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What exactly is
high-performance
computing?
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Application performance seems to keep up with
supercomputing systems performance (!)

~100 Kilowatts »<«— ~5 Megawatts > <€<——20-30 MW ——>

~1 Exaflop/s

100 millions or billion

1.35 Petaflop/s processing cores (!)
Cray XT5.

150’000 procesé@

1 L lee
(1’500 processors

== .

» (AN k- L A" = =
(8 processors )

First sustained GFlop/s First sustained TFlop/s  First sustained PFlop/s  Another 1,000x in sustained
Gordon Bell Prize 1989 Grondon Bell Prize 1998 Gordon Bell Prize 2008 performance increase (?)
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Plan for this lecture
= What is HPC and why worry?

= Historic background of scientific computing — how we came
to where we are today

= Bottleneck and complexities of today’s processors
= Parallel computers and parallel programming models

= Extrapolating Moore’s Law into the future — why condensed
matter physicists could be interested in computing
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Electronic computing: the beginnings
q - 1939-42: Atanasoff-Berry Computer - lowa State Univ.

1938: Konrad Zuse’s Z1 - Germany

1943/44: Colossus Mark 1&2 - Britain

«am Zuse and Z3 (1941)

- Z4 @ ETH
] (1950-54)

1945-51: UNIVAC |

~ 1945: John von Neumann report that defines
~ the "von Neuman” architecture
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Von Neumann Architecture: Invented by Eckert and Mauchly

Discussed in report by von Neumann (1945)

Memory

! !

Arithmetic
Control Unit [ «— Logic Unit

accumulator

7N

Input Output

stored-program concept = general purpose computing machine
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Since the dawn of High-performance computing:
Supercomputing at U S. Dept of Energy Iaboratorles

1946: ENIAC

1952: MANIAC |
1957: MANIAC Il

of group in LANL’s T Division that
- designed MANIAC | & II

f CEXRENMICAL FRHYNICH YOLUME NUEUMAEER »

Equation of State Calculations by Fast Computing Machines

ot As Mareotoris, Antasya B Rosaswniiirm Mameadd X Bostsptrrs, sop Voars M Traaae

m Absmas ooy Lobarpiory. Lw Al New Narne

1974: Cray 1 - vector architecture

1987: nCUBE 10 (SNL) - MPP architecture
1993: Intel Paragon (SNL)

2002:
1993: Cray T3D gapanese Earth Simulator - Sputnik shock of HPC>

- Peak: 1.382 TF/s
~ Quad-Core AMD Freq.: 2.3 GHz

150,176 compute cores
Memory: 300 TB

2004: IBM BG/L (LLNL) |
2005: Cray Redstorm/XT3 (S¥*#
2007: IBM BG/P (ANL)

2008: IBM “Roadrunner”
2008: Cray XT5 (ORNL)
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Today’s important types of processor architectures

= Scalar processor: process one data item (integer / floating
point number) at a time

= Vector processor: a single instruction operates on many
data items simultaneously

= Typical processor today: “pipelined superscalar”

Superscalar: simultaneously dispatch multiple instruction to redundant
functional units (multiplier or adder)

Pipeline: set of processing elements connected in a series

Example: 2 multiplies and two add per cycle
(4 floating point operations per cycle)

The good news: by and large compiler-level optimization will take care of this complexity

Tuesday, July 06, 2010

Boulder School for Condensed Matter & Materials Physics



| |
ETH cscs 5y

Eidgendssisch e Technische Hochschule Zirich Swiss National Supercomputing Centre \‘

Von Neumann Architecture:

Memory Memory
Arithmetic
CPU Control Unit [« Logic Unit
accumulator
/0 unit(s) Input Output

stored-program concept = general purpose computing machine
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Computers in the past and today

1970s (*) | my laptop |improvement

clock

(CPU) 6 MHz 2GHz 300 x
Flop/s | 6 MFlop/s |[~8 GFlop/s 103 x
RAM | 28kB 8GB | 06 x
Mem. 850ns ~|00ns 20 x
latency

