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What exactly is 
high-performance 

computing?
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Source: David P. Landau

Why even bother about computer performance?
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Application performance seems to keep up with 
supercomputing systems performance (!)

1988 1998 2008 2018

1.02 Teraflop/s
Cray T3E

1’500 processors

First sustained TFlop/s
Grondon Bell Prize 1998

1.35 Petaflop/s
Cray XT5
150’000 processors

First sustained PFlop/s
Gordon Bell Prize 2008

1 Gigaflop/s
Cray YMP
8 processors

First sustained GFlop/s
Gordon Bell Prize 1989

~1 Exaflop/s

Another 1,000x in sustained 
performance increase (?)

 ~100 Kilowatts  ~5 Megawatts 20-30 MW

100 millions or billion 
processing cores (!)
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Plan for this lecture
! What is HPC and why worry?

! Historic background of scientific computing – how we came 
to where we are today

! Bottleneck and complexities of today’s processors

! Parallel computers and parallel programming models

! Extrapolating Moore’s Law into the future – why condensed 
matter physicists could be interested in computing 
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Electronic computing: the beginnings
1939-42: Atanasoff-Berry Computer - Iowa State Univ.

1943/44: Colossus Mark 1&2 - Britain

1938: Konrad Zuse’s Z1 - Germany

Zuse and Z3 (1941)

Z4 @ ETH 
(1950-54)

1945-51: UNIVAC I
Eckert & Mauchly - “first commercial computer”

1945: John von Neumann report that defines 
the “von Neuman” architecture
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Von Neumann Architecture: 

Memory

Control Unit
Arithmetic 
Logic Unit

accumulator

Input     Output  

Invented by Eckert and Mauchly
Discussed in report by von Neumann (1945)

stored-program concept = general purpose computing machine
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1946: ENIAC
1952: MANIAC I
1957: MANIAC II
...
1974: Cray 1 - vector architecture
...
1987: nCUBE 10 (SNL) - MPP architecture
1993: Intel Paragon (SNL)
1993: Cray T3D
...
2004: IBM BG/L (LLNL)
2005: Cray Redstorm/XT3 (SNL)
2007: IBM BG/P (ANL)
2008: IBM “Roadrunner”
2008: Cray XT5 (ORNL)

Since the dawn of High-performance computing: 
Supercomputing at U.S. Dept. of Energy laboratories

Nicholas Metropolis, physicists & leader 
of group in LANL’s T Division that 
designed MANIAC I & II

Downloaded 03 Jan 2009 to 128.219.176.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

2002: 
Japanese Earth Simulator - Sputnik shock of HPC

Peak: 1.382 TF/s
Quad-Core AMD Freq.: 2.3 GHz
150,176 compute cores
Memory: 300 TB
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Today’s important types of processor architectures

! Scalar processor: process one data item (integer / floating 
point number) at a time

! Vector processor: a single instruction operates on many 
data items simultaneously

! Typical processor today: “pipelined superscalar”
! Superscalar: simultaneously dispatch multiple instruction to redundant 

functional units (multiplier or adder)
! Pipeline: set of processing elements connected in a series
! Example: 2 multiplies and two add per cycle

                (4 floating point operations per cycle)

The good news: by and large compiler-level optimization will take care of this complexity
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Von Neumann Architecture: 

Memory

Control Unit
Arithmetic 
Logic Unit

accumulator

Input     Output  

stored-program concept = general purpose computing machine

Memory

CPU

I/O unit(s)
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Computers in the past and today 

1970s (*) my laptop improvement

clock 
(CPU) 6 MHz ~2GHz 300 x

Flop/s 6 MFlop/s ~8 GFlop/s 103 x

RAM 128kB 8GB 106 x

Mem. 
latency

850ns ~100ns 20 x

(*) Charles Thacker’s computer in the 1970s

103 x

106 x

20 x
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Memory hierarchy to work around latency and 
bandwidth problems

Functional units

Registers

Internal cash

External cash

Main  memory

Expensive, fast, small

Cheap, slow, large

CPU

~100 GB/s
~ 6-10 ns

~50 GB/s

~10 GB/s
~ 75 ns
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Moore’s Law is still alive and well

illustration: A. Tovey, source: D. Patterson, UC Berkeley
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Single processor performance is no longer tracking 
Moore’s Law
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Performance increase due to exploding number of 
processing cores

illustration: A. Tovey, source: D. Patterson, UC Berkeley
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Multi-core processors (since middle of decade)



Tuesday, July 06, 2010 Boulder School for Condensed Matter & Materials Physics

Distributed vs. shared memory architecture
Distributed
memory

Shared 
memory

Interconnect

CPU

Memory
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Interconnect types on massively parallel 
processing (MPP) systems – distributed memory

CPU

RAM

NIC

Switch(es) / router(s)
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Infiniband networks (ethernet) – separating 
compute partition from router/switch

CPU

RAM

NIC

Switch(es) / router(s)

CPU

RAM

NIC

... CPU

RAM

NIC

...

! Open / commodity network
! More flexibility with topology 

(usually fat tree; but hyper 
cube, dragon fly, etc. also 
possible)

! Scales to only up to 104 
nodes (ideal for small 
clusters)

! Latency can be as low as 
microsecond

! Bandwidth not as high as 
proprietary
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Proprietary network – Integrated router/NIC 
(network interconnect chip) and compute node

CPU

RAM
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Router

CPU

RAM
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... CPU

RAM
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...
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RAM

CPU

NIC &
Router

RAM

... CPU

NIC &
Router

RAM

...

