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phenotype and
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polyQ repeat length dependent, as is typical
of human disease. Unlike the SCA3 model,
pathogenic HD protein accumulates in the
nucleus but does not form obvious inclu-
sions. Fernandez-Funez et al. (19) similarly
found that full-length SCA1 protein bear-
ing a pathogenic polyQ repeat (SCA1Q82)
shows progressive neurodegeneration. Inter-
estingly, the control SCA1 protein with a
normal-length polyQ repeat (SCA1Q30) also
causes a rough eye phenotype, suggesting that

Figure 2
The chaperone Hsp70 suppresses polyQ-induced neurodegeneration,
general protein misfolding, and paraquat-induced oxidative stress.
(A–D) External eye pictures of 1 day-old flies. (A–B) Co-expression of
human Hsp70 suppresses (B) SCA3tr-Q78 induced neurodegeneration
(92). Genotype: w; UAS-SCA3tr-Q78(S) gmr-gal4 in trans to + (A) and
UAS-hsp70 (B). (C–D) Degenerate-like eye phenotype induced upon
expression of dominant negative Hsp70 (Hsp70.K71E) (3). (C) This
phenotype is mitigated by added Hsp70 activity (D). Genotype: w;
UAS-Hsp70.K71E/+ (C) and w; UAS-Hsp70.K71E in trans to UAS-Hsp70
(D). (E) Feeding the oxidative stress inducer paraquat to flies causes
toxicity. Ubiquitous expression of hsp70 mitigates toxicity, indicating a
protective role of Hsp70 in situations of oxidative stress. Flies (1–3 days
old) were fed sucrose-based food with 20 mM paraquat. Genotypes: w;
da-gal4/+ (driver line control), w; UAS-Hsp70 (transgene control) and w;
da-gal4 in trans to UAS-Hsp70.

pathogenicity of SCA1 disease protein may
depend on both the polyQ repeat length and
expression level of the protein. An SBMA fly
model using a pathogenic form of the andro-
gen receptor shows ligand-dependent neu-
rodegeneration (86). Strikingly, feeding an
agonist or antagonist ligand to flies induces
neurodegeneration, indicating that nuclear
localization is key. A pure polyQ repeat alone
is highly toxic in flies, inducing severe degen-
eration, underscoring the fundamental toxic
nature of a polyQ domain (41, 54).

Both overexpression and loss of function
of the Drosophila homolog of SCA2 (dSCA2)
disease gene causes tissue degeneration (76).
This is hypothesized to be due to actin fil-
ament disorganization, suggesting that the
normal cellular function of dSCA2 may be
necessary for cell integrity. RNAi-mediated
loss of function of the Drosophila homolog
of HD causes axonal transport defects and
degeneration in the eye, yielding a pheno-
type remarkably similar to overexpression of
pathogenic forms of the human HD gene (27).

These findings indicate that, in addition
to dominant toxicity of the polyQ expansion,
the non-polyQ content of each disease protein
may contribute to pathogenesis in a unique
way, leading to disease-specific characteris-
tics. These data also suggest that there are
cases where pathogenicity may interfere or re-
duce the normal function of the disease gene,
which contributes to the phenotype.

Modification Pathways of
Polyglutamine Degeneration
Chaperones as suppressors of polyQ
pathogenesis. A role of chaperones in polyQ
toxicity was suggested with the finding that
ubiquitinated nuclear inclusions sequester the
chaperone heat shock protein 40 (Hsp40)
in postmortem patient tissue sections and
cell culture models (12). Strikingly, di-
rected expression of the major stress-induced
chaperone hsp70 suppresses both SCA3 and
HD induced neurodegeneration in the fly
(Figure 2A,B) (9, 92). Chaperones function
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Fig. 3. (A) Total activity of females Canton-S flies recorded at 25 or 18 ◦C. Total activity is represented by the mean ± S.E.M. of the
total light-gate crosses (counts)/fly during an hour recording period. Number in each column indicates number of flies in each respective
group. ANOVA was performed: the P-value is represented by two asterisks (P < 0.001) (for details on recording condition, see Martin
et al., 1999a). Flies recorded at 18 ◦C exhibit about only 1/3 of the level of activity compared to the flies recorded at 25 ◦C. (B) Time
course of activity for the two groups of flies. Curves represent the mean±S.E.M. of total counts for successive 10-min periods. Same data
as in part A. The flies recorded at 18 ◦C exhibit a similar profile to control flies (25 ◦C): a reactivity component and a spontaneous activity.

5.2. Light regime

The light/dark cycle is another important factor
that can influence the locomotor activity. From the
extensive studies on circadian rhythm, it is well know
that flies exhibits a higher degree of activity during
the daylight phase than during the dark phase (see
Rouyer’s review, in this issue). However, this prob-
ably refers mainly to the spontaneous activity com-
ponent, since in these studies, the flies are generally
pre-adapted into the paradigm in a normal light/dark
cycle about 2 days before the recording begins. Con-
versely, it has been shown that when flies are recorded
in the locomotron, they exhibit a higher level of loco-
motor activity when they are recorded with the light
on, compared with the dark (see Fig. 4C in Martin
et al., 1999a). Obviously, part of this activity corre-
sponds to the reactivity component. Additionally, the
light intensity is also probably a parameter that could
influence the level of activity, but this last parameter
has not yet been thoroughly investigated.

5.3. Feeding condition and starvation

The third obvious factor that can play a major role
in the locomotor activity is the feeding condition of
the fly and its corollary, the starvation state. First, a

distinction should be made between a food regime and
starvation. A food regime relies on the food medium
and nutrient on which the flies have been raised all
along their successive developmental stages, while
starvation (or food deprivation) is the feeding state
of the fly when the locomotor recording occurred.
Curiously, we should note that the food regime has
never been directly studied, while studies exist on
the starvation state of the fly. For the latter, different
protocols have been applied, as well as various quanti-
tative methods. A general consensus is that starvation
increases the locomotor activity of the flies. This has
been reported by Connolly (1966b) using the “grid
square method”, by Bell et al. (1985) in the context of
food searching behaviour, by Knoppien et al. (2000)
with the radar wave method, as well as by Martin
(in preparation) with the Ethovision video-tracking
paradigm. Starved flies are much more active than
well-fed flies. However, up to now, no direct genetic
analysis has been directly dedicated to unravel such
difference. It would be interesting to correlate dif-
ferences in locomotor activity between the level of
starvation and trehalose content in the hemolymph.
In addition, what is the ecological significance of
such increase in locomotor activity? Since walking
consumes metabolic energy, the fly needs to optimise
the trade-off between costs and benefits of locomotor
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Figure 1. Male Drosophila Crossing a 3.5-mm-Wide Gap

Typical stages of a high-speed video sequence: (A) view on the
catwalk, (B) normal walking, (C) stepping into the gap, (D) freezing,
(E) leg-over-head behavior indicating start of climbing, (F) front legs
reach new side, (G and H) middle and hind legs follow, and (I) nor-
mal walking. Arrowheads indicate the time point of a given frame
on a linear timescale. Remaining time is in black, and time elapsed
since last-shown frame in gray.

whereas the major photoreceptors R1–R6 are neces-
sary and sufficient. Only R1–R6 feed into the motion-
vision system [5]. This fact hints at image motion as a
distance cue. Accommodation can be disregarded be-
cause the focal lengths of Drosophila’s cornea lenses

Figure 2. Gap-Crossing Performance at Different Gap Widths in
Wild-Type Flies and no receptor potential A Mutant Flies, Which
Are Entirely Blind

At least ten wild-type (WT) flies and ten no receptor potential A
(norpA) flies made at least ten approaches to the gap. At the end
of an approach, flies initiated successful or unsuccessful climbing
or walked off without initiating climbing. Error bars denote SEMs.

are fixed. Binocular disparity and vergence (conceiva-
bly brought about by displacement of both retinae [9])
could also be excluded as possible distance cues [10–
12] because flies showed unchanged climbing initiation
when the binocular region [5] of one eye was covered
with black paint (p > 0.3; Figure S2E). Motion parallax
and looming remain possible distance cues.

Locusts and mantids are known to evoke motion par-
allax by conspicuous bobbing (up-down) or peering (side-
ways) head displacements [11], which often require
compensatory head rotations for gaze stabilization.
When we glued the heads of ten flies to their thoraces
to interfere with putative head movements (Figure S2G),
flies nevertheless showed unchanged climbing initia-
tion (p > 0.7). Moreover, the high-speed recordings of
the heads of ten flies showed no evidence for head dis-
placements as in mantids or locusts. Head displace-
ments were always a direct consequence of walking or
climbing. Therefore, gap width must be estimated dur-
ing the approach via either optic-expansion stimuli as-
sociated with the forward translation (looming; used
e.g., for landing [13]) or parallax-motion stimuli created
by latero-lateral head movements in space by the me-
chanics of walking [14]. Parallax motion is also the pre-
dominant cue for distance estimation during orientation
tasks in flies [10] and in other insects [11].

To narrow down the choice of features that could
carry the distance information, we manipulated the ap-
pearance of the distal side and presented either the
top or the front surfaces alone (Figures S2I–S2K). The
climbing initiation toward the isolated front surface was
not significantly lower than on the standard walkway
(p > 0.6). However, the initiation toward the top surface
alone was considerably below normal (p < 0.03). Obvi-
ously, the front surface alone carries sufficient distance
cues for normal climbing initiation.

To test whether the gap-width estimation can be bi-
ased by variations in pattern contrast, we decorated
the opposing vertical wall of the gap with two white
stripes, either horizontal or vertical (Figures S2L–S2N).
The vertical decoration increased the climbing initiation
significantly (p < 0.05) and elicited the same response
as a closer opposite wall. The observation is paralleled
by orientation experiments in which walking flies ap-
proached vertically striped objects more frequently
than dark objects of equal size at the same distance
[15]. It is likely that the stronger stimulation of the mo-
tion-based distance-estimation system by the vertical
stripes was mistaken for proximity in both paradigms.
The effectiveness of the vertical but not the horizontal
stripes suggests that gap-width information is ex-
tracted from horizontal movements, such as the latero-
lateral head movements in space, that are associated
with the mechanics of walking.

