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Lecture 1: Ideal chains

+ Course outline: » This lecture outline:
° Ideal Chains (6rosberg) . Polymer's and Their'
Real chains (rubinstein) uses
Solutions (Rubinstein) - Scales
* Methods (6rosberg) - Architecture

» Closely connected:

Interactions (Pincus), ' Polymer size and

polyelectrolytes fractality
(Rubinstein) , networks * Entropic elasticity
(Rabin) , biopolymer:s - Elasticity at high
(6rosberg), semiflexible forces

olymers (MacKintosh) o , .
POty - Limits of ideal chain



Polymer molecule is a chain:

Polymeric from Greek poly-
meres havmguman}/ arts;
First Known Use: 1866
(Merriam-Webster);

Polymer molecule consists
of many elementary units,
called monomers;

Monomers - structural
units connected by covalent
bonds to form polymer;

N number of monomers in a
polymer, degree of
polymerization;

M=N*m molecular
mass.

monomer

Examples: polyethylene (a), polysterene

(b), polyvinyl chloride (c)...
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Another view:




Scales:

° kBT:41 PN*nm at
room temperature
(24°C)

* Breaking covalent
bond: ~10000 K;
bonds are NOT in

equilibrium.

- "Bending” and non-
covalent bonds
compete with kg T

- Monomer size b~A:
- Mohomer mass m -

from 14 to ca 1000;

* Polymerization

degree N~10 to 102;

» Contour length

L~10 nm to 1 m.



Polymers in materials science
(e.g., alkane hydrocarbons -(CH,)-)

#C 1-5 6-15 16-25 20-50 1000 or
atoms more
@ 25°C | Gas Low Very Soft solid | Tough
and 1 viscosity | viscous solid
atm liquid liquid
Uses Gaseous | Liquid Oils and | Candles Bottles...
fuels fuels and | greases |and
solvents coatings
Examples |Propane | Gasoline | Motor oil |Paraffin | Polyethyl
wax ene




Polymers in living nature

DNA RNA Proteins Lipids Polysaccha
rides

N Up to 101°© |10 to 1000 |20 to 1000 5 to 100 | gigantic
Nice Bioinformatics, | Secondary Proteomics, Bilayers, ??? Someone
physics elastic rod, structure, random/designed liposomes, has to start
models charged rod, annealed heteropolymer,HP, | membranes

helix-coil branched, funnels, ratchets,

folding active brushes

Uses nature

FADAM.

Molecule




Polymer properties depend on...

» Chemical composition of a monomer:;
* Degree of polymerization, N;

* Flexibility;

* Architecture;

* Homopolymer versus heteropolymer.



Architecture

comb
Jm %







Homo- vs. Hetero

Homopolymer consists of monomers of just one sort:

Heteropolymer (copolymer) has two or more monomer species:

A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B A-A-p-A-A-Q-A-A-A-A-A-A-A-A
alternating : :

A-A-A-B-B-A-B-B-B-B-A-B-A-A-B-A
random

ock-copolymers
A-AAAAAAABBBB-BBBB AAAABBEBBEBBAAAA

dibloc tribloc

A-A-A-B-B-A-A-A-B-B-A-A-A-B-B-A-A-A-B-B
multiblock




Flexibility

» Sufficiently long polymer is never

straight 0
AN =

- Different polymers bend differently:

A




Rotation isomers:
Polyethylene: bond length /= 1.54A, tetrahedral angle 0 = 68°

Torsion (measured in angle ¢)-
main source of polymer flexibility.



Elastic flexibility:

Within one rotamer, AE~¢2 - Hook's law.

Many polymers have no freedom to explore
rotational isomers, e.g., Two strands.

Elastic rod model:
L . .
E= |, [%nrg(s) + %cxgﬁz(s)] ds

r(s) “velocity”



- Can we measure it?

How much is polymer bent?

*+ How much is polymer

bent? @
- What is its size R,

given N?

