center a sphere on each point, whose radius is the minimum distance to another
point. The smallest sphere's volume should be exponentially distributed with a
certain mean.

• The squeeze test: Multiply 231 by random floats on [0,1) until you reach 1.
Repeat this 100,000 times. The number of floats needed to reach 1 should follow a
certain distribution.

• Overlapping sums test: Generate a long sequence of random floats on [0,1).
Add sequences of 100 consecutive floats. The sums should be normally distributed
with characteristic mean and sigma.

• Runs test: Generate a long sequence of random floats on [0,1). Count ascending
and descending runs. The counts should follow a certain distribution.

• The craps test: Play 200,000 games of craps, counting the wins and the number
of throws per game. Each count should follow a certain distribution.

18

http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/Wald-Wolfowitz_runs_test
http://en.wikipedia.org/wiki/Wald-Wolfowitz_runs_test
http://en.wikipedia.org/wiki/Craps
http://en.wikipedia.org/wiki/Craps

Non-uniform random numbers

• we found ways to generate pseudo random numbers u in
the interval [0,1[

• How do we get other uniform distributions?
• uniform x in [a,b[: x = a+(b-a) u

• Other distributions:
• Inversion of integrated distribution
• Rejection method

19

Non-uniform distributions

• How can we get a random number x distributed with f(x) in
the interval [a,b[from a uniform random number u?

• Look at probabilities:

• This method is feasible if the integral can be inverted easily
• exponential distribution f(x)=λ exp(-λx)

• can be obtained from uniform by x=-1/λ ln(1-u)

P[x < y] = f (t)dt =: F(y) ≡
a

y

∫ P[u < F(y)]

⇒ x = F−1(u)

20

Normally distributed numbers
• The normal distribution

• cannot easily be integrated in one dimension but can be
easily integrated in 2 dimensions!

• We can obtain two normally distributed numbers from
two uniform ones (Box-Muller method)

f (x) = 1
2π
exp −x 2()

n1 = −2 ln(1 − u1) sinu2
n2 = −2 ln(1 − u1) cosu2

21

Rejection method (von Neumann)

• Look for a simple distribution h that bounds f: f(x) < λh(x)
• Choose an h-distributed number x

• Choose a uniform random number number 0 ≤ u < 1

• Accept x if u < f(x)/ λh(x),
otherwise reject x and get a new pair (x,u)

• Needs a good guess h to be efficient, numerical inversion of integral
might be faster if no suitable h can be found

f / h

x

reject

accept

u

x

u

22

3. The Metropolis Algorithm

23

• Evaluate phase space integral by importance sampling

• Pick configurations with the correct Boltzmann weight

• But how do we create configurations with that distribution?
The key problem in statistical mechanics!

Monte Carlo for classical systems

�A� ≈ A =
1
M

M�

i=1

Aci

�

�

A =
A(c)p(c)dc

Ω
∫

p(c)dc
Ω
∫

�

P[c] =
p(c)
Z

=
exp(−βE(c))

Z

24

I

G U E S T E D I T O R S ’

I N T R O D U C T I O N

the Top

• Metropolis Algorithm for Monte Carlo
• Simplex Method for Linear Programming
• Krylov Subspace Iteration Methods
• The Decompositional Approach to Matrix

Computations
• The Fortran Optimizing Compiler
• QR Algorithm for Computing Eigenvalues
• Quicksort Algorithm for Sorting
• Fast Fourier Transform
• Integer Relation Detection
• Fast Multipole Method

25

The Metropolis Algorithm (1953)

26

• Instead of drawing independent samples ci we build a Markov chain

• Transition probabilities Wx,y for transition x → y need to satisfy:

• Normalization:

• Ergodicity: any configuration reachable from any other

• Balance: the distribution should be stationary

• Detailed balance is sufficient but not necessary for balance

Markov chain Monte Carlo

�

c1 → c2 → ...→ ci → ci+1 → ...