In summary, image motion from vertical edges at the
front surface of the opposite wall is the most important
distance cue. Because motion is most likely sampled
during the approach and probably read out only upon
tactile contact with the gap, a subsecond memory is
postulated to bridge the time gap. Short-term storage
in walking flies is known also from visual-orientation ex-
periments with disappearing landmarks [16]. Humans
also analyze an obstacle before they actually reach it
[17]. Our gaze already fixates the obstacle some steps
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Is the dopaminergic pathwayconnected to short-term
up-regulation of the cAMP pathway? Drinking alcohol
has been shown to cause an increase in dopamine re-
lease in the nucleus accumbens, one of the targets of
the ventral tegmental area. Dopamine receptors can act
through a Gprotein–coupled system to activate adenylyl
cyclase (AC) and hence cAMP synthesis. Since the nu-
cleus accumbens is believed to play a role in motiva-
tional states (well-being, pleasure, etc.), it has been im-
plicated in reinforcing the action of some drugs through
cAMP metabolism (Diamond and Gordon, 1997; Nestler
and Aghajanian, 1997). Addiction may result from a re-
sponse in which the continuous stimulation of the cAMP
pathway by ethanol is counteracted by a constitutive
down-regulation of the pathway during chronic exposure.
This down-regulation can then bepartially compensated
by ethanol, which would temporarily up-regulate or acti-
vate thepathway, thereby relieving the symptoms created
by the down-regulation of the pathway. The opposite
adaptation may occur in different neuronal subpopula-
tions or with different drugs (Nestler and Aghajanian,
1997).
One of the major issues with the interpretations of

the studies of ethanol-induced changes in cell culture
systems is their relevance to the pathophysiological
effects of alcoholism in humans. It has been argued
that such in vitro observations have relevance because
circulating lymphocytes of chronic alcoholics exhibit
changes similar to those observed in some cell culture
assays, e.g., reduced ACactivity. Moreover, studieswith Figure 2. The Inebriometer
alcohol-preferring rats and mice have in certain in- The apparatus in this cartoon consists of a tank filled with ethanol
stances substantiated some of the in vitro observations that is perfused with air. The ethanol vapor is mixed with air to
(for review, see Diamond and Gordon, 1997). However, obtain the desired concentration of ethanol vapor. This mixture of

ethanol and air flows through a columnwith plastic baffles. Unanes-the direct in vivo relevance of many of the discussed
thetized flies are poured into the top of the column. The flies canobservations remains to be established.
hold on to the baffles until they are too inebriated, upon which theyIndividuals who are less sensitive at a young age to fall down and elute out of the column. The mean elution time (MET)the effects of alcohol tend to be much more prone to varies between 10 and 32 min, depending on the mutant strain or

alcoholism than those who aremore sensitive (Schuckit, if the fly strain has been selected for ethanol resistance.
1994). Moreover, lower or higher sensitivity to ethanol
appears to be influenced genetically in humans and ro-

instrument, the inebriometer (see cover and Figure 2).dent model systems (Crabbe et al., 1994), and alcohol-
First described by Cohan and Graf (1985), the inebrio-ism seems to have an hereditary component in some
meterwas used tomeasure ethanol resistance in naturalfamilies (Cloninger, 1987). Hence, it is now obvious that
Drosophila populations derived from different latitudes.there is a genetic component in ethanol abuse and ad-
In brief, the flies are transferred to a long vertical glassdiction, but the molecular mechanisms underlying the
column through which ethanol vapor is pumped. As thesensitivity to alcohol or alcoholism are unknown.
flies become uncoordinated, they roll down a series ofEthanol Intoxication in Drosophila Is Modulated
baffles, very much like proteins eluting from a sizingthrough the cAMP Pathway
column (Figure 2). The mean elution times of variousIn this issue of C ell, Mooreet al. (1998) break newground
mutant fly strains permitted comparison of resistanceby providing compelling evidence that cAMP metabo-
to ethanol vapor, providing an assay for the isolationlism indeed plays an important role in vivo in the acute
of ethanol-sensitive and -resistant mutants. It is worthresponse to ethanol in fruit flies. They show that lack
noting that concentrations of ethanol that produce un-of the amnesiac gene, a previously isolated learning
coordinated flies also affect human behavior. Inebriatedmutant, increases sensitivity to alcohol. In addition, the
flies contain as much as 50 mM ethanol, which corre-authors provide evidence that genetic and pharmaco-
sponds to 0.2%, a concentration that seriously impairslogical manipulations of cAMP levels in vivo modify the
most normal human behaviors (the legal limit for drivingsensitivity to ethanol.
in many countries is at or below 0.1%).To initiate a genetic approach, the Heberlein labora-
Moore et al. (1998) performed a P element–inducedtory first investigated the behavior of fruit flies exposed

X chromosome mutagenesis screen for mutants thatto ethanol vapor. Ethanol vapor causes progressive be-
exhibit an abnormal mean elution profile from the inebri-havioral changes within a 20 min timespan, e.g., hyper-
ometer. They isolated various mutants, including a mu-activity, uncoordination, and sedation. To quantitate

ethanol sensitivity, they useda simplebut well-designed tation that was more sensitive to ethanol and allelic to

appearance (Fig. 8). In particular, we noted defects associ-
ated with the inner chiasm of the optic lobes and in the
central complex (CX), a structure that spans the protocere-

bral hemispheres and develops from the larval interhemi-
spheric commissure during larval and pupal stages (Han-
esch et al., 1989). The CX is composed of the four

FIG. 7. Walking and orientation behavior phenotype. (A–E) Walking traces. Single flies walked for 15 min on an elevated water-surrounded
platform of 85 mm diameter. simJ1–47/simH9 flies walk in circles (A–D) despite the two inaccessible landmarks (indicated by the vertical bars)
which keep wild type flies alternating between them for many hours (E, wild-type: Oregon-R). simJ1–47/simH9 flies have a preferred side to
which they almost always turn. (A) Five-minute walking traces from an extremely tight turning sim fly (arrowheads point to very high
frequency turning points). (B, C) Medium wide and a wide turning mutant sim fly. (D) Exceptional example of a simJ1–47/simH9 fly producing
a measurable orientation component toward the landmarks. (F) Mean occurrence frequency of certain error angles between the actual
walking direction (obtained every 0.2 s) and the straight direction toward the nearer, in angular terms, of the two landmarks (Buridan’s
paradigm) minus the respective frequency distribution for random search behavior in the absence of landmarks. N ! 11 flies per test group
(simJ1–47/simH9, wild type Oregon-R) were measured in random order each for 15 min in the Buridan situation and for 15 min in the empty
arena. On average, there is no measurable influence from the landmarks on the orientation behavior of mutant sim flies. (G) Mean track
length per 3-min bin. Same experimental groups as in (F). Regardless of the presence or absence of landmarks, sim mutant flies start with
about half the wild-type track length and decay significantly, whereas wild type flies tend to produce a more constant track length as soon
as their initial arousal from handling has decayed. The overall deficits in the track length of mutant sim flies are due to a drastically reduced
walking speed (H) and to a bisected activity (I;mean percentage of time spent walking). (J) Mutant sim female flies are more strongly affected
than mutant sim male flies. An insignificantly lower walking speed and lower activity in females combine to a significant deficit in mean
walked distance when compared with male sim flies (t-test, two-tailed: P " 0.05). All error bars indicate SEMs.
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7). Among the A307-Gal4 labeled neurons, one pair, located at
the dorsal-lateral edge of the brain, projects a prominent axon
tract along the dorsal-posterior surface to the dorsal-central
region of the brain, forming extensive dendritic connections (Fig.
7B-D; supplementary material Fig. S4). These neurons further
extend their projections anteriorly, establishing a complex axon
terminal structure with extensive varicosities and fine branches
above the antennal lobe region of the brain (Fig. 7E,F,K;
supplementary material Fig. S4). In dhtt-ko mutants, the axonal
projections of A307-positive neurons follow the same path and
their axons terminate at similar locations to those in wild-type
flies; this is consistent with the observation that dhtt does not
affect axonal integrity or pathfinding (Fig. 7G,H). Interestingly,
axonal termini from both wild-type and dhtt-ko flies show a
similar age-dependent maturation process, whereas axonal
termini in young adult brains are mainly composed of a network
of variable thin branches with no clearly recognizable synaptic
boutons (supplementary material Fig. S4C,F) (3-day-old flies).
Mature boutons develop as the animals age, with many prominent
boutons being easily identifiable in the brains of 40-day-old flies
(Fig. 7F,I; compare with supplementary material Fig. S4C,F).

Owing to the significant variation in their structure and the lack
of recognizable boutons, it is difficult to directly quantify and
compare the size of these axonal termini in young adults.
However, in aged dhtt-ko mutants, it is apparent that the axonal
termini contain a significantly reduced number of varicosities and
branches (Fig. 7H,I,N). Quantification of the total area covered
by each axonal terminus revealed that the A307-positive axonal
termini in 40-day-old dhtt-ko mutants cover about half of the area
compared with controls (Fig. 7R) (average area covered by each
axonal terminus: wild-type control=168.7±8.0 µm2, dhtt-ko
mutant=86.1±7.2 µm2; P<0.0001; total number of A307-positive
axonal termini quantified: wild-type control, n=18; dhtt-ko
mutants, n=17). To rule out the possibility that this reduced
complexity was because of the accelerated aging process or a
secondary effect associated with the reduced mobility of dhtt-ko
mutants, we examined the axonal termini of the A307-positive
neurons in 83-day-old wild-type flies, as animals at this age are
near the end of their life span and have severely reduced mobility.
The structure of the axonal termini in these flies is similar to that
of 40-day-old flies and shows no obvious reduction in terminal
complexity (supplementary material Fig. S5).

dmm.biologists.org254
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Fig. 5. Compromised mobility and viability of aging dhtt-ko mutants. (A) Spontaneous locomotion assay. dhtt-ko mutants show normal mobility at day 15
but older animals show significantly reduced mobility. (B) Age-dependent survival rate of adult animals. dhtt-ko mutants have a reduced life span. Both the
mobility and viability defects in dhtt-ko mutants were rescued by the presence of a dhtt genomic minigene construct (‘dhtt-ko Rescue’). Flies were collected from
at least three different batches. The total number of flies counted for viability quantification were: wild type, n=659; dhtt-ko, n=1573; dhtt-ko Rescue, n=804; elav-
Gal4/+; dhtt-ko, n=550. The difference between wild-type and dhtt-ko flies is statistically significant, P=0.0001, Student’s t-test. The difference between wild-type
and dhtt-ko Rescue flies is not statistically significant, P=0.36. The difference between wild-type and elav-Gal4/+; dhtt-ko flies is statistically significant, P<0.00001.
The data in (A,B) are presented as the means±s.e.m. (C) RT-PCR analysis confirmed that expression of endogenous dhtt was lost in dhtt-ko mutants (lane 3) but
was restored by the presence of the dhtt genomic minigene rescue construct (lane 4), similar to that in wild-type controls (lane 2). RT-PCR was performed on total
RNA samples extracted from adult animals of each of the indicated genotypes. Primers for RT-PCR were located in adjacent exons in the control rp49 gene (the
group of four wells on the left) or in neighboring exons at the N-terminal (targeting exons 5 and 6, dhtt-N), middle (targeting exons 13 and 15, dhtt-M) and C-
terminal (targeting exons 23 and 24, dhtt-C) regions of the dhtt gene (see Methods). The lane 1s are controls of PCR products from a wild-type genomic DNA
template using these primer pairs, which are longer than the RT-PCR products generated by the same pair of primers owing to the spliced-out introns, thus
confirming that RT-PCR products were indeed amplified from transcribed RNA templates. w1118: wild-type control.
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system, and they output time series indicating whether each  
animal is performing a given behavior in each video frame.