» How does it depend on
conditions, e.g.,

temperature? pun g

= I
- How/why is it &) @
important? w



Polymer Size

Monomer size b~0.1nm; Number of monomers N~102-1010;
Contour length L~10nm - 1m;
Depending on how much polymer is bent,
its overall size R varies widely and depends on solvent quality

Long-range repulsion Good solvent 0-solvent Poor solvent
R~ L ~bN R ~ bN3/5 R ~ bN1/2 R~ pN1/3
- g s E— = = - -

W & e

Environment change
<< B—
R~1m R~100mm R~10mm R~100nm




Astronomical Variations of Polymer Size

Increase monomer size by a factor of 108 b ~ 1cm; let N=10%,

Poor solvent 0-solvent

| il (i

R~ bN'/3 ~ 20m

Good solvent '
R ~ BN3/5 ~ 10km Long-range repulsion

~ [ R~ L ~bN ~ 10° km




Ideal polymer vs. ideal gas

Strong dependence of polymer
size on environment/solvent
conditions suggests a big role of
interactions.

Ideal polymer has no interactions
between monomers, except
between neighbors along the
chain.

Just like ideal gas may have all
sorts of rotations and vibrations
in the molecule, but no
interactions between molecules.

Like ideal gas is the most useful
idealization in statistical
mechanics, so is the ideal
polymer.

Ideal chains are good models for
polymer melts, concentrated
solutions, and dilute solutions at
0-temperature

no interactions, the
chain “"does not see”
itself



TIdeal chain size

Ideal chain: no interactions
between monomers if they are not ‘

neighbors along the chain, even if )/
they approach one another in space. /’_<\y » [\ \
+
Conformation of an {

ideal chain is fully R 7
specified by the set - )

of bond vectors {y;}
End-to-end vector of an ideal chain: R = Z—i1 Vi

Averaged value of end-to-end wvector is zero: (R) = 0,
because —R is equally likely as R



Ideal chain size: mean squared end-to-
end distance

Ideal chain: no interactions
between monomers if they are not
neighbors along the chain, even if

y
they approach one another in space. /A \y 1 r\ \
Conformation of an (\J _/_’ f Y ~
ideal chain is fully /
specified by the set
of bond vectors {y;}

- L=

End-to-end vector of an ideal chain: R = Zfil Vi

Since averaged value of end-to-end wector is zero: (R) = 0,
to estimate the size we want to compute (|R|) or (R?*)

(R?) = R-R) = ((ZL,v:) - (T3 75)) = Slim (76 -¥5) = 20, (cosbiy)

Freely- jointed chain or lattice model:

(cosb;j) =0 except when i =j = (R?*) = NI*



Ideal chain size: mean squared end-to-

end distance

For ideal chains, one

can show that there ~\
are no long-range

correlations between
bond directions:

llIIllir_ﬂ_‘,,Cx:j (COS 913) =0

C! = Ef: , (cos 8;;) rapidly converges at large N

2

(R?) =173 (cos i) =17 SN Cl = CyNI2 ~ CyNI2

For example, freely-rotating chain: Co, = 1129

l—cos @

Specific flexibility mechanism (rotational isomers etc)

is hidden in characteristic ratio C.;
see P.Flory, Statistical Mechanics of Chain Molecules




Ideal chain size: worm-like chain
(Kratky and Porod model)

R = Zyz — R= /r(s)ds

i=1

Key argument:

(€08 05, ,55) = (€08 05, 5} (COS Os, s5)

Proof: consider ¥y - 3 = i T3 + r! rg, where parallel and perpendicuar com-
ponents are taken with respect to ro. Perpendicular components vanish upon
averaging.

Consequence: (cosf(s —t)) = e~ 15—t/

(R2) = [i7 [7 (£(s) - #(t)) dsdt = [ [\ (cosO(s —t)) dsdt = [, [, e~Is=1/1dsdt

9 :
(R?) = 2[? [%—1+e‘5/‘} ={ L it LI

2L if L>1

Problem: relate length [ to rigidity constant £ in AE = |, o s KE?(s)ds.




Universal description of ideal polymer

Construct equivalent freely jointed chain with the same mean squared end-
to-end distance <R?> and the same contour length L as actual polymer. It
consists of N effective, or Kuhn, segments, each of length b, such that:

For chain of n bonds of Worm-like chain, total
length | each: length L, persistence |
(R?*) = Nb* = Coonl’ (R*) = Nb* = 2L
Nb = nl Nb = L

Kuhn length and #of Kuhn length and #of
effective segments are effective segments are

b = Cal b = 2

N = n/Cs N = L/2

Equivalent freely jointed chain differs from the actual polymer on
length scales of Kuhn segment b or smaller, but has the same
physical properties on large scales



Reverse the question of
polymer size:

how many monomers are there within radius r?

