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Fly-Tracking Device: 
 
 Towards achieving the ends discussed previously, I have developed a prototype fly tracking apparatus 
in collaboration with Joshua Shaevitz (Physics, Princeton).  This device consists of three cameras and three 
high-power LEDs mounted atop an X-Y translation stage (Fig. 1A).  One of these cameras points directly 
downward, and the remaining two cameras are pointed at 40 degrees from the vertical. All three cameras are 
aligned to image the same 3D voxel in space and the magnification is set using custom optics such that a 
single fly takes up about 10% of 
the area in each camera frame 
(Fig. 1B). The alignment 
matrices of the cameras are 
determined by fitting the matrix 
components to the motion of a 
test object given a known 
trajectory from a calibrated 
translation stage. The LEDs are 
directed at each camera and 
create a backlit illumination.  
 The cameras are synced 
in time and images from all 
three cameras are recorded via 
computer at a rate of 100 Hz and 
are stored to disk. In addition, a 
centroid tracking algorithm 
calculates the position of the fly 
within the frame of the overhead 
camera. This position is used to 
update the position of the X-Y stage 
in a PID feedback routine to ensure 
that the fly remains in the field-of-
view of the cameras as it moves in 2D along a surface.  In the current implementation, a single fly is 
contained in a 100mm Petri dish mounted on a fixed pillar cantilevered into the filming region.  We have been 
able to record hundreds of thousands of images in this setup with relatively few problems caused by flies 
walking up the walls of the dish. However, as we move to a higher-throughput acquisition mode, we will 
likely have to further restrict the flies’ vertical motion using techniques such as those developed by Simon and 
Dickinson (2010). 

 
Image Analysis and Dimensionality Reduction: 
 
 Data from this device provides us with 100,000 frames every six minutes, an amount of data that is 
past the limits of human analysis.  Accordingly, a major challenge of this approach is to develop appropriate 
analysis methods that can cope with the high data capture rate. The analysis scheme must yield unique 
insights into the system under study while at the same time minimizing arbitrariness, anthropomorphism, and 
other pitfalls of traditional coding techniques.  With these goals in mind, we utilize techniques and ideas from 
the fields of computer vision, machine learning, and nonlinear dynamics to track fly movements, to 
parameterize these motions, and to categorize behaviors. 
 Our first goal is to segment the fly from the background of the image – a process achieved through a 
custom-written code utilizing canny edge detection (Canny, 1986) and a sparse field Chan-Vese level-set 
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VISUALIZING DATA USING T-SNE

that are at a moderate distance from datapoint i will have to be placed much too far away in the
two-dimensional map. In SNE, the spring connecting datapoint i to each of these too-distant map
points will thus exert a very small attractive force. Although these attractive forces are very small,
the very large number of such forces crushes together the points in the center of the map, which
prevents gaps from forming between the natural clusters. Note that the crowding problem is not
specific to SNE, but that it also occurs in other local techniques for multidimensional scaling such
as Sammon mapping.

An attempt to address the crowding problem by adding a slight repulsion to all springs was pre-
sented by Cook et al. (2007). The slight repulsion is created by introducing a uniform background
model with a small mixing proportion, ρ. So however far apart two map points are, qi j can never fall
below 2ρ

n(n−1) (because the uniform background distribution is over n(n−1)/2 pairs). As a result, for
datapoints that are far apart in the high-dimensional space, qi j will always be larger than pi j, leading
to a slight repulsion. This technique is called UNI-SNE and although it usually outperforms stan-
dard SNE, the optimization of the UNI-SNE cost function is tedious. The best optimization method
known is to start by setting the background mixing proportion to zero (i.e., by performing standard
SNE). Once the SNE cost function has been optimized using simulated annealing, the background
mixing proportion can be increased to allow some gaps to form between natural clusters as shown
by Cook et al. (2007). Optimizing the UNI-SNE cost function directly does not work because two
map points that are far apart will get almost all of their qi j from the uniform background. So even
if their pi j is large, there will be no attractive force between them, because a small change in their
separation will have a vanishingly small proportional effect on qi j. This means that if two parts of
a cluster get separated early on in the optimization, there is no force to pull them back together.

3.3 Mismatched Tails can Compensate for Mismatched Dimensionalities

Since symmetric SNE is actually matching the joint probabilities of pairs of datapoints in the high-
dimensional and the low-dimensional spaces rather than their distances, we have a natural way
of alleviating the crowding problem that works as follows. In the high-dimensional space, we
convert distances into probabilities using a Gaussian distribution. In the low-dimensional map, we
can use a probability distribution that has much heavier tails than a Gaussian to convert distances
into probabilities. This allows a moderate distance in the high-dimensional space to be faithfully
modeled by a much larger distance in the map and, as a result, it eliminates the unwanted attractive
forces between map points that represent moderately dissimilar datapoints.