In this paper, we quantitatively show that JAABA: (i) works well 
across a wide range of behaviors and multiple species and organ-
ism body plans (adult Drosophila, mice and Drosophila larvae), 
(ii) is applicable to the diversity of behavior in screen-scale experi-
ments, (iii) is usable by biologists who are experts in behavior but 
not computer science and (iv) produces behavior statistics that 
can be used to understand subtle behavior differences between 
populations of animals.

The input to JAABA is video of the animals behaving as well 
as their trajectories. JAABA’s user interface (Fig. 1) allows users 
to observe this video and add labels to frames in which they are 
certain of the animals’ behavior. Users label a selected animal 
in a selected frame as either performing the given behavior  
(for example, ‘Touch’) or not (‘None’). These labels are the 
medium of communication through which users transmit their 
intuition to the underlying machine learning system (Fig. 1). The 
machine learning algorithm searches for the classifier function 
that inputs the trajectories and best reproduces these manual  
labels. Quickly, within 15–40 s, a new behavior classifier is trained, 
and visualizations of it and its performance are returned to the 
user. The user can investigate the classifier’s performance on any 
frame for the current animal or another animal in the same video 
or another video to understand the classifier’s current state and to 
find frames in which the classifier is either predicting incorrectly 
or has low confidence. The user can then label these frames,  
retrain the classifier and repeat (Supplementary Video 1).  
The final output of JAABA is the last classifier trained, which 
can be used to automatically annotate new (tracked) videos with 
high throughput.

JAABA has been adapted to work with the outputs of several 
tracking systems (Online Methods). Our fly behaviors were based 
on the trajectories output by Ctrax1, which consisted of the five-
dimensional ellipses fit to each fly (wing extension and double 
wing flick also use tracked wing positions). Mouse tracking out-
put was of a similar form, and the larva tracking output consisted 
of an 11-point skeleton and larva area.

JAABA first transforms these trajectories into a novel, efficient, 
general-purpose representation amenable to machine learning.  
A suite of ‘per-frame’ features are computed from the trajectory data,  
describing the state of the animal in the current frame: for example, 
the instantaneous speed of the animal (Fig. 1 and Supplementary 
Fig. 1a). From these, JAABA computes a general set of ‘window’ 
features that provide temporal context from a window around the 
current frame (Fig. 1 and Supplementary Fig. 1b). These novel 
window features are fast, yet they encode information in a manner 
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animal behavior
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We present a machine learning–based system for automatically 
computing interpretable, quantitative measures of animal 
behavior. Through our interactive system, users encode their 
intuition about behavior by annotating a small set of video 
frames. These manual labels are converted into classifiers 
that can automatically annotate behaviors in screen-scale 
data sets. Our general-purpose system can create a variety of 
accurate individual and social behavior classifiers for different 
organisms, including mice and adult and larval Drosophila.

Quantitative measurement of the behavior of model organisms is 
an important tool for understanding genetics, evolution, devel-
opment and the nervous system, and it has led to insights into 
human diseases and behaviors. Many applications involve large-
scale screens in which the behavior of thousands of animals must 
be compared. The scale of these experiments necessitates high-
throughput, automated approaches. For both large screens and 
smaller-scale experiments, accurate, detailed quantification of 
behavior will result in richer information about the effects of a 
manipulation and will enable discovery of subtle behavioral dif-
ferences undetectable through existing methods.

Video of behaving animals contains a wide breadth of detailed 
information about the behavior of the animals. Recently,  
computer-vision techniques have emerged for automatically 
tracking the animals1–5, transforming video data into trajectories 
of their positions over time.

We present our general-purpose, open-source software for 
allowing biologists to encode their intuition about the structure of 
behavior and to transform the trajectories output by these trackers 
into higher-order, scientifically meaningful statistics of behavior. 
Our system, the Janelia Automatic Animal Behavior Annotator 
(JAABA), uses state-of-the-art machine learning methods to allow 
users to create a variety of automatic behavior classifiers. These 
classifiers input the animals’ trajectories computed by a tracking  
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profiles observed and found an aver-
age error rate of 0.6% (Online Methods,  
Fig. 3 and Supplementary Table 3). We 
also confirmed by eye the classifiers’ per-
formance on lines automatically predicted 
to perform each behavior most (top 2%). 
Thus, we showed, for the first time to our 
knowledge, the successful use of machine 
learning to create behavior classifiers that 
accurately annotated a large set of pheno-
typically diverse data.

To show that the behavior statistics 
returned by JAABA could be used to detect 
and understand subtle behavioral differ-
ences between populations of animals,  
we performed three types of comparisons for adult flies: six strains 
of wild type, four starvation conditions and four age conditions. 
For each of these, we trained a logistic regression classifier to dis-
tinguish these subtly different strains or conditions on the basis 
of only the fraction of time the flies perform each of ten behav-
iors (Supplementary Note). We also investigated which behav-
iors the strains or conditions differed on, to better understand  
how they varied.

The six strains of wild-type Drosophila melanogaster (Berlin, 
Oregon-R, Dickinson and three populations of Canton-S) could 
all be reliably distinguished from each other with, on average, 
98% accuracy. Several interesting differences between the strains 
were found (Supplementary Fig. 4), including that Berlin flies 
performed the most touches and chases, whereas Dickinson flies 

performed the most jumps and righting maneuvers. Among the 
four starvation conditions compared (0, 6, 12 and 24 h starved), 
0-h starved flies could be reliably distinguished from 12- and 24-h-
starved flies with 93% and 92% accuracy, respectively. As expected, 
increased starvation corresponded with increased activity (less 
stopping, more walking); however, not all behaviors increased with 
starvation: jumping, righting and backing up were not significantly 
affected (Supplementary Fig. 5). The four age conditions (2, 6,  
13 and 20 d old) could all be reliably distinguished from each other 
with, on average, 91% accuracy (Supplementary Fig. 6).

As demonstrated with these analyses, applying multiple auto-
matic behavior detectors provided insight into how the indi-
vidual elements of the animals’ behaviors differed as well as a 
 powerful tool for detecting effects of experimental manipulations. 
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Figure 2 | Behavior detector accuracy across 
behaviors and organism types. (a– c) Each row 
corresponds to a different behavior. The first 
three columns with numeric values describe 
the total error rate, false negative (FN) rate 
and false positive (FP) rate on ground-truth 
data labeled as important. The fourth column 
indicates the total error rate on all labeled 
ground-truth data (important and unimportant). 
Using measured inter-annotator confusion 
rates, we determined that assessing error on 
important frames best measures the classifier’s 
performance (Online Methods). The average error 
rate over all behaviors was 1.9% for flies (a),  
5.2% for larvae (b) and 4.4% for mice (c). 
Complete results are shown in Supplementary 
Table 2. Right, selected frames from example 
intervals describing each behavior. For walk, 
crabwalk and chase, we overlaid the animals’ 
positions in each frame. Otherwise, each frame 
is drawn separately. For social behaviors (such 
as chase, touch and follow), we also show the 
animal that the labeled animal is interacting 
with. Animal color indicates time. Scale bars, 
2 mm for flies and larvae; 5 cm for mice. The 
main animal’s trajectory is plotted in gray. 
Its centroid position is indicated with a circle 
whose color indicates whether it is predicted as 
performing (red) or not performing (blue) the 
behavior by the automatic detectors. For wing 
grooming, tail pivot, center pivot and head 
cast, the first frame also indicates the animal’s 
position in every selected frame.
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amplitude a3 has a long tail (Figure 4A), and body shapes chosen
from these tails (Figure 4B) exhibit the V configuration classically
identified with large-angle turning behavior [10]. Large ampli-
tudes of a3 also correspond to gradual turns in the worm trajectory
along the agar (Figure 4C).

The fourth mode u4(s) contributes to the shape of the head and
tail region of the worm. Figure 2D shows that u4(s) captures a large
amount of the shape variance in those regions. Head movements
of the worm are likely important in foraging [17] and navigation
[18]. The emergence of a separate mode is likely due to the fact
that head of C. elegans can move independently of the body and is
controlled by a separate set of neck muscles.

The connections between mode amplitudes and the motion of
the worm along the agar—as in Figures 3D and 4C—are genuine
tests of the functional meaning of our low dimensional description.
Quite explicitly, our analysis of worm shapes is independent of the

extrinsic coordinates and hence our definition of modes and
amplitudes is blind to the actual position and orientation of the
worm. Of course, in order to move the worm must change shape,
and our description of the shape in terms of mode amplitudes
captures this connection to movement. Thus, to crawl smoothly
forward or backward the worm changes its shape by rotating
clockwise or counterclockwise in the plane formed by the mode
amplitudes a1 and a2; the speed of crawling is set by the speed of
the rotation. Similarly, to change direction the worm changes
shape toward larger magnitudes of the mode amplitude a3, and we
see this connection even without defining discrete turning events.

Attractors and Behavioral States
The eigenworms provide a coordinate system for the postures

adopted by C. elegans as it moves; to describe the dynamics of
movement we need to find equations of motion in this low

Figure 2. Covariance of shape fluctuations and eigenworms. (A) The covariance matrix of fluctuations in angle C(s, s9). The inhomogeneity
along the diagonal shows that the normal modes of the motion are not sinusoidal but the smooth structure of C(s, s9) means that a small number of
modes are significant. (B) We find the eigenvalues of C(s, s9) and compute s2

K, the fraction of the total variance (integrated along the body of the
worm) captured by keeping K modes (see Materials and Methods). (C) Associated with each dominant mode is an eigenvector and we refer to these
as eigenworms u m(s). The population-mean eigenworms (red) are highly reproducible across individual worms (black). (D) The fraction of variance, s̃2

K,
at each point along the body curve captured by keeping K modes (K = 1 to 4, from bottom to top curve). The overall error in reconstruction of the
worm body curve decreases as the number of modes increases, but does so inhomogeneously. (E) In response to strong thermal stimuli,
reconstructions using the eigenworms of spontaneous crawling continue to account for most of the shape variance. Worm images are recorded at
times synchronized to a heat pulse and we display s2

K aligned with this pulse (red line). (K = 1 to 4, from bottom to top curve).
doi:10.1371/journal.pcbi.1000028.g002

C. elegans Motor Behavior

PLoS Computational Biology | www.ploscompbiol.org 3 April 2008 | Volume 4 | Issue 4 | e1000028

amplitude a3 has a long tail (Figure 4A), and body shapes chosen
from these tails (Figure 4B) exhibit the V configuration classically
identified with large-angle turning behavior [10]. Large ampli-
tudes of a3 also correspond to gradual turns in the worm trajectory
along the agar (Figure 4C).