! Proprietary networks (today)
! IBM BG/P – torus + fat tree
! Cray Seastar (XT5) – torus
! Cray Gemini (XE6) – torus

! Reliable and scales to 100k 
nodes

! Higher bandwidth (similar to 
PDIe)

! Latency slightly high than 
infiniband
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Complexity of interconnect

IBIB IBIB IBIB IBIB IBIBIBIB IBIBIBIB

Link with Error

Error detected and 
corrected at the 
offending link

Source Node must 
retain copies of all 
potential in-flight 
messages – an O(n2) 
problem…

Error detected at the 
destination.  Packet is 
discarded.  Resent 
after 
timeout
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Interconnects in the TOP500 systems

LCI 2007
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Programming models (I): message passing
! Concurrent sequential processes 

cooperating on the same task 
! Each process has own private 

space 
! Communication is two-sided 

through send and receive 
! Large overhead! 

! Lots of flexibility in decomposing 
large problems, however, provides 
only fragmented view of the 
problem 
! All burden is placed on the programmer 

to maintain global view 
! Examples are message passing 

libraries like MPI or PVM

... ...
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......

Programming models (II): shared memory
! Multiple independent threads operate 

on same shared address space  
! Easy to use since there is only one 

type of memory access
! One-sided remote access (low overhead)

! Application view remains integrated 
(global view)

! Shared memory hardware doesn’t 
scale (local & remote memory 
access)

! It is difficult to exploit inherent data 
locality - degradation of performance!

! Examples are OpenMP or Pthreads 
! Compiler directive used with C, Fortran, ...
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Programming models (III):  data parallel

... ...

! Concurrent processing of many data 
elements in the same manner 

! Executing only one process (on 
many processors)

! Major drawback: does not permit 
independent branching 
! Not good for problems that are rich in 

functional parallelism

! Popular examples are C* and HPF 
! Revived today with GPGPU & CUDA
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Programming models (IV): 
distributed shared memory

......

! Independed threads operate in shared 
memory space
! preserve global view of program

! Shared space is locally partitioned 
among threads
! allows exploiting data locality

! “Single program multiple data 
stream” (SPMD) execution
! independent forking (functional parallelism)

! Popular examples: UPC and co-Array 
Fortran; or Global-Array library

! May still not have the same flexibility 
as Message Passing Model

Also called partitioned global address 
space (PGAS) model
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 Distributed shared memory or PGAS:
keeping the best from all other models 

... ...

......

... ...

......

Hardware optimized PGAS:

Cray XE6 with Gemini interconnect – fall 
2010 @ NERSC and Edinburgh (first XE6 
cabinet @ CSCS since June 2010)

IBM BG/Q with new interconnect – late 
2011 @ LLNL; 2012 ANL & Julich
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Aspects of performance - typical values in 2009/10
! Floating point (integer) performance: 2 or 4 per cycle

! Flop/s = floating point operation per second

! 2.4 GHz processors: 9.6 GFlop/s per core 

! Memory latency: ~50 ns

! Memory bandwidth: ~10 GB/s per core
! Interconnect latency ~1-10 !s
! Network bandwidth: ~5-10 GB/s
! Disk access time ~ ms
! I/O bandwidth (disk) ~ Gigabit/s

Cray XT5 node
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Summary: Brutal fact of modern HPC

! Mind boggling numbers of processing processing units
! Processor complexity (multi-core, heterogeneous, memory)
! Interconnect is a non-trivial part of the HPC system
! Parallel programming model characterized by memory model

! Shared memory (OpenMP), distributed memory (MPI), data parallel (HPF)
! Distributed shared memory (PGAS such as UPC, CAF, Global Array)

! Accessing memory is prohibitively expensive compared to the 
cost of floating point operations
! 1960s: transistors were expensive, memory access was cheap
! today: transitors are cheap, memory access is expensive

Key aspect of programming in HPC systems: 
All about managing resources
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1 EFlop
~ 2019
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Source: Rajeeb Hazra’s (HPC@Intel) talk at SOS14, March 2010

1000 fold increase in performance in 10 years:
> previously: double transistor density every 18 months = 100X in 10 years
                      frequency increased
> now: “only” 1.75X transistor density every 2 years = 16X in 10 years
            frequency almost the same

Need to make up a factor 60 somewhere else
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Source: Rajeeb Hazra’s (HPC@Intel) talk at SOS14, March 2010
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∼ constant

Tuesday, July 06, 2010 Boulder School for Condensed Matter & Materials Physics

Limits of CMOS scaling

n+ n+

source drain

GATE

WIRING

p substrate, doping

Voltage, V/α

SCALING
Voltage:
Oxide:
Wire width:
Gate Width:
Diffusion:
Substrate:

CONSEQUENCE:
Higher density:
Higher speed:
Power/ckt:
Power density:

V/α
tox/α

W/α

L/α

α∗NA

xd/α

∼ α2

∼ α

Oxide layer 
thickness ~1nm

The power challenge today is a precursor of more 
physical limitations in scaling – atomic limit!
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Opportunity for outsiders: A major disruption must 
happen before 2025
! Current CMOS technology will reach its physical limits by 

the end of the decade and will seise to scale
! The other physical limitations is the speed of light

! Light travels 30cm in 1ns – this is several cycles!
! Supercomputers can’t just become larger as they did the past decade

! Enthusiasm for GPGPU and hybrid systems indicates that a 
change in architecture is happening
! But this is still within current thinking and paradigm of digital computers

Huge opportunities for new materials, 
devices and condensed matter physics!