In t-SNE, we employ a Student t-distribution with one degree of freedom (which is the same
as a Cauchy distribution) as the heavy-tailed distribution in the low-dimensional map. Using this
distribution, the joint probabilities qi j are defined as

qi j =
(
1+∥yi− y j∥2

)−1

∑k≠l (1+∥yk− yl∥2)−1
. (4)

We use a Student t-distribution with a single degree of freedom, because it has the particularly
nice property that

(
1+∥yi− y j∥2

)−1 approaches an inverse square law for large pairwise distances
∥yi− y j∥ in the low-dimensional map. This makes the map’s representation of joint probabilities
(almost) invariant to changes in the scale of the map for map points that are far apart. It also means
that large clusters of points that are far apart interact in just the same way as individual points, so the
optimization operates in the same way at all but the finest scales. A theoretical justification for our
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where Y (t) indicates the solution at iteration t, η indicates the learning rate, and α(t) represents the
momentum at iteration t.

In addition, in the early stages of the optimization, Gaussian noise is added to the map points
after each iteration. Gradually reducing the variance of this noise performs a type of simulated
annealing that helps the optimization to escape from poor local minima in the cost function. If the
variance of the noise changes very slowly at the critical point at which the global structure of the
map starts to form, SNE tends to find maps with a better global organization. Unfortunately, this
requires sensible choices of the initial amount of Gaussian noise and the rate at which it decays.
Moreover, these choices interact with the amount of momentum and the step size that are employed
in the gradient descent. It is therefore common to run the optimization several times on a data set
to find appropriate values for the parameters.4 In this respect, SNE is inferior to methods that allow
convex optimization and it would be useful to find an optimization method that gives good results
without requiring the extra computation time and parameter choices introduced by the simulated
annealing.

3. t-Distributed Stochastic Neighbor Embedding

Section 2 discussed SNE as it was presented by Hinton and Roweis (2002). Although SNE con-
structs reasonably good visualizations, it is hampered by a cost function that is difficult to optimize
and by a problem we refer to as the “crowding problem”. In this section, we present a new technique
called “t-Distributed Stochastic Neighbor Embedding” or “t-SNE” that aims to alleviate these prob-
lems. The cost function used by t-SNE differs from the one used by SNE in two ways: (1) it uses a
symmetrized version of the SNE cost function with simpler gradients that was briefly introduced by
Cook et al. (2007) and (2) it uses a Student-t distribution rather than a Gaussian to compute the sim-
ilarity between two points in the low-dimensional space. t-SNE employs a heavy-tailed distribution
in the low-dimensional space to alleviate both the crowding problem and the optimization problems
of SNE.

In this section, we first discuss the symmetric version of SNE (Section 3.1). Subsequently, we
discuss the crowding problem (Section 3.2), and the use of heavy-tailed distributions to address this
problem (Section 3.3). We conclude the section by describing our approach to the optimization of
the t-SNE cost function (Section 3.4).

3.1 Symmetric SNE

As an alternative to minimizing the sum of the Kullback-Leibler divergences between the condi-
tional probabilities p j|i and q j|i, it is also possible to minimize a single Kullback-Leibler divergence
between a joint probability distribution, P, in the high-dimensional space and a joint probability
distribution, Q, in the low-dimensional space:

C = KL(P||Q) =∑
i
∑
j
pi j log

pi j
qi j

.

where again, we set pii and qii to zero. We refer to this type of SNE as symmetric SNE, because it
has the property that pi j = p ji and qi j = q ji for ∀i, j. In symmetric SNE, the pairwise similarities in

4. Picking the best map after several runs as a visualization of the data is not nearly as problematic as picking the model
that does best on a test set during supervised learning. In visualization, the aim is to see the structure in the training
data, not to generalize to held out test data.
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Figure 10: Orbits in posture space for head grooming (blue orbit) and anterior
leg motion (green orbit) behaviors, with the transition from grooming to leg
motions in red. The orbits are obtained using the Phaser algorithm, and the
transition trajectory is averaged across all instances of the transition with a
given duration. Leaving and entering orbit occurs near the point of highest
orbital velocity.
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Figure 11: Visualization of consistency in exit and entry phase for the transition
in figure 10. Color represents probability of exit/entry at a given point in orbit,
obtained by fitting a gaussian to the phase distribution. Grey circles indicate
peak exit/entry points.
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Much of systems-level neuroscience has focused on studying the 
neural circuit mechanisms that enable an individual organism to 
sense and navigate its environment. Recently though, there is 
mounting interest in the mechanisms that mediate social interactions 
between individuals (Amadei, Johnson et al, Nature, 2017).