�

∀x,y ∃n : W n()x,y
≠ 0

�

Wx,y
y
∑ = 1

�

0 =
d
dt
p(x) = p(y)Wy,x

y
∑ − p(x)Wx,y

y
∑ ⇒ p(x) = p(y)Wy,x

y
∑

�

Wx,y

Wy,x
=
p(y)
p(x)

27

• Teller’s proposal was to use rejection sampling:

• Propose a change with an a-priori proposal rate Ax,y

• Accept the proposal with a probability Px,y

• The total transition rate is Wx,y =Ax,y Px,y

• The choice

satisfies detailed balance and was first proposed by
Metropolis et al

The Metropolis algorithm

�

Px,y= min 1,
Ay,x p(y)
Ax,y p(x)

⎡

⎣
⎢

⎤

⎦
⎥

28

1. Pick a random spin and propose to flip it

2. Accept the flip with probability

3. Perform a measurement independent of whether the
proposed flip was accepted or rejected!

Metropolis algorithm for the Ising model

P =min 1,e−(Enew −Eold)/T⎡⎣ ⎤⎦

29

Equilibration

• Starting from a random initial configuration it takes a while to reach
the equilibrium distribution

• The desired equilibrium distribution is a left eigenvector with
eigenvalue 1 (this is just the balance condition)

• Convergence is controlled by the second largest eigenvalue

• We need to run the simulation for a while to equilibrate and only
then start measuring

�

p(x, t) = p(x) + O(exp(−λ2t))�

p(x) = p(y)Wy,x
y
∑

30

4. Monte Carlo Error Analysis

31

Monte Carlo error analysis
• The simple formula

is valid only for independent samples

• The Metropolis algorithm gives us correlated samples!
The number of independent samples is reduced

• The autocorrelation time is defined by

�

ΔA =
Var A
M

�

ΔA =
Var A
M

1+ 2τA()

�

τA =
Ai+ t Ai − A 2()

t=1

∞

∑
Var A

32

Binning analysis
• Take averages of consecutive measurements: averages become less

correlated and naive error estimates converge to real error

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

�

Ai
(l) = 1

2
A2i−1
(l−1) + A2i

l()A1
(1) A2

(1) A3
(1) A4

(1) A5
(1) A6

(1) A7
(1) A8

(1)

A1
(2) A2

(2) A3
(2) A4

(2)

A1
(3) A2

(3)

�

Δ(l) = Var A(l) M (l) l→∞⎯ → ⎯ ⎯ Δ = (1+ 2τA)Var A M

τA = lim
l→∞

1
2
2lVar A(l)

Var A(0)
−1

⎛

⎝
⎜

⎞

⎠
⎟

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 2 4 6 8 10

L = 4
L = 48

Δ(l)

binning level l

a smart implementation needs only O(log
(N)) memory for N measurements

converged

not converged

33

Seeing convergence in ALPS
• Look at the ALPS output in the first hands-on session

• 48 x 48 Ising model at the critical point

• local updates:

• cluster updates:

34

Correlated quantities

• How do we calculate the errors of functions of correlated
measurements?

• specific heat

• Binder cumulant ratio

• The naïve way of assuming uncorrelated errors is wrong!
• It is not even enough to calculate all crosscorrelations due

to nonlinearities except if the errors are tiny!

�

cV =
E 2 − E 2

T 2

�

U =
m4

m2 2

35

Splitting the time series
Simplest idea: split the time series and evaluate for each segment

X

Y
X1 X2 X3 ... XM

Y1 Y2 Y3 ... YM

U=f(X,Y)
U1 U2 U3 ... UM

Problem: can be unstable and noisy for nonlinear functions such as X/Y
�

U ≈U =
1
M

Ui
i=1

M

∑

�

ΔU ≈
1

M(M −1)
Ui −U ()2

i−1

M

∑

36

Jackknife-analysis
Evaluate the function on all and all but one segment

f(X1,Y1) f(X2,Y2) f(X3,Y3) ... f(XM,YM)

�

U0 =
1
M

f (Xi,Yi)
i=1

M

∑

f(X1,Y1) f(X2,Y2) f(X3,Y3) ... f(XM,YM)

�

U1 =
1

M −1
f (Xi,Yi)

i=2

M

∑

...
f(X1,Y1) f(X2,Y2) f(X3,Y3) ... f(XM,YM)

�

U j =
1

M −1
f (Xi,Yi)

i=1
i≠ j

M

∑

...