The fourth mode u4(s) contributes to the shape of the head and
tail region of the worm. Figure 2D shows that u4(s) captures a large
amount of the shape variance in those regions. Head movements
of the worm are likely important in foraging [17] and navigation
[18]. The emergence of a separate mode is likely due to the fact
that head of C. elegans can move independently of the body and is
controlled by a separate set of neck muscles.

The connections between mode amplitudes and the motion of
the worm along the agar—as in Figures 3D and 4C—are genuine
tests of the functional meaning of our low dimensional description.
Quite explicitly, our analysis of worm shapes is independent of the

extrinsic coordinates and hence our definition of modes and
amplitudes is blind to the actual position and orientation of the
worm. Of course, in order to move the worm must change shape,
and our description of the shape in terms of mode amplitudes
captures this connection to movement. Thus, to crawl smoothly
forward or backward the worm changes its shape by rotating
clockwise or counterclockwise in the plane formed by the mode
amplitudes a1 and a2; the speed of crawling is set by the speed of
the rotation. Similarly, to change direction the worm changes
shape toward larger magnitudes of the mode amplitude a3, and we
see this connection even without defining discrete turning events.

Attractors and Behavioral States
The eigenworms provide a coordinate system for the postures

adopted by C. elegans as it moves; to describe the dynamics of
movement we need to find equations of motion in this low

Figure 2. Covariance of shape fluctuations and eigenworms. (A) The covariance matrix of fluctuations in angle C(s, s9). The inhomogeneity
along the diagonal shows that the normal modes of the motion are not sinusoidal but the smooth structure of C(s, s9) means that a small number of
modes are significant. (B) We find the eigenvalues of C(s, s9) and compute s2

K, the fraction of the total variance (integrated along the body of the
worm) captured by keeping K modes (see Materials and Methods). (C) Associated with each dominant mode is an eigenvector and we refer to these
as eigenworms u m(s). The population-mean eigenworms (red) are highly reproducible across individual worms (black). (D) The fraction of variance, s̃2

K,
at each point along the body curve captured by keeping K modes (K = 1 to 4, from bottom to top curve). The overall error in reconstruction of the
worm body curve decreases as the number of modes increases, but does so inhomogeneously. (E) In response to strong thermal stimuli,
reconstructions using the eigenworms of spontaneous crawling continue to account for most of the shape variance. Worm images are recorded at
times synchronized to a heat pulse and we display s2

K aligned with this pulse (red line). (K = 1 to 4, from bottom to top curve).
doi:10.1371/journal.pcbi.1000028.g002

C. elegans Motor Behavior

PLoS Computational Biology | www.ploscompbiol.org 3 April 2008 | Volume 4 | Issue 4 | e1000028

amplitude a3 has a long tail (Figure 4A), and body shapes chosen
from these tails (Figure 4B) exhibit the V configuration classically
identified with large-angle turning behavior [10]. Large ampli-
tudes of a3 also correspond to gradual turns in the worm trajectory
along the agar (Figure 4C).

The fourth mode u4(s) contributes to the shape of the head and
tail region of the worm. Figure 2D shows that u4(s) captures a large
amount of the shape variance in those regions. Head movements
of the worm are likely important in foraging [17] and navigation
[18]. The emergence of a separate mode is likely due to the fact
that head of C. elegans can move independently of the body and is
controlled by a separate set of neck muscles.

The connections between mode amplitudes and the motion of
the worm along the agar—as in Figures 3D and 4C—are genuine
tests of the functional meaning of our low dimensional description.
Quite explicitly, our analysis of worm shapes is independent of the

extrinsic coordinates and hence our definition of modes and
amplitudes is blind to the actual position and orientation of the
worm. Of course, in order to move the worm must change shape,
and our description of the shape in terms of mode amplitudes
captures this connection to movement. Thus, to crawl smoothly
forward or backward the worm changes its shape by rotating
clockwise or counterclockwise in the plane formed by the mode
amplitudes a1 and a2; the speed of crawling is set by the speed of
the rotation. Similarly, to change direction the worm changes
shape toward larger magnitudes of the mode amplitude a3, and we
see this connection even without defining discrete turning events.

Attractors and Behavioral States
The eigenworms provide a coordinate system for the postures

adopted by C. elegans as it moves; to describe the dynamics of
movement we need to find equations of motion in this low

Figure 2. Covariance of shape fluctuations and eigenworms. (A) The covariance matrix of fluctuations in angle C(s, s9). The inhomogeneity
along the diagonal shows that the normal modes of the motion are not sinusoidal but the smooth structure of C(s, s9) means that a small number of
modes are significant. (B) We find the eigenvalues of C(s, s9) and compute s2

K, the fraction of the total variance (integrated along the body of the
worm) captured by keeping K modes (see Materials and Methods). (C) Associated with each dominant mode is an eigenvector and we refer to these
as eigenworms u m(s). The population-mean eigenworms (red) are highly reproducible across individual worms (black). (D) The fraction of variance, s̃2

K,
at each point along the body curve captured by keeping K modes (K = 1 to 4, from bottom to top curve). The overall error in reconstruction of the
worm body curve decreases as the number of modes increases, but does so inhomogeneously. (E) In response to strong thermal stimuli,
reconstructions using the eigenworms of spontaneous crawling continue to account for most of the shape variance. Worm images are recorded at
times synchronized to a heat pulse and we display s2

K aligned with this pulse (red line). (K = 1 to 4, from bottom to top curve).
doi:10.1371/journal.pcbi.1000028.g002

C. elegans Motor Behavior

PLoS Computational Biology | www.ploscompbiol.org 3 April 2008 | Volume 4 | Issue 4 | e1000028

Pk
i=1 �iP100
j=1 �j

<latexit sha1_base64="xFXOQQRPqgwqyRFvIDENE4Ef9X8=">AAACIHicbVDLSsNAFJ34rPUVdekmWARXJalC3QhFNy4r2Ac0NUwmk3bamUmYmQgl5FPc+CtuXCiiO/0aJ20EbT0wcDjnHu7c48eUSGXbn8bS8srq2nppo7y5tb2za+7tt2WUCIRbKKKR6PpQYko4bimiKO7GAkPmU9zxx1e537nHQpKI36pJjPsMDjgJCYJKS55Zd0MBUerKhHkpuXCyu7FLdTyAHskKeZTLqWPb2Y81yjyzYlftKaxF4hSkAgo0PfPDDSKUMMwVolDKnmPHqp9CoQiiOCu7icQxRGM4wD1NOWRY9tPpgZl1rJXACiOhH1fWVP2dSCGTcsJ8PcmgGsp5Lxf/83qJCs/7KeFxojBHs0VhQi0VWXlbVkAERopONIFIEP1XCw2hbkzpTsu6BGf+5EXSrlWd02rt5qzSuCzqKIFDcAROgAPqoAGuQRO0AAIP4Am8gFfj0Xg23oz32eiSUWQOwB8YX981HqQ3</latexit>



dimensional space. We start by focusing on the plane formed by
the first two mode amplitudes a1 and a2. Figure 3 suggests that
within this plane the system stays at nearly constant values of the
radius, so that the relevant dynamics involves just the phase angle
w(t). To account for unobserved and random influences these
equations need to be stochastic, and to support both forward and
backward motion they need to form a system of at least second
order. Such a system of equations would be analogous to the
description of Brownian motion using the Langevin equation
[19,20]. Thus we search for equations of the form

dw(t)

dt
~v(t)

dv(t)

dt
~F w(t),v(t)½ "zs w(t),v(t)½ "g(t):

ð4 Þ

Here F[w(t),v (t)] defines the average acceleration as a function of
the phase and phase velocity, by analogy to the force on a
Brownian particle. The noise is characterized by a random

function g(t) which we hope will have a short correlation time, and
we allow the strength of the noise F[w(t),v (t)] to depend on the state
of the system, by analogy to a temperature that depends on the
position of the Brownian particle.

In Figure 5A we show our best estimate of the mean
acceleration F[w,v ] (see Materials and Methods for details). Once
we know F, we subtract this mean acceleration from the
instantaneous acceleration to recover trajectories of the noise,
and the correlation function of this noise is shown in Figure 5B.
The correlation time of the noise is short, which means that we
have successfully separated the dynamics into two parts: a
deterministic part, described by the function F[w,v ], which
captures the average motion in the {a1,a2} plane and hence the
relatively long periods of constant oscillation, and a rapidly
fluctuating part g(t) that describes ‘‘jittering’’ around this simple
oscillation as well as the random forces that lead to jumps from
one type of motion to another.

We can imagine a hypothetical worm which has the same
deterministic dynamics as we have found for real worms, but no
noise. We can start such a noiseless worm at any combination of
phase and phase velocity, and follow the dynamics predicted by
Equation 4, but with s = 0. These dynamics are diverse on short
time scales, depending in detail on the initial conditions, but
eventually all initial conditions lead to one of a small number of
possibilities (Figure 5C): either the phase velocity is always positive,
always negative, or decays to zero as the system pauses at one of
two stationary phases. Thus, underneath the continuous, stochas-
tic dynamics we find four discrete attractors which correspond to
well defined classes of behavior.

We can compare the predicted behavioral states with the
motion of real worms that include transitions between these states.
Figure 5D is the joint probability density, r(v ,w), of worms
sampled at 32 Hz; the trajectory of a single worm visiting all three
predicted behavioral states is indicated by the overlay. The
forward (v.0) and backward (v,0) motions match well with
previously calculated attractor states, and pauses in the trajectory
of real worms correspond to the calculated pause basins (v = 0).
Surprisingly, the transition between forward and backward motion
is not arbitrary, but occurs most often along specific phase
dependent trajectories.

Pause States and Reproducibility
The behavior of C. elegans, particularly in response to sensory

stimuli, traditionally has been characterized in probabilistic terms:
worms respond by changing the probability of turning or reversing
[17,21,22]. This randomness could reflect an active strategy on the
part of the organism, or it could reflect the inability of the nervous
system to distinguish reliably between genuine sensory inputs and
the inevitable background of noise. Our description of motor
behavior measured with high time resolution offers us the
opportunity to revisit the ‘‘psychophysics’’ of C. elegans.