(*) Charles Thacker’s computer in the 1970s
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Memory hierarchy to work around latency and
bandwidth problems
. . CPU
Functional units
Registers
Expensive, fast, small
~100 GB/s
Internal cash ~0-10ns
~50 GB/s
External cash
~10 GB/s
Cheap, slow, large ~75ns

Main memory
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Moore’s Law iIs still alive and well
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Single processor performance is no longer tracking
Moore’s Law

Tronsistors

The
Mooreo's
Gop

1,000
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Performance increase due to exploding number of
processing cores

Tokal @ of Processars m Topib

illustration: A. Tovey, source: D. Patterson, UC Berkeley
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Multi-core processors (since middle of decade)

Integrated'Memory Controller ~3:Ch DOR3

Core0 Corel Core2 Core3
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Distributed vs. shared memory architecture

Distributed
memory

Shared
memory
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Interconnect types on massively parallel
processing (MPP) systems — distributed memory
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Switch(es) / router(s) RAM| |RAM| " IRAM RAM
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Infiniband networks (ethernet) — separating
compute partition from router/switch

= Open / commodity network

= More flexibility with topology
(usually fat tree; but hyper
cube, dragon fly, etc. also

Switch(es) / router(s)

possible)
= Scales to only up to 104
vie | e NIC nodes (ideal for small
clusters)
= Latency can be as low as
microsecond
RAM| |RAM RAM = Bandwidth not as high as

proprietary

Tuesday, July 06, 2010 Boulder School for Condensed Matter & Materials Physics
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Proprietary network — Integrated router/NIC
(network interconnect chip) and compute node

= Proprietary networks (today)

IBM BG/P — torus + fat tree RAM| | RAM| - RAM RAM
Cray Seastar (XT5) — torus
Cray Gemini (XEG) — torus @ @ @ @
= Reliable and scales to 100k vcel [weal [weal . [wea
nOdeS Router| |Router| |Router Router
= Higher bandwidth (similar to —— —— |
Nic& _INnc&[ INncsl . . __INiCc&
P D I e) Router Router Router Router
= Latency slightly high than @ @ @ @
Infiniband
RAM| |RAM| |RAM RAM
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Complexity of interconnect

Error detected and
corrected at the
offending link

Link with Error

Source Node must Error detected at the

retain copies of all destination. Packet is
potential in-flight discarded. Resent
messages — an O(n?) after

problem... timeout
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Interconnects in the TOP500 systems
1

3EIIFIRIRER

LCI 2007

Tuesday, July 06, 2010 Boulder School for Condensed Matter & Materials Physics



ETH CSCS ‘."
Eidgendssische Technische Hochschule Zirich Swiss National Supercomputing Centre \‘
Swiss Federal Institute of Technology Zurich

Programming models (I): message passing

= Concurrent sequential processes
cooperating on the same task

= Each process has own private
space

= Communication is two-sided

through send and receive
Large overhead!

= Lots of flexibility in decomposing
large problems, however, provides
only fragmented view of the

problem
All burden is placed on the programmer
to maintain global view

= Examples are message passing
libraries like VP or PV

Tuesday, July 06, 2010 Boulder School for Condensed Matter & Materials Physics
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Programming models (ll): shared memory

= Multiple independent threads operate
on same shared address space

= Easy to use since there is only one

type of memory access
One-sided remote access (low overhead)

= Application view remains integrated
(global view)

= Shared memory hardware doesn't
scale (local & remote memory
access)

= |t is difficult to exploit inherent data
locality - degradation of performance!

= Examples are OpenlIP or Pthreads
Compiler directive used with C, Fortran, ...