......

�

ΔU ≈
M −1

M
Ui −U ()2

i−1

M

∑
�

U ≈U0 − (M −1)(U −U0)

�

U =
1
M

Ui
i=1

M

∑

37

ALPS Alea library in C++
• The ALPS class library implements reliable error analysis

• Adding a measurement:

alps::RealObservable mag;
…
mag << new_value;

• Evaluating measurements

std::cout << mag.mean() << “ +/- “ << mag.error();
std::cout “Autocorrelation time: “ << mag.tau();

• Correlated quantities?
• Such as in Binder cumulant ratios

• ALPS library uses jackknife analysis to get correct errors

alps::RealObsEvaluator binder = mag4/(mag2*mag2);
std::cout << binder.mean() << “ +/- “ << binder.error();

�

m4 m2 2

38

ALPS Alea library in Python
• The ALPS class library implements reliable error analysis

• Adding a measurement:

mag = pyalps.pyalea.RealObservable(‘Magnetization’);
…
mag << new_value;

• Evaluating measurements

print mag.mean, “ +/- “, mag.error;
print “Autocorrelation time: “, mag.tau;

• Correlated quantities?
• Such as in Binder cumulant ratios

• ALPS library uses jackknife analysis to get correct errors

print mag4/(mag2*mag2) �

m4 m2 2

39

5. Cluster updates:
The Swendsen-Wang algorithm

The loop algorithm

40

Autocorrelation effects

• The Metropolis algorithm creates a Markov chain

• successive configurations are correlated, leading to an
increased statistical error

• Critical slowing down at second order phase transition

• Exponential tunneling problem at first order phase transition

c1 → c2 → ...→ ci → ci+1 → ...

ΔA = A − A()2 = Var A
M

(1+ 2τA)

τ ∝L2

τ ∝exp(Ld−1)
41

• Local updates cannot change global topological properties
• number of world lines (particles, magnetization) conserved

• winding conserved

• braiding conserved

• cannot sample grand-canonical ensemble

• Critical slowing down at second order phase transitions
• solved by cluster updates (today)

• Tunneling problem at first order phase transitions
• solved by extended sampling techniques (Thursday)

Problems with local updates

42

• Energy of configurations in Ising model
• – J if parallel:
• + J if anti-parallel:

• Probability for flip
• Anti-parallel: flipping lowers energy, always accepted

• Parallel:

no change with probability, , !!!

From local to cluster updates

�

ΔE = −2J⇒ P =min 1,e−2ΔE /T() =1

�

ΔE = +2J⇒ P =min 1,e−2ΔE /T() = exp(−2βJ)

�

1− exp(−2βJ)

Alternative: flip both!

�

P = exp(−2J /T)
P =1− exp(−2J /T)

43

?

??

√?

√?
√

?

??

√

√

?

?

√

√

√

√ √

√√

• No critical slowing down (Swendsen and Wang, 1987) !!!
• Ask for each spin: “do we want to flip it against its neighbor?”

• antiparallel: yes

• parallel: costs energy

• Accept with ,

• Otherwise: also flip neighbor!

• Repeat for all flipped spins => cluster updates

Swendsen-Wang Cluster-Updates

�

P = exp(−2βJ)

�

P =1− exp(−2βJ)

√

√ ?

√

√

√

√ √

√√

√

√√

√

√

√

√

√ √

√√

√

√

?

?

√

√

√

√

√

√ √

√√

√

√

√

√

√

√

√

√

√

√ √

√√

√

√

√

√

Shall we flip neighbor?

Done building cluster
Flip all spins in cluster

44

The secret of Monte Carlo

• Small ideas are enough to make big progress
• However one needs the right idea - most unfortunately fail

45