We consider the response to brief (75 ms), small (DT<0.1uC)
changes in temperature, induced by pulses from an infrared laser
(see Materials and Methods). These stimuli are large enough to
elicit responses [12] but well below the threshold for pain
avoidance [16]. In Figure 6 we show the distribution rt(v ) of
phase velocities as a function of time relative to the thermal pulse.
All of the worms were crawling forward at the moment of
stimulation, so the initial phase velocities are distributed over a
wide range of positive values. Within one second, the distribution
narrows dramatically, concentrating near zero phase velocity. This
behavior is consistent with the worm visiting the pause states
described above in the deterministic dynamics, and may be similar

Figure 3. Motions along the first two eigenworms. (A) The joint
probability density of the first two amplitudes, r(a1, a2), with units such
that Sa2

1 T~Sa2
2 T~1 . The ring structure suggests that these modes form

an oscillator with approximately fixed amplitude and varying phase
w= tan-1(-a2/a1). (B) Images of worms with different values of w show
that variation in phase corresponds to propagating a wave of bending
along the worm’s body. (C) Dynamics of the phase w(t) shows long
periods of linear growth, corresponding to a steady rotation in the {a1,
a2} plane, with occasional, abrupt reversals. (D) The joint density
r(|n|,|v |). The phase velocity v = dw/dt in shape space predicts worm’s
crawling speed.
doi:10.1371/journal.pcbi.1000028.g003
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in the motor system is also increasingly recognized, either as a
limitation that the systemmust overcome (17, 18) or as an imprint
of the inherent uncertainties in estimates of the input stimuli (19).
In movement science, there is thus increased attention to learning
stochastic dynamical systems from data (20). Our work expands
these directions by using dynamical variables that are derived
directly from low-dimensional projections of the full space of
natural postures, by treating stochastic and deterministic features
simultaneously, and by describing the motions of an entire organ-
ism—the scale on which many movement strategies operate.

The construction of the Langevin model requires only local
features of the phase trajectory; we do not use, directly, any in-
formation about what happens on long timescales. Nonetheless,
the model predicts a variety of phenomena that emerge on long
timescales. As described in ref. 10, the underlying deterministic
model (where we set σ ¼ 0) has multiple attractors: limit cycles
corresponding to forward and backward crawling and fixed points
corresponding to pauses. In the full dynamics with noise, the
system is predicted to remain near these attractors for extended
periods of time. The noise drives random motions in the neigh-
borhood of the attractors, as well as phase diffusion along the
limit cycles; these are effects that we can think of as perturbations
to the deterministic dynamics. There is also a nonperturbative
effect: Noise drives sudden transitions from one attractor to
another, as seen in Fig. 2C. In particular, there are transitions
from the ω > 0 attractor to the ω < 0 attractor, and these corre-
spond to reversals in the direction of crawling, as seen in Fig. 1A.

To quantify the predicted and observed reversals, we measure
the survival probability in the forward crawling attractor. In the
trajectory ϕðtÞ we choose, at random, a moment in time where the
phase velocity 0.1 < ω∕2π< 0.6 cycles∕s, a region indicated by
the dashed white lines in Fig. 2A. Then we declare a reversal
if the phase velocity falls below zero; the survival probability PðτÞ
is the probability that a reversal has not happened after a delay τ.

Importantly, by focusing on the survival time within the forward
state we remain agnostic about behaviors that may occur after
the reversal [e.g., Ω-turns (5)] and this definition simplifies our
interpretation. Also, the worm moves forward much more often
than it moves backward and thus PðτÞ is better sampled than any
alternate measures.

If transitions are the result of brief events, well separated in
time, then there should be no memory form one to the next,
and we expect the survival probability to decay exponentially,
PðτÞ ¼ expð−τ∕hτiÞ; this exponential decay is what we observe
both in simulated trajectories and in the actual data, as shown
in Fig. 3. In the data, the mean interval is hτidata ¼ 16.3 $ 0.3 s,
where the error is the bootstrap error within an ensemble of 33
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Fig. 1. Reversals in shape space correspond to reversals in the crawling
direction. (A) Tracking video microscopy gives both the x-y trajectory of
the worm as it crawls on an agar plate, and the shape of the worm’s body
at high resolution. (B) Shape is described by the tangent angle θ vs. arc length
s, in intrinsic coordinates such that ∫ dsθðsÞ ¼ 0. (C) We decompose θðsÞ into
four dominant modes. (D) The joint probability density of the first two
modes. Amplitudes along the first two modes oscillate, with nearly constant
amplitude but time varying phase ϕ ¼ tan−1ða2∕a1Þ; here the amplitudes are
normalized so that ha2i i ¼ 1. (E) The phase trajectories exhibit abrupt rever-
sals, moments when ω≡ dϕ∕dt change sign. The red cross marks the onset of
a body wave reversal and the green and magenta dots mark times prior to
and during a reversal. These same times are also marked in A demonstrating
that phase reversals correspond to reversals in the crawling direction.

A

C

B

Fig. 2. The Langevin model for the phase dynamics, Eqs. 3 and 4, reveals
discrete attractors and noise-induced transitions between them. (A) The
deterministic component of the force Fðω;ϕÞ, in units cycles∕s2. The black
lines are attracting limit cycles corresponding to forward and backward
crawling, and the white dashed lines mark boundaries for our analysis of
trajectories that start within the forward attractor. (B) The noise strength
σðω;ϕÞ, in units cycles∕s3∕2. (C) A sample of the trajectories resulting from
Eqs. 3 and 4, illustrating transitions between attractors at positive and nega-
tive ω, corresponding to forward and backward crawling.

A B

Fig. 3. Forward crawling survival times are well captured by noise-induced
transitions in the model phase dynamics. (A) The distribution of survival times
measured from worm data. We measure the probability that a worm’s
trajectory, which is in the neighborhood of the forward attractor at time
t, has not crossed to negative phase velocity by time t þ τ. The decay is ex-
ponential, with a mean time hτi ¼ 16.3 $ 0.3 s. (B) The predicted mean time
hτitheory as a function of the noise level. We scale the strength of the noise
σ2 by a factor 1∕β and solve Eqs. 3 and 4 for many noise realizations. The noise
at β ¼ 1 corresponds to the strength derived from actual worm motion and
the average survival time at the measured noise level (hτitheory ¼ 15.7 $ 1.3 s)
is in close agreement with worm data. In the low-noise limit (β ≫ 1)
we find 1∕hτitheory ∝ expð−βEÞ (blue line), analogous to the Arrhenius
temperature dependence of chemical reaction rates. Inset shows the region
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and other primates, where postures or trajectories of limbs, hands
or eyes are confined to spaces of low dimensionality despite the
potential for more complex motions [24–27]. For C. elegans itself,
recent quantitative work has focused on simplifying behavior by
matching to a discrete set of template behaviors, such as forward
and backward motion of the center of mass [5], sinusoidal
undulations of the body [6], or V bends [7]. Our results combine
and generalize these ideas. Motor behaviors are described by
projection of the body shape onto a small set of templates (the
eigenworms), but the strengths of these projections vary contin-
uously. The templates are sinuous, but not sinusoidal, because the
fluctuations in posture are not homogeneous along the length of
the worm. Our description of shape is intrinsic to the worm and
invariant to the center of mass position, but motion in shape space
predicts the center of mass motion. There are discrete behavioral
states, but these emerge as attractors of the underlying dynamics.
Most importantly, our choice of four eigenworms is driven not by
hypotheses about the relevant components of behavior, but by the
data itself.

The construction of the eigenworms guarantees that the
instantaneous amplitudes along the different dimensions of shape
space are not correlated linearly, but the dynamics of the different
amplitudes are nonlinear and coupled; what we think of as a single
motor action always involves coordinating multiple degrees of
freedom. Thus, forward and backward motion correspond to

positive and negative phase velocity in Figure 3, but transitions
between these behavioral states occur preferentially at particular
phases. Similarly, turns involve large amplitude excursions along
a3, but motion along this mode is correlated with phase in the ({a1,
a2}) plane, and this correlation itself has structure in time
(Figure 6B). The problems of C. elegans motor control are simpler
than for higher animals, but these nonlinear, coupled dynamics
give a glimpse of the more general case.

Perhaps because of the strong coupling between the turning
mode a3 and the wriggling modes a1, a2, we have not found an
equation of motion for a3 alone which would be analogous to
Equation 4 for the phase. Further work is required to construct a
fully three dimensional dynamics which could predict the more
complex correlations such as those in Figure 6B. Turning should
emerge from these equations not as another attractor, but as an
‘excitable’ orbit analogous to the action potential in the Hodgkin–
Huxley equations or to recent ideas about transient differentiation
in genetic circuits [28]. A major challenge would be to show that
the stochastic dynamics of these equations can generate longer
sequences of stereotyped events, such as pirouettes [29].

We have shown that a meaningful set of behavioral coordinates
can uncover deterministic responses. A response might seem
stochastic or noisy because it depends on one or more behavioral
variables that are not being considered. In our experiments,
nonlinear correlations among the behavioral variables suggest that

Figure 5. Reconstructing the phase dynamics. (A) The mean acceleration of the phase F(v ,w) in Equation 4. (B) The correlation function of the
noise Æg (t)g(t+t)æ. The noise correlations are confined to short times relative to the phase velocity itself. (C) Trajectories in the deterministic dynamics.
A selection of early-time trajectories is shown in black. At late times these same trajectories collapse to one of four attractors (red): forward and
backward crawling and two pause states. (D) Joint density r(v ,w) for worms sampled at 32 Hz. A sample trajectory of a single worm moving forwards,
backwards, and pausing, is denoted by black arrows.
doi:10.1371/journal.pcbi.1000028.g005
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to the pausing response seen when worms are subjected to
mechanical stimuli [23].

Arrival in the pause state is stereotyped both across trials and
across worms. By analogy with conventional psychophysical
methods [1], we can ask how reliably an observer could infer
the presence of the heat pulse using the worm’s response. We find
that just measuring the phase velocity v at single moment in time
after the pulse is sufficient to provide <75% correct detection of
this small temperature change in single trials.

Coupling the Modes and Steering the Worm
Our discussion thus far has separated the dynamics of the worm

into two very different components: the {a1, a2} plane with its
phase dynamics, responsible for crawling motions, and the mode
a3, which is connected with large curvature turns. Because these
modes are eigenvectors of a covariance matrix their instantaneous
amplitudes are not linearly correlated, but this does not mean that
the dynamics of the different motions are completely uncoupled.
We found the clearest indications of mode coupling between the
phase in the {a1, a2} plane and the amplitude a3 at later times,
which is illustrated by the correlation function in Figure 6B. The
diagonal band of positive correlation reflects the phase dependent
bending motions of normal crawling. This pattern of correlations
is perturbed strongly by thermal stimuli (t, t9.0). The fact that the
correlations between phase and the turning mode are stimulus

dependent implies that the response of the turning mode to
thermal stimuli depends on the phase which the worm finds itself
at the time of the stimulus. Perhaps some of the apparent
randomness of turning responses thus is related to the fact that
repeated thermal stimuli catch the worm at different initial phases.
To test this idea, Figure 6C shows the average response of a3 when
worms are thermally stimulated with their head turned to either
the dorsal or ventral side. Worms stimulated when making a
ventral head swing (22#w#21) make bends in the dorsal
direction (a3,0), and vice versa. Note that the thermal pulse itself
does not have a handedness, so that if the pulses are not
synchronized to the state of the worm there should be no
systematic preference for dorsal vs. ventral handed turns. As a
further test of this idea, we implemented our analysis online,
allowing an estimate of the phase with a delay of less than 125 ms.
We then deliver an infrared pulse when the phase falls within a
phase window that corresponds to either dorsal– or ventral–
directed head swings. The predicted consequence is that the worm
should turn in the opposite direction to the laser stimulation, and is
confirmed in Figure 6D.