+ If ris greater than

Kuhn segment, r>b, @
then sub-coil of g
monomers has size
R(g) ~ g'/2b;
- Therefore, within
radius r we expect
m(r)~(r/b)?
monomers.




Counting "atoms” in regular objects

5 y : -
r=H L | @
HT - J r<H

) ! ’ r>H
dm 3 :
_ 4m.s | EeS it r< H imp3 if r< H
m(r) = Zr m(r) = { A B > g mr)= { o if 7 > H

for 3D object for 2D object for 1D object

m
106}
1000+
1k




Koch curve: example of a fractal

A NS & O

This has the solution in the form of power law m(r)
with 3% =4 or dy = {3 ~ 1.26.

m ~ pdf d¢ - fractal dimension

We can either increase “"observation field" r, or
decrease the size of elementary "atom”



Polymeric fractals
For ideal chain, m(r) ~ (r/b)?;

that means, ideal polymer has
fractal dimension d¢=2.
Scaling exponent v=1/d;=1/2
for ideal polymer.
We will see later that in a good
solvent d=5/3 and v=3/5

Ideal coil can be viewed as N/g
blobs of g segments each. Blob
size is x~bg!'/?, therefore

R~bNY/2~x(N/g)1/2

Problem: consider polymer adsorbed on a 2D plane. What are the
consequences of the fact that d;=D?




Radius of gyration

End-to-end distance is difficult to measure (and it is il
defined for, e.g., rings or branched polymers). Better
quantity is gyration radius:

Rﬁ — % Zil (R; — Rcm)2

Where position vector of mass center is
Rcm — % Zil Ri

There is theorem (due to nobody lesser than Lagrange)

which says that N N 2
Ry = & T S5 (R~ Ry)

Exercises: (1) Prove Lagrange theorem; (2) Prove
that for ideal linear chain R;*=Nb?/6; (3) Prove that
for ideal ring R;2=Nb2/12




Entropic elasticity

Optical tweezers
experiment

How much force
should we apply to
achieve end-to-end

distance R?




Pincus blob argument

Every piece of the chain is under the same tension f. This tension cannot be
important for the chain at the length scale smaller than £ such that f& ~ kT
This scale £ is called Pncus blob size. If £ is larger than Kuhn segment b,
universal statistics should apply. Then the number of segments per blob is such
that b*g ~ £2.

The condition £ > b translates into f < kgT/b. At the same time, blob
must be smaller than the coil itself, and £ < R becomes f > kgT/bv'N. In this
wide range of forces kpT/b > f > kpT/bv'N we can proceed.

Chain of blobs is fully stretched, which means R ~ £N/g, or

Naz .ICHT
() kBTf , Or meR

R

This looks “almost” like Hooke's law! But since force is the derivative of free
energy, we get te latter and, as a prize, the probability distribution of R:

9 a2
F(R} = kBTRZ;"'ﬁ'T!i}E and P{R} ~ eXp [—m ~ EX]D [— 3R :| .

kpT IND?

The coefficient 3/2 in the last formula cannot be established by this argument.

Gauss distribution of R follows

directly from Central Limit Theorem



What if we pull harder?

R/L Gaussian
02 04 06 08 1 theory is
A satisfactory
[ 180
005  Wormiike only up to
251 oos / i about 0.1pN
ol =z 003 |60
%_ 2 002 J :cn
w 1.5} 0.01 40 q:)
2 4 6 8 10
1 R, um I Freely-jointed
20
0.5; ]
— ~_Gaussian
5 10 15 20 25 30
R, um

S. Smith, L. Finzi, C. Bustamante, \Direct Mechanical Measurements of the Elasticity of
Single DNA Molecules by using Magnetic Beads", Science, v. 258, n. 5085, p. 1122, 1992.