Tuesday, July 06, 2010 Boulder School for Condensed Matter & Materials Physics
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Programming models (lll): data parallel

= Concurrent processing of many data
elements in the same manner

= Executing only one process (on
many processors)

= Major drawback: does not permit

iIndependent branching

Not good for problems that are rich in
functional parallelism

= Popular examples are C* and HPF
Revived today with GPGPU & CUDA
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Programming models (IV) Also called partitioned global address
distributed shared memory space (PGAS) model

= |Independed threads operate in shared
memory space
preserve global view of program
= Shared space is locally partitionec
among threads

allows exploiting data locality
= “Single program multiple data
stream” (SPMD) execution
independent forking (functional parallelism)

= Popular examples: UPC and co-Array
Fortran; or Global-Array library

= May still not have the same flexibility
as Message Passing Model

Tuesday, July 06, 2010 Boulder School for Condensed Matter & Materials Physics
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Distributed shared memory or PGAS:
keeping the best from all other models

Hardware optimized PGAS:

Cray XEG6 with Gemini interconnect — fall
2010 @ NERSC and Edinburgh (first XE6
cabinet @ CSCS since June 2010)

IBM BG/Q with new interconnect — late
2011 @ LLNL; 2012 ANL & Julich
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Aspects of performance - typical values in 2009/10

" Floating point (integer) performance: 2 or 4 per cycle

Flop/s = floating point operation per second

2.4 GHz processors: 9.6 GFlop/s per core
= Memory latency: ~50 ns

= Memory bandwidth: ~10 GB/s per core

= |nterconnect latency ~1-10 us
= Network bandwidth: ~5-10 GB/s

= Disk access time ~ ms —

= |/O bandwidth (disk) ~ Gigabit/s

Tuesday, July 06, 2010 Boulder School for Condensed Matter & Materials Physics



Summary: Brutal fact of modern HPC

= Mind boggling numbers of processing processing units
= Processor complexity (multi-core, heterogeneous, memory)
= |nterconnect is a non-trivial part of the HPC system

= Parallel programming model characterized by memory model

Shared memory (OpenMP), distributed memory (MPI), data parallel (HPF)
Distributed shared memory (PGAS such as UPC, CAF, Global Array)

= Accessing memory is prohibitively expensive compared to the
cost of floating point operations

1960s: transistors were expensive, memory access was cheap
today: transitors are cheap, memory access is expensive

Key aspect of programming in HPC systems:
All about managing resources

Tuesday, July 06, 2010 Boulder School for Condensed Matter & Materials Physics
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Moore’s Law 2008-2020

1000 fold increase in performance in 10 years:
> previously: double transistor density every 18 months = 100X in 10 years
frequency increased
> now: “only” 1.75X transistor density every 2 years = 16X in 10 years
frequency almost the same

Need to make up a factor 60 somewhere else
Source: Rajeeb Hazra's (HPC@Intel) talk at SOS14, March 2010

Tuesday, July 06, 2010 ‘ Boulder School for Condensed Matter & Materials Physics I
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Moore’s Law 2008-202¢

Swiss Federal Institute of Technology Zurich

S0 Leakage scaling/micron 1X Optimistic 1o 1 43X P
: PETRSUL 0 1 S5A Fassimestic

SOour ' f
ces; Intemgtlonal Technology Roadmap for Semiconductors and Ints

Moore's Law Takes Miracles ... But
It Isn't The Miracle That Will Carry The Day

Source: Rajeeb Hazra's (HPC@Intel) talk at SOS14, March 2010
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Limits of CMOS scaling

SCALING
Veltage: Vie
Voltage, V/CV Nocid e va / /v
UAIUCS TOXLT ="
toz/ ) ¢ WRING ¢ Wire width: W/«
| —>  — Gate Width: L/

Diffusion: x4/«
Substrate: «a "Ny

“ \ N+

" source drain ¢
mommmmeeT ]4 »{ """"" CONSEQUENCE:
L/« T ra/o H!gher density: ~ o
_ ) Higher speed: ~ «
p substrate, doping a" N4 Power/ckt: ~1/a?
Deosvainr Aowvnoit .- ——o ot o
I Uvvuuil U\“Jii\“jii.y. T OVUlIovaln

The power challenge today is a precursor of more
physical limitations in scaling — atomic limit!
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Opportunity for outsiders: A major disruption must
happen before 2025

= Current CMOS technology will reach its physical limits by
the end of the decade and will seise to scale

= The other physical limitations is the speed of light
Light travels 30cm in 1ns — this is several cycles!
Supercomputers can’t just become larger as they did the past decade

= Enthusiasm for GPGPU and hybrid systems indicates that a
change in architecture is happening

But this is still within current thinking and paradigm of digital computers
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