Discussion

Our central result is a new, quantitative, and low-dimensional
description of C. elegans motor behavior. Conceptually similar
results have been obtained for aspects of motor control in humans

Figure 4. Motions along the third eigenworm. (A) The distribution of amplitudes r(a3), shown on a logarithmic scale. Units are such that
Sa2

3T~1, and for comparison we show the Gaussian distribution; note the longer tails in r(a3). (B) Images of worms with values of a3 in the negative
tail (left), the middle (center) and positive tail (right). Large negative and positive amplitudes of a3 correspond to bends in the dorsal and ventral
direction, respectively. (C) A two minute trajectory of the center of mass sampled at 4 Hz. Periods where |a3|.1 are colored red, illustrating the
association between turning and large displacements along this mode.
doi:10.1371/journal.pcbi.1000028.g004
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We then deliver an infrared pulse when the phase falls within a
phase window that corresponds to either dorsal– or ventral–
directed head swings. The predicted consequence is that the worm
should turn in the opposite direction to the laser stimulation, and is
confirmed in Figure 6D.

Discussion

Our central result is a new, quantitative, and low-dimensional
description of C. elegans motor behavior. Conceptually similar
results have been obtained for aspects of motor control in humans

Figure 4. Motions along the third eigenworm. (A) The distribution of amplitudes r(a3), shown on a logarithmic scale. Units are such that
Sa2

3T~1, and for comparison we show the Gaussian distribution; note the longer tails in r(a3). (B) Images of worms with values of a3 in the negative
tail (left), the middle (center) and positive tail (right). Large negative and positive amplitudes of a3 correspond to bends in the dorsal and ventral
direction, respectively. (C) A two minute trajectory of the center of mass sampled at 4 Hz. Periods where |a3|.1 are colored red, illustrating the
association between turning and large displacements along this mode.
doi:10.1371/journal.pcbi.1000028.g004
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in the motor system is also increasingly recognized, either as a
limitation that the systemmust overcome (17, 18) or as an imprint
of the inherent uncertainties in estimates of the input stimuli (19).
In movement science, there is thus increased attention to learning
stochastic dynamical systems from data (20). Our work expands
these directions by using dynamical variables that are derived
directly from low-dimensional projections of the full space of
natural postures, by treating stochastic and deterministic features
simultaneously, and by describing the motions of an entire organ-
ism—the scale on which many movement strategies operate.

The construction of the Langevin model requires only local
features of the phase trajectory; we do not use, directly, any in-
formation about what happens on long timescales. Nonetheless,
the model predicts a variety of phenomena that emerge on long
timescales. As described in ref. 10, the underlying deterministic
model (where we set σ ¼ 0) has multiple attractors: limit cycles
corresponding to forward and backward crawling and fixed points
corresponding to pauses. In the full dynamics with noise, the
system is predicted to remain near these attractors for extended
periods of time. The noise drives random motions in the neigh-
borhood of the attractors, as well as phase diffusion along the
limit cycles; these are effects that we can think of as perturbations
to the deterministic dynamics. There is also a nonperturbative
effect: Noise drives sudden transitions from one attractor to
another, as seen in Fig. 2C. In particular, there are transitions
from the ω > 0 attractor to the ω < 0 attractor, and these corre-
spond to reversals in the direction of crawling, as seen in Fig. 1A.

To quantify the predicted and observed reversals, we measure
the survival probability in the forward crawling attractor. In the
trajectory ϕðtÞ we choose, at random, a moment in time where the
phase velocity 0.1 < ω∕2π< 0.6 cycles∕s, a region indicated by
the dashed white lines in Fig. 2A. Then we declare a reversal
if the phase velocity falls below zero; the survival probability PðτÞ
is the probability that a reversal has not happened after a delay τ.

Importantly, by focusing on the survival time within the forward
state we remain agnostic about behaviors that may occur after
the reversal [e.g., Ω-turns (5)] and this definition simplifies our
interpretation. Also, the worm moves forward much more often
than it moves backward and thus PðτÞ is better sampled than any
alternate measures.

If transitions are the result of brief events, well separated in
time, then there should be no memory form one to the next,
and we expect the survival probability to decay exponentially,
PðτÞ ¼ expð−τ∕hτiÞ; this exponential decay is what we observe
both in simulated trajectories and in the actual data, as shown
in Fig. 3. In the data, the mean interval is hτidata ¼ 16.3 $ 0.3 s,
where the error is the bootstrap error within an ensemble of 33

A

D E

B C

Fig. 1. Reversals in shape space correspond to reversals in the crawling
direction. (A) Tracking video microscopy gives both the x-y trajectory of
the worm as it crawls on an agar plate, and the shape of the worm’s body
at high resolution. (B) Shape is described by the tangent angle θ vs. arc length
s, in intrinsic coordinates such that ∫ dsθðsÞ ¼ 0. (C) We decompose θðsÞ into
four dominant modes. (D) The joint probability density of the first two
modes. Amplitudes along the first two modes oscillate, with nearly constant
amplitude but time varying phase ϕ ¼ tan−1ða2∕a1Þ; here the amplitudes are
normalized so that ha2i i ¼ 1. (E) The phase trajectories exhibit abrupt rever-
sals, moments when ω≡ dϕ∕dt change sign. The red cross marks the onset of
a body wave reversal and the green and magenta dots mark times prior to
and during a reversal. These same times are also marked in A demonstrating
that phase reversals correspond to reversals in the crawling direction.

A

C

B

Fig. 2. The Langevin model for the phase dynamics, Eqs. 3 and 4, reveals
discrete attractors and noise-induced transitions between them. (A) The
deterministic component of the force Fðω;ϕÞ, in units cycles∕s2. The black
lines are attracting limit cycles corresponding to forward and backward
crawling, and the white dashed lines mark boundaries for our analysis of
trajectories that start within the forward attractor. (B) The noise strength
σðω;ϕÞ, in units cycles∕s3∕2. (C) A sample of the trajectories resulting from
Eqs. 3 and 4, illustrating transitions between attractors at positive and nega-
tive ω, corresponding to forward and backward crawling.

A B

Fig. 3. Forward crawling survival times are well captured by noise-induced
transitions in the model phase dynamics. (A) The distribution of survival times
measured from worm data. We measure the probability that a worm’s
trajectory, which is in the neighborhood of the forward attractor at time
t, has not crossed to negative phase velocity by time t þ τ. The decay is ex-
ponential, with a mean time hτi ¼ 16.3 $ 0.3 s. (B) The predicted mean time
hτitheory as a function of the noise level. We scale the strength of the noise
σ2 by a factor 1∕β and solve Eqs. 3 and 4 for many noise realizations. The noise
at β ¼ 1 corresponds to the strength derived from actual worm motion and
the average survival time at the measured noise level (hτitheory ¼ 15.7 $ 1.3 s)
is in close agreement with worm data. In the low-noise limit (β ≫ 1)
we find 1∕hτitheory ∝ expð−βEÞ (blue line), analogous to the Arrhenius
temperature dependence of chemical reaction rates. Inset shows the region
near β ¼ 1 and the red point marks the measured 1∕hτidata. The red error bar
denotes the bootstrap error in the noise strength, β ¼ 1 $ 0.05.
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worms, each observed for 35 min; this dataset is completely
independent, with different individual worms, from that used
in learning the Langevin model. The model predicts hτitheory ¼
15.7" 1.3 s, which agrees within 4% accuracy. We emphasize
that the reversal events are emergent: There is nothing discrete
about the phase time series ϕðtÞ, nor have we labeled the worm’s
motion by subjective criteria.

The escape from one attractor to another under the influence
of noise is like the escape of a molecule from one metastable con-
figuration to another via Brownian motion—a chemical reaction
(21). The strength of the noise, σ2 plays the role of temperature,
and we expect that if the temperature changes we should see
the Arrhenius law, as shown in Fig. 3B. The actual noise level
is a bit too high for the Arrhenius law to be valid, but even with
large noise, the mean time between reversals is still an order
of magnitude longer than the characteristic times for motion
within the forward crawling attractor, τosc ¼ 1.90" 0.15 s. Also,
when we estimate the noise level from the trajectories, there is
an error in our estimate, and this error propagates to give an error
in the predicted mean time between attractors, which is compar-
able to the deviation between the prediction and the data. We
conclude that noise-driven escape from the forward crawling at-
tractor provides a quantitatively accurate model for the observed
rate of reversals, with no free parameters. Thus, the long time
between reversals emerges from the interplay between the land-
scape of Fðω;ϕÞ separating forward and reversal states and the
strength of the noise, in the same way the long time between che-
mical reaction events emerges from the fast Brownian dynamics
of the molecules.

In the theory of thermally activated escape over a barrier,
the escape trajectories become stereotyped in the low-noise limit
(22, 23). By analogy, we expect that the trajectories that allow the
worm to escape from the forward crawling attractor should be
clustered around some prototypical trajectories. Detailed analysis
of the simulations show that there are in fact two such clusters,
corresponding to transitions in which the sign of ω changes while
the phase ϕ is positive or negative and this structure is also seen in
the data. Focusing on the transitions that occur with negative
phase, we align all the phase trajectories at the moment where
ω changes sign, and estimate the probability distribution ρðϕjtÞ
at times tbefore the switch. As we see in Fig. 4, both the real
data and the simulations show that this distribution is concen-
trated, and this pattern extends back for several seconds before
the moment of the reversal itself. Indeed, comparing Fig. 4 A and
B, we find that the conditional density derived from wormmotion
appears as a noisy version of the density derived from the theory.