Non-universal elasticity at
higher forces

Freely-jointed: Entropic price of confining one segment into a tube is about
kg In(D?/£2), or AS = NkgIn(D?/£2). How is D related to end-to-end distance
R? For each segment, its projection along the tube axis is +/£2 — D2 ~ (—D?/2¢
(since D < £). Therefore, R ~ N (¢ — D?/2¢) = L — LD?/2¢2. Then

R

AF ~ —kgTIn (1 — Z) and f~ kel

L-R’

Worm-like: Curvature radius p of the arc is about p ~ A2/D. Bending
energy of the arc Eypeng ~ kgTbA/p? being about kT yields Odijk length:

X~ bl/3D2/3 )

Worm-like chain hits the tube walls more frequently, in more places, than freely-
jointed chain, since A < b. End-to-end distance R is geometrically related to A:
R~L—LD?/2)% or R— L~ —LA/b.
Confinement entropy is of order unity per Odijk 1
L2 kgTL?

AF ~ —kgT——— ~




From Langevin to Marko-Siggia

» Exact formula for - Very accurate

freely-jointed formula for worm-
chain: like chain:
eS4Le—8 - 2
R= Nt (esfe—s - %) f=%% [(LER)Q -1+ %]
where
_ ¢
§ = FpT

Compare: Einstein and Debye theories of heat capacity
of a solid




Chains Get Softer Under Tension

Macromolecules 2010, 43, 9181-9190

1[']- L
02 | Nonlinear flexible ﬁﬁ"ﬁ/w _
. L9 X
£ o100  Flexible ! < O Y
f 10 . lmlj,rmursi _; ql_ Q| i
. Linear S =
deformation N
10 - : !
regime
| 9 f Rﬁb;‘rbﬁ~|<\-\
107 4 .

1077 102 107! 100 10! 10° 107

bending constant K

Linear deformation regime ends at f ~ k;T /b.

Problem: Why is there a cross-over from semi-flexible (worm-like) chain to
flexible (freely-jointed) chain with increasing tension at f_ ~ k, T K/I ?




Pair Correlations of an Ideal Chain

'\S Number of monomers within
range r

Probability of finding a monomer

: . m
at a distance r from a given one g(N=—5~= 2
r° r

Pair correlation function for a D-dimensional

fractal with m~rP 0() ~ m3 _ D3
r



Scattering provides ensemble
average information over wide
range of scales

107 10° 10° 10¢ 107 10° 10 10° 107
---------- FJ AR
MNMR imaging Triangulation
p—— Meutron Diffraction
MNMeutron imaging S5AMS
Es AF
Microscopy Electron Diffraction s
mmmm | ight Scattering w—
>canming Technigues
SMNOM AFM S TM
| TP SIS T T R M TTT IS S PTCT IR T T T N W TTTW SRR (TVTT IR R T T —_—

107 10° 10° 10° 10° 10° 10° 10° 10
r/ A

Alan Hurd



Summary of Ideal Chains

* No interactions except along the chain
* Equivalent Kuhn chain

- Mean square end-to-end: (R?)=Nb?

* Mean squared gyration radius: <R2>=Nb2
* Probability distribution:  suts) () el 2]
+ Free energy: =T 2

- Entropic "Hook's Law": ="

» Pair correlation function:  «o-=>

* Nonlinear elasticity at high forces




Mayer f-function

u(r) Effective interactions potential between two
= T monomers in a solution of other molecules.
%O OQOOC%D Relative probability of finding
O® 8 O% ® two monomers at distance r

Mayer f-function

f=exp - 0|1 19

1

0.5}

Excluded volume f

2
exp(-U/ kT)1 {\

v=—[f(r)d°r 05

-1




Classification of Solvents

v=—[f(r)d°r

Athermal, high T

Good solvent, repulsion dominates | |

0-solvent, repulsion compensates
attraction

Poor solvent. attraction dominates ' |

b r v~ b3
I, 0<v<Db®
f 1 I
v=0
— v<0

Typically, but not always, repulsion dominates at higher, and

attraction -- at lower temperatures.



Pair interaction dominance:

- Inideal coil, R~bN¥2 Monomer volume
fraction $~Nb3/R3~N-1/2«1

* The number of pair contacts N¢ ~N25>1;
pair collisions are important.

* The number of triple contacts N¢?~1; they
become important only if chain collapses.

* Higher order are unimportant unless strong
collapse.
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