# Measurement at the Quantum Frontier

JILA, NIST & Dniv. of Colorado

Jun Yg

Boulder Summer School, July 23, 2018

## Opportunities for AMO/quantum physics

Probe fundamental physics & emerging phenomena with "clock" precision and control



Spin manybody

#### Table-top search for new physics



Kolkowitz *et al.,* PRD (2016).

## Lecture outlines

#### Lecture I

- Simple atomic physics
- Basic quantum physics
- Basic laser science

→ The ingredients for control & measurement of quantum coherence

#### Lecture II

- Atomic interactions
- Spin Hamiltonians
- Emergence of complexity from simple ingredients
- → A new frontier: quantum metrology & many-body physics

## Lecture outlines

#### Lecture III

- Broad scientific motivations for cold molecules
- Technology developments
- Quantum degenerate gas of polar molecules

 $\rightarrow$  A new playground for quantum physics and chemistry

## Probes for fundamental physics

Kómár *et al.,* Nat. Phys. **10**, 582 (2014); Kolkowitz *et al.*, Phys. Rev. D **94**, 124043 (2016).



# Network of clocks (**10**<sup>-21</sup>): long baseline interferometry







## Time Scales

Quantum pendulum period: 10<sup>-15</sup> s 0.000,000,000,000,001 seconds The geometric mean ~30 s

Sr atoms:

- ${}^{1}S_{0} \leftrightarrow {}^{3}P_{0}$  (160 s)
- $Q \sim 10^{17}$





Life of the Universe: 15 billion years (10<sup>18</sup> s) 1000,000,000,000,000,000 seconds

### Quantum Certainty & Uncertainty



## Standard quantum limit



## Recipe for a good spectroscopy signal



$$\sigma_{\rm QPN}(\tau) = \frac{1}{\omega T \sqrt{N}} \sqrt{\frac{T + T_{\rm d}}{\tau}}$$

## Sync the laser to the atom

## Laser is the Central Ruler of Time & Space

"The METER is the length of the path travelled by light in vacuum during a time interval of 1/299792458 seconds ."





Time/Frequency is the most accurately measureable quantity.

Length is linked to Time via c.

## Optical cavity length

Cavity length  $L \simeq 1 \text{ m} \rightarrow \Delta L \simeq 10^{-16} \text{ m}$  (size of a nucleus:  $10^{-14} \text{ m}$ )





Vibration noise: symmetric mounting

Pressure noise  $\Delta n/n$ : vacuum ~10<sup>-7</sup> torr

Spurious optical interference, etc

## Laser is the Central Ruler of Time & Space Cavity length $L \sim 1 \text{ m} \rightarrow \Delta L \sim 10^{-16} \text{ m}$ (size of a nucleus: $10^{-14} \text{ m}$ )



Complex (lossy) Young's modulus:  $E = E_0 [1 + i/Q(\omega)]$ 

thermal noise

#### Bishof et al., PRL 111, 093604 (2013).

## Thermal Noise: a challenge for all !

- The best interferometers (at all scales) are thermal noise limited
- Many scientific communities attempting to make similar advances

**15 μm** 











## Pushing optical coherence to ~ 1 minute





Single mode cw laser







Laser Cavity



3 modes

### Time - frequency correspondence (from one optical frequency to many)

- Temporal pulse width ↔ Spectrum bandwidth
- Train of pulses → comb of frequencies



## Control of light -

DIGITAL synthesis of electromagnetic spectrum

A stable laser delivers phase coherence anywhere from IR to UV.



### Time is relative - Motion is "bad"





# Cooling atoms with light

Chu, Cohen-Tannoudji, Phillips

## Atomic Fountain Clock



First realization (Stanford 1989):

Coherence time: 0.25 s Accuracy: 10<sup>-9</sup> Big improvements ahead



microwave wavelength

= 10<sup>5</sup> x optical wavelength

#### **Optical wave front**

Atom

#### Radio wave front

Atom

#### Sr atoms - A tale of twin electrons



### Dilfufateentsip In Lånde giffestaturer





## Holding atoms with light







Å,

## Holding atoms in a magic light bowl





## Crossing of polarizabilities



## Quantum state control

Ye, Kimble, Katori, Science **320**, 1734 (2008).





- Doppler, recoil, trap shifts = 0
- Precision improvement by  $N^{1/2}$

✤ At 10<sup>-18</sup> accuracy, atomic interactions can be controlled

Opportunity to harness quantum many-body science for precision gains

## Putting all ingredients together



# Reaching the Cs primary standard Ludlow et al., Science 319, 1805 (2008). (10<sup>-16</sup>)

JILA, Tokyo, SYRTE, PTB, Firenze, INRIM, NICT, NIM, NPL, NRC





#### Local Lorentz Invariance

Fundamental constants & gravitational potential

S. Blatt *et al.,* Phys. Rev. Lett. **100**, 140801 (2008).



### A new frontier for clock stability & accuracy



#### State-of-the-art clock comparison



### **Collision** between identical Fermions



$$|\psi_{0}
angle |\psi_{1}
angle - |\psi_{1}
angle |\psi_{0}
angle$$

• Ultracold  $\rightarrow$  lowest possible angular momentum collision channel

• Fermions  $\rightarrow$   $I = 1\hbar$ , *p*-wave collisions



## Precision metrology meets many-body physics