However, natural social interactions between individuals are highly 
complex, prompting the need for computational tools to facilitate the 
characterization, quantification and modeling of social behavior in 
order to be able to study their neural circuit bases.

Here, we employed a behavioral mapping technique previously 
applied to fruit flies to measure anticipated social differences 
between socially interacting prairie voles, a premier rodent model for 
studying pair bonding behavior (Berman et al., 2014; Young and 
Wang, 2004).

Schematic of the recording apparatus.

1)

Overview of the data analysis pipeline. 

2)

The top-down view of the recorded image

3)

RESULTS

HYPOTHESIS

CONCLUSION 
• We created a preliminary behavioral space of vole behavior, 
based on two triads of voles. This space provides a representa-
tion for the animals’ stereotyped behaviors during the sessions 
(Figures 4 & 5). 

• Qualitatively and quantitatively, we see that regions within 
the map correspond to distinct stereotyped behaviors, and in 
both triads, we observed that behavioral maps for the same an-
imals varied across social context (e.g. the map of a male sub-
ject with its female partner was different from that of the male 
subject with the stranger female) (Figures 6, 7 & 8 ) . 

BACKGROUND
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Behavioral Space Probability Density 4)

Each peak in the distribution corresponds to a distinct stereotyped 
movement. The black lines are the boundaries found from a water-
shed transform and are included to guide the eye. 

We hypothesized that the trajectory of stereotyped social behaviors is 
predictable from a latent internal state of “pair-bondedness”; and that 
modeling the dynamics of this latent state enables quantitative 
prediction of future social interactions between pair-bonded prairie 
voles. Hence, we further hypothesized that the behavioral space of a 
vole with its partner would be different from the behavioral space of 
the same vole with a stranger.

MATERIALS AND METHODS
In order to quantify the social interaction, a pair of dyadic interactions 
for two groups of 3 voles ( “subject” male vole paired with either “part-
ner” female or “stranger” female voles - x2) were video recorded for 
three hours.  A “Partner” and “Subject” vole in a triad had been cohabi-
tated with each other for 48 hours in a home cage prior to video re-
cording. “Stranger” voles had not been cohabitated with, and were not 
related to, the Subject vole in its triad. The voles were placed in a re-
cording chamber separated with a transparent plexiglas (Figures 1 & 
2). Holes were drilled through the plexiglas to allow the two animals to 
see, smell and hear each other, but prevent direct contact. For video 
analysis, we applied a behavioral mapping technique previously ap-
plied to fruit flies to measure anticipated social differences between 
pairs of voles (Figure 3).

RGB CameraRecording 
Chamber

Raw images of the prairie voles are segmented from the background, 
rescaled to a reference size and then aligned, creating a stack of 
images in the co-moving and co-rotating frame of the vole. These 
images are then decomposed via PCA into a relatively 
low-dimensional set of time series. A Morlet wavelet transform is 
subsequently applied to these time series, creating a spectrogram for 
each postural mode separately. After normalization, each point in time 
is mapped into a two-dimensional plane via t-SNE. Lastly, a watershed 
transform is applied to a Gaussian-smoothed density over these 
points, isolating individual peaks from one another (Berman et al., 
2014).

FIRST TRIAD6)

Map of Partner, with Subject Map of Stranger, with Subject

Map of Subject, with Partner Map of Subject, with Stranger

SECOND TRIAD7)

Map of Partner, with Subject Map of Stranger, with Subject

Map of Subject, with Partner Map of Subject, with Stranger

Figure 6 and 7.  Comparison between the pair of dyadic interactions for two groups of 3 voles. The subjects in both cases show qualitatively different 
stereotyped behavior when interacting with their partners as to when they interact with the strangers. 
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• Apply methods to fully interacting voles without a barrier.

• Decipher whether stereotypy and predictability in behavior 
can be observable signatures of latent states.

• Combine behavioral space mapping with electrophysiology.

• Predict the underlying neural dynamics driving animals’ 
social interactions.

FUTURE DIRECTIONSThe graph represents the calculation of Jensen-Shannon (J-S) Divergence, 
a measure of distance between two distribution, where J-S Divergence is 
between 0 and 1. 0 means there is no difference between the distributions 
and 1 means there is complete difference between them. This quantita-
tively indicates that the subject’s interaction with the partner is different 
from its interaction with the stranger in both cases.

8) Behavioral Map Dissimilarity

Behavioral Map5)

Each colored region coarsely groups similar behavior patterns.
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