In wild-type C. elegans, the frequency of turning behaviors and
reversals decreases with time away from resources, an adaptive
effect resulting in greater dispersal of the trajectories (7, 24, 25).
In our model, a change in the reversal behavior can be accom-
plished by a change in the deterministic dynamics, a change in

the stochastic dynamics, or a combination of both. Over long
timescales, we show that it is principally a decrease of the noise
amplitude that accompanies the increased survival time whereas
the deterministic dynamics is unchanged, Fig. 5 A and B. This
result suggests that the worms can use noise to adaptive benefit.
In detail, we divide long recordings into three 700 s epochs and
fit the stochastic dynamical system, Eqs. 3 and 4, separately within
each epoch. For each fit we then generate N ¼ 104 trajectories
with initial conditions in the forward crawling attractor and
evolve until a phase reversal. We then compute the trial-averaged
deterministic force and noise amplitude along these escape tra-
jectories. In all three epochs, the stochastic model provides
a good prediction of the mean forward survival time with
hτitheory ¼ ð11.8" 0.6 s; 14.6" 1.0 s; 17.6" 1.6 sÞ while
hτidata ¼ ð10.0" 1.7 s; 15.9" 3.5 s; 21.0" 4.5 sÞ from early to
late epochs, respectively. Note also that although the reversal
rate decreases, the mean forward speed remains constant with
hω∕2πi ¼ ð0.48" 0.14; 0.52" 0.14; 0.51" 0.16Þ ðcycles∕sÞ.

The form of the stochastic model encodes details of the signal-
ing networks within C. elegans, which we can perturb with genetic
manipulations. For comparison with wild-type behavior we in-
clude the analysis of goa-1(sa734), which contains a null mutation
in the goa-1 gene that encodes a homologue to the Gα protein
subunit in mammals. The mutation disrupts a variety of pathways
connected to the G-protein family [see, e.g., (26)]. Among other
phenotypes, these animals display hyperreversal behavior (27)
with a substantially shorter mean survival time in the forward
crawling state. Befitting its general nature, goa-1 is broadly
expressed in the nervous system and, relative to wild type, we
find both a different deterministic force and a different noise

A B

Fig. 4. The emergence of stereotyped behaviors in worm and model phase
dynamics. (A) The conditional density ρðϕjtÞ constructed from an ensemble
of N ¼ 469 worm trajectories aligned to exit the forward attractor at t ¼ 0
via a path with ϕð0Þ < 0. Color scale is for ln½ρ·ð1 radÞ&. (B) The same density
generated from simulations of the stochastic model, Eqs. 3 and 4.
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Fig. 5. The changes in the stochastic dynamical system, Eqs. 3 and 4, as a
consequence of increasing time away from food (A, B) and with genetic per-
turbations (C, D). (A) The mean deterministic force Fðϕ;ωÞ along escape tra-
jectories derived from wild-type worms in early (black), middle (red), and late
(blue) epochs. Units are cycles∕s2 and differences among the three 700 s
epochs are relatively small. Within each epoch we fit the stochastic model
and generate N ¼ 104 trajectories with initial conditions in the forward
crawling attractor. As before, we evolve each trajectory until a phase reversal.
The escape trajectories are aligned to the moment of the reversal (t ¼ 0) and
errors denote standard errors in the mean. (B) The mean noise amplitude
σ2ðϕ;ωÞ along escape trajectories in early, middle and late epochs. Units
are cycles2∕s3. The mean noise amplitude systematically decreases resulting
in longer times within the forward crawling state. (C, D) The mean determi-
nistic force and noise amplitude derived from a goa-1 mutant during the
early 700 s epoch. For comparison we also show the wild-type (N2) dynamics
from the same early epoch. Befitting the general nature of the goa-1 gene,
the mutant dynamics reveal substantial changes to both the deterministic
force and the noise.

7288 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1007868108 Stephens et al.

Experiment Model



worms, each observed for 35 min; this dataset is completely
independent, with different individual worms, from that used
in learning the Langevin model. The model predicts hτitheory ¼
15.7" 1.3 s, which agrees within 4% accuracy. We emphasize
that the reversal events are emergent: There is nothing discrete
about the phase time series ϕðtÞ, nor have we labeled the worm’s
motion by subjective criteria.

The escape from one attractor to another under the influence
of noise is like the escape of a molecule from one metastable con-
figuration to another via Brownian motion—a chemical reaction
(21). The strength of the noise, σ2 plays the role of temperature,
and we expect that if the temperature changes we should see
the Arrhenius law, as shown in Fig. 3B. The actual noise level
is a bit too high for the Arrhenius law to be valid, but even with
large noise, the mean time between reversals is still an order
of magnitude longer than the characteristic times for motion
within the forward crawling attractor, τosc ¼ 1.90" 0.15 s. Also,
when we estimate the noise level from the trajectories, there is
an error in our estimate, and this error propagates to give an error
in the predicted mean time between attractors, which is compar-
able to the deviation between the prediction and the data. We
conclude that noise-driven escape from the forward crawling at-
tractor provides a quantitatively accurate model for the observed
rate of reversals, with no free parameters. Thus, the long time
between reversals emerges from the interplay between the land-
scape of Fðω;ϕÞ separating forward and reversal states and the
strength of the noise, in the same way the long time between che-
mical reaction events emerges from the fast Brownian dynamics
of the molecules.

In the theory of thermally activated escape over a barrier,
the escape trajectories become stereotyped in the low-noise limit
(22, 23). By analogy, we expect that the trajectories that allow the
worm to escape from the forward crawling attractor should be
clustered around some prototypical trajectories. Detailed analysis
of the simulations show that there are in fact two such clusters,
corresponding to transitions in which the sign of ω changes while
the phase ϕ is positive or negative and this structure is also seen in
the data. Focusing on the transitions that occur with negative
phase, we align all the phase trajectories at the moment where
ω changes sign, and estimate the probability distribution ρðϕjtÞ
at times tbefore the switch. As we see in Fig. 4, both the real
data and the simulations show that this distribution is concen-
trated, and this pattern extends back for several seconds before
the moment of the reversal itself. Indeed, comparing Fig. 4 A and
B, we find that the conditional density derived from wormmotion
appears as a noisy version of the density derived from the theory.

In wild-type C. elegans, the frequency of turning behaviors and
reversals decreases with time away from resources, an adaptive
effect resulting in greater dispersal of the trajectories (7, 24, 25).
In our model, a change in the reversal behavior can be accom-
plished by a change in the deterministic dynamics, a change in

the stochastic dynamics, or a combination of both. Over long
timescales, we show that it is principally a decrease of the noise
amplitude that accompanies the increased survival time whereas
the deterministic dynamics is unchanged, Fig. 5 A and B. This
result suggests that the worms can use noise to adaptive benefit.
In detail, we divide long recordings into three 700 s epochs and
fit the stochastic dynamical system, Eqs. 3 and 4, separately within
each epoch. For each fit we then generate N ¼ 104 trajectories
with initial conditions in the forward crawling attractor and
evolve until a phase reversal. We then compute the trial-averaged
deterministic force and noise amplitude along these escape tra-
jectories. In all three epochs, the stochastic model provides
a good prediction of the mean forward survival time with
hτitheory ¼ ð11.8" 0.6 s; 14.6" 1.0 s; 17.6" 1.6 sÞ while
hτidata ¼ ð10.0" 1.7 s; 15.9" 3.5 s; 21.0" 4.5 sÞ from early to
late epochs, respectively. Note also that although the reversal
rate decreases, the mean forward speed remains constant with
hω∕2πi ¼ ð0.48" 0.14; 0.52" 0.14; 0.51" 0.16Þ ðcycles∕sÞ.

The form of the stochastic model encodes details of the signal-
ing networks within C. elegans, which we can perturb with genetic
manipulations. For comparison with wild-type behavior we in-
clude the analysis of goa-1(sa734), which contains a null mutation
in the goa-1 gene that encodes a homologue to the Gα protein
subunit in mammals. The mutation disrupts a variety of pathways
connected to the G-protein family [see, e.g., (26)]. Among other
phenotypes, these animals display hyperreversal behavior (27)
with a substantially shorter mean survival time in the forward
crawling state. Befitting its general nature, goa-1 is broadly
expressed in the nervous system and, relative to wild type, we
find both a different deterministic force and a different noise
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Fig. 4. The emergence of stereotyped behaviors in worm and model phase
dynamics. (A) The conditional density ρðϕjtÞ constructed from an ensemble
of N ¼ 469 worm trajectories aligned to exit the forward attractor at t ¼ 0
via a path with ϕð0Þ < 0. Color scale is for ln½ρ·ð1 radÞ&. (B) The same density
generated from simulations of the stochastic model, Eqs. 3 and 4.
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Fig. 5. The changes in the stochastic dynamical system, Eqs. 3 and 4, as a
consequence of increasing time away from food (A, B) and with genetic per-
turbations (C, D). (A) The mean deterministic force Fðϕ;ωÞ along escape tra-
jectories derived from wild-type worms in early (black), middle (red), and late
(blue) epochs. Units are cycles∕s2 and differences among the three 700 s
epochs are relatively small. Within each epoch we fit the stochastic model
and generate N ¼ 104 trajectories with initial conditions in the forward
crawling attractor. As before, we evolve each trajectory until a phase reversal.
The escape trajectories are aligned to the moment of the reversal (t ¼ 0) and
errors denote standard errors in the mean. (B) The mean noise amplitude
σ2ðϕ;ωÞ along escape trajectories in early, middle and late epochs. Units
are cycles2∕s3. The mean noise amplitude systematically decreases resulting
in longer times within the forward crawling state. (C, D) The mean determi-
nistic force and noise amplitude derived from a goa-1 mutant during the
early 700 s epoch. For comparison we also show the wild-type (N2) dynamics
from the same early epoch. Befitting the general nature of the goa-1 gene,
the mutant dynamics reveal substantial changes to both the deterministic
force and the noise.
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other). The unc-108(n501) and unc-108(n777) (one edge) alleles
are both dominant activating mutations in a Rab small GTPase
(34) and are therefore also expected to result in a similar phe-
notype. Although there are two loss-of-function alleles of unc-4 ,
these were not included in the analysis because one of them
(gk705) is not part of the main network. There are also two pairs
of genes that form subunits of the same complex: unc-38 and unc-
63 encode subunits of the same acetylcholine receptor (35, 36),
and unc-79 and unc-80 encode subunits of the NALCN neuronal
sodium leak channel (37, 38). Both pairs of mutants cluster to-
gether in the network as expected (Fig. 3, Upper Left). syg-1 is
required for specifying synaptic specificity and acts as a receptor
for syg-2 ; however, they are separated by three edges in the net-
work, just under the network average of 3.7.
We performed a similar analysis for genes in common mo-

lecular pathways. Fig. 4 highlights four examples of monoamine
signaling (see Fig. S4 for acetylcholine receptors and pathways
regulating synaptic release, insulin signaling, Go/Gq signaling,

and mechanosensation). Most of the monoamine mutants are
expected to have relatively subtle behavioral phenotypes, but
they still form significantly tighter clusters than the network
overall. The exception appears to be for serotonin; however, the
outlying pair of genes cat-4 and bas-1 encode molecules required
for both serotonin and dopamine biosynthesis—indeed, they
cluster tightly with other dopamine-related genes. If we consider
only the genes involved exclusively in serotonin signaling, we find
that these too are significantly more tightly clustered than the
overall network (Fig. 4).
To determine how the different components of the algorithm

contribute to this clustering result, we repeated the analysis with
different versions of some subroutines. In each case, nothing was
changed about the analysis procedure except the specified sub-
stitution. Instead of the inverse Mahalanobis distance we used
the inverse Euclidean distance between strains as the phenotypic
similarity measure and found that the resulting network (Fig.
S5) showed fewer of the predicted associations discussed above
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Fig. 2. Unsupervised discovery of behavioral motifs. Repetitive subsequences are identified by discovering time-series motifs, which are the best-matching
subsequences of a given length. In the sample time-series shown in A, the best-matching subsequences are shown in red and blue and overlaid on the Right.
(B) Fourteen sample motifs ranging from 1.6 to 32 s (40–800 frames) representing diverse but repetitive behaviors. (C) A quantitative phenotypic profile is
generated by finding the distance between movies and each element of the sample motif dictionary shown in B. Phenotypic profiles are shown for N2 wild
type (green), a hyperactive mutant goa-1(sa734) (blue) (50, 51), and an uncoordinated mutant unc-63(ok1075) (1, 36). For each strain, the lines show the mean
distance from each motif ± the SE for a population of worms. goa-1 is significantly closer to the two relatively high-frequency bouts of forward locomotion in
motifs 8 and 11 than either N2 or unc-63, consistent with its hyperactivity; likewise, unc-63 is further from the flat posture of motif 2 because it is un-
coordinated with a tendency to have higher body curvature.
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Visible phenotypes based on locomotion and posture have played
a critical role in understanding the molecular basis of behavior and
development inCaenorhabditis elegans andothermodel organisms.
However, it is not known whether these human-defined features
capture themost important aspects of behavior for phenotypic com-
parison or whether they are sufficient to discover new behaviors.
Here we show that four basic shapes, or eigenworms, previously
described for wild-type worms, also capture mutant shapes, and
that this representation can be used to build a dictionary of repeti-
tive behavioral motifs in an unbiased way. By measuring the dis-
tance between each individual’s behavior and the elements in the
motif dictionary,we create afingerprint that canbeused to compare
mutants to wild type and to each other. This analysis has revealed
phenotypes not previously detected by real-time observation and
has allowed clustering of mutants into related groups. Behavioral
motifs provide a compact and intuitive representation of behavioral
phenotypes.

phenotyping | imaging | ethology | nematode

The study of unconstrained spontaneous behavior is the core of
ethology, and it has also made significant contributions to be-

havioral genetics in model organisms. A powerful approach has
been the careful expert observation of mutants to identify those
with visible locomotor phenotypes, as demonstrated for many
model organisms (1–6). However, as with most manually scored
experiments, subjectivity can reduce reproducibility, whereas subtle
quantitative changes or those that happen on very short or long
time-scales are likely to be missed. Furthermore, manual observa-
tions are not scalable, and this has led to a widening gap between
our ability to sequence and manipulate genomes and our ability to
assess the effects of genetic variation and mutation on behavior.
Several recent reports describe systems that begin to address

this gap by automatically recording and quantifying spontane-
ous behavior in animals ranging from worms (7–15) to flies (16–
19), fish (20, 21), and mice (22, 23). The advantage of these
approaches is that they provide a means to quantify movement
parameters such as velocity precisely and in some cases to auto-
matically detect predefined behaviors based on a manually an-
notated training data set. This automated analysis eliminates some
of the problems of a purely manual approach, but it still relies on
preselected behavioral parameters that may not be optimal for
phenotypic comparisons and precludes the discovery of new
behaviors that have not already been observed by eye. An alter-
native approach is to use unsupervised learning, which attempts to
use the inherent structure of a data set to identify informative
patterns; to do this, we first needed to extract worm postures from
movie data and have as compact and complete a representation of
worm behavior as possible.

Results and Discussion
Using eight inexpensive USB microscope-based trackers we
recorded high-resolution movie data of freely crawling worms
covering 307 different mutant strains with a total of 7,708 in-
dividual worms. Worms were transferred to the surface of agar
plates seeded with Escherichia coli OP50 and were allowed to
habituate for 30 min before being recorded for 15 min at 25
frames per second. To automatically extract worm posture, the
outline of the worm was determined after thresholding, and the

skeleton was found by tracing the midline connecting the two
points of highest curvature on the outline, which correspond to
the worm’s head and tail. The head position was determined
automatically using the distribution of pixel brightness and the
magnitude of lateral motion of the head and tail (Fig. 1A).
Skeleton coordinates were converted to a position- and orien-
tation-independent representation by taking 48 tangent angles
evenly distributed from head to tail and subtracting off the mean
angle (24).
It has been shown that the space of shapes explored by Cae-

norhabditis elegans during spontaneous behavior on agar without
bacterial food is only four-dimensional (24). In other words, just
four fundamental shapes, or eigenworms, can be added together
in different proportions to reconstruct any worm posture. Be-
cause the four eigenworms (Fig. 1B; Fig. S1) provide an essen-
tially complete description of worm posture, each frame in
a movie of worm behavior can be represented as just four
numbers, the amplitudes along each dimension when the shape is
projected onto the eigenworms (Fig. 1C).
To use this representation as a common basis in behavioral

genetics experiments, it must also capture mutant worm shapes,
even though many mutants adopt postures that appear very
different from those of wild-type animals. Even in wild type,
locomotion is known to depend on environment; in particular,
the presence of a bacterial food lawn significantly affects many
aspects of locomotion (25, 26). Nonetheless, using data from
wild-type (N2) worms tracked on food, we found that four
eigenworms were sufficient to capture 93 ± 3% (mean ± SD) of
the variance of worm shapes (Fig. 1D). Likewise, when we pro-
jected behavioral data from 307 mutant strains (n = 7,708) onto
the wild-type–derived eigenworms and used the four amplitudes
to reconstruct the skeleton angles, the fit of the mutant data was
comparable to wild type—92 ± 4% of the variance, including
mutant shapes, is captured by the wild-type eigenworms (Fig.
1D). Even eigenworms derived directly from mutant data (Fig.
1B) show a remarkable reproducibility and similarity to the wild-
type–derived eigenworms.
The fact that the wild-type–derived eigenworms also capture

mutant postures may reflect fundamental constraints on worm
behavior, with even highly uncoordinated mutants exploring
different regions of essentially the same shape space. It is not
clear what constrains worm behavior, but the mutant strains that
are least-well fit by the wild-type eigenworms suggest some
possibilities (Fig. S2). Among the worst-fit mutants are lon-2
(e67) which is longer than wild type, suggesting a role for body
mechanics, and unc-4(gk705) and unc-34(e566), which affect
synaptic specificity (27, 28), suggesting that neural circuit archi-
tecture also plays a role. Though these mutants may give insight
into behavioral constraints, they are not alone sufficient to
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and had lower modularity (proportional to the number of within-
group connections minus the number of connections expected
for a random network of the same degree) (39). However, when
we used 700 randomly selected motifs from the 2,223 element
dictionary instead of mRMR and repeated the clustering, the
resulting phenotypic network was of similar quality to the orig-
inal in terms of its modularity and the significant association of
molecular pathway components, although it has slightly fewer
expected allelic and molecular complex connections (Fig. S5B).
When short behaviors with the same lengths as the motifs in the
dictionary are selected at random and used for clustering, we find
a similar-quality network with three fewer expected associations
(Fig. S5C). This finding suggests that selecting a large-enough
number of behavioral sequences is almost as good for phenotypic
profiling, and that stereotyped behaviors, at least according to
our minimal definition, are not specifically required to usefully
compare mutants.
In addition to identifying broad categories and analyzing path-

ways, we want to generate specific hypotheses about functional
interactions based on phenotypic similarity. To demonstrate the
potential of this approach, we considered two degenerin/epithelial
Na+ (DEG/ENaC) channels present in the N2-like cluster: asic-2
(ok289) (n = 19) and acd-5(ok2657) (n = 20). Neither of these
genes has a known function, nor do the deletion strains have
a previously reported phenotype. We used the mRMR criterion to
find the two most-distinguishing behavioral motifs with respect

to N2 (Fig. 5). Qualitatively, in both cases we find one motif that
represents a bout of forward locomotion and another that is
a pause in a curved shape. The DEG/ENaC channel mutants are,
on average, further from the forward locomotion and closer to
the curved pause. Both differences are statistically significant
based on a Hotelling T2 test with permutation (40, 41) [asic-2
(ok289) vs. N2, P = 0.0019; acd-5(ok2657) vs. N2, P = 9 × 10−6].
Comparing the two DEG/ENaC mutants to each other (Fig. 5C),
two motifs are selected but there is no significant difference
between their distances to the motifs (P = 0.796, Hotelling T2

with permutation). In other words, these two mutants were found
to be different from N2 yet they were not distinguishable from
each other using the same procedure. It should be noted that this
is not true for all mutants in the N2-like group; for example, two
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Fig. 3. Phenotypic association network. Nodes are mutant strains, and
edges show phenotypic connections. Edge transparency indicates the fre-
quency with which two strains cluster together after resampling from the
data with replacement (frequently clustering strains are connected by dark
edges). The network layout is determined using spring embedding with
edge weights determined by the inverse phenotypic distance. Color-coding
indicates either known phenotypic classes or molecular pathway families.
(Inset) Network around N2 with increased transparency and smaller node
labels for clarity. The DEG/ENaC mutants discussed in Fig. 5 are shown with
a red rectangle.
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Fig. 4. Genes involved in monoamine pathways cluster together. In each
panel, genes in the indicated class of monoamine signaling are highlighted
in red. The mean ± SE of the shortest path connecting each pathway
member is listed below the network. Cases where the intragroup distance is
significantly smaller than the network overall based on a Wilcoxon rank-sum
test are highlighted in red. In the case of serotonin, the results are also
shown without cat-4 and bas-1 because they encode molecules required for
both serotonin and dopamine biosynthesis. Included genes are as follows:
dopamine and receptors: cat-2(e1112), dop-1(vs101), dop-1(vs100); dop-2
(vs105), dop-1(vs100); dop-2(vs105); dop-3(vs106), dop-1(vs100); dop-3
(vs106), dop-2(vs105), dop-2(vs105); dop-3(vs106), dop-3(vs106), dop-4
(tm1392), bas-1(ad446), cat-4(e1141). Serotonin and receptors: bas-1(ad446),
cat-4(e1141), ser-1(ok345), ser-4(ok512), ser-5(tm2654), ser-7(tm1325), tph-1
(mg280). Tyramine and receptors: tdc-1(n3419), tyra-2(tm1846), tyra-3(ok325),
ser-2(pk1357). Octopamine and receptors: octr-1(ok371), tdc-1(n3419), ser-6
(tm2146), tbh-1(n3247).
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