Soft Motors: molecular to macroscopic perspectives

Peter Palffy-Muhoray

Liquid Crystal Institute
Kent State University

Outline: microscopic

- What is a Motor?
- Molecular Motors 1. Anomalous Photoalignment
- ideas of Landauer, Prost \& Astumian
- Molecular Motors 2. Yokoyama - Tabe Experiment
- Lehman effect
- Molecular Motors 3. ATP synthase
- Boyer \& Walker
- Molecular Motors 4. Myosin and Actin
- muscles
- Molecular Motors 5. LC elastomers
- elongation/contraction
- Broken symmetry
- broken symmetry drives motors

Outline: macroscopic

- molecular \& macroscopic length scales
- shape change
- motors based on elongation
- motors based on bend
- summary

what is a motor?

Motor

- what is a motor?
- anything that produces or imparts motion (dictionary.com)

- a machine that supplies motive power for a vehicle or other device (O.E.D.)

Motor

- what is a motor?
- a device which uses energy (but not momentum!) to cause motion

- how does motion come about?
- car convinces the road to exert a force on it, and push it forward

Motor

- what is a motor?
- a device which uses energy (but not momentum!) to cause motion

- motor causes one part of a system to exert a force/torque on another, causing motion

Motor

- what is a motor?
- a device which uses energy (but not momentum!) to cause motion

- motor causes one part of a system to exert a force/torque on another, causing motion

Molecular Motors 1. Anomalous Photoalignment

Direct optical torque

table
angular momentum transfer:

$$
\begin{aligned}
& \tau_{v o l}^{o p t}=\mathbf{D} \times \mathbf{E} \\
& \tau_{v o l}^{e l}+\tau_{v o l}^{o p t}=0
\end{aligned}
$$

torque results from change in extrinsic angular momentum of light.

Indirect optical torque

addition of 1% of anthroquinone dye
\Rightarrow reduction of threshold intensity ${ }^{1}$ by $\sim \times 100$!

$$
\begin{array}{ll}
\text { without dye: } & \tau_{v o l}^{e l}+\tau_{v o l}^{o p t}=0 \\
\text { with dye: } & \tau_{v o l}^{e l}+\frac{1}{100} \tau_{e l}^{o p t}+? ?=0
\end{array}
$$

Torque on nematic causing elastic deformation CANNOT come from light! Source of torque??

1. I. Janossy, A.DD. Lloyd and B.S. Wherret, Mol. Cryst.Liq. Cryst. 179, 1, 1990.
I. Janossy, Phys. Rev. E 49, 2957, 1994.

Puzzle 1:

- light causes the director to reorient, against a restoring elastic torque, essentially without the transfer of angular momentum.
- light causes rotation without exerting a torque!

Prost, Astumian

The translational ratchet*

X
*R.D. Astumian et al: Phys.Rev.Lett.72, 1766, 1994.
J. Prost et al: Phys. Rev. Lett. 72, 2652, 1994.

Particles in asymmetric periodic potential:

When potential is turned OFF, particles diffuse, no net current

When potential is turned ON, particles move towards minimum, giving rise to current.

Simple model:

- dye
- anisotropic molecule with orientation \hat{l}_{d}
- in ground state does not interact with nematic
- in excited state becomes 'nematic' molecule
- probability of excitation depends on $\left(\hat{l}_{d} \bullet \mathbf{E}\right)^{2}$
- lifetime of excited state is t_{o}
- optical field
- transfers energy, but no momentum to the sample

Torque on liquid crystal:

Average orientation of excited dye molecule is NOT along nematic director

interaction between liquid crystal and excited dye gives rise to torque!

Rotating dye gives rise to shear flow

dye: $\quad-$ rotation \Rightarrow source of vorticity
liquid crystal: - aligned by nematic field of dye

viscous shear carries angular momentum from cell walls to dye angular momentum current: dye \rightarrow nematic \rightarrow cell walls \rightarrow shear \rightarrow dye

Summary of Puzzle 1

- Janossy effect ${ }^{1}$ (source provides energy but not torque yet causes rotation) \Rightarrow orientational ratchet ${ }^{2}$
- dye is light-driven rotor with continuous rotation
- energy from optical field drives shear flow
- viscous stress carries angular momentum from dye to cell walls

1. T. Kosa and I. Janossy, Opt.Lett. 17, 1183, 1992; Opt. Lett. 20, 1231, 1995.
2. W. E and P. Palffy-Muhoray, Mol.Cryst.Liq.Cryst. 320, 193, 1998

Puzzle 2. Photoìnduced Twist

Photoinduced Twist

Photoinduced Twist

Origin of torque

- before deformation takes place, polarization is parallel to the director, hence optical torque $\mathbf{D} \times \mathbf{E}=0$.
- optical field stabilizes configuration!
- source of torque?

Landauer

Landauer's Blowtorch

particles in periodic potential

'hot' molecules are more excited \& diffuse over barrier
\therefore steady current: system is molecular motor (pump)

> one part of system pushes on other; no momentum transfer from outside.
M. Büttiker, Z. Phys. B 68, 161 (1987).
R. Landauer, J. Stat. Phys. 53, 233 (1988)

Indirect optical torque: Brownian ratchet

dye molecules in nematic field

dye molecules parallel to pump polarization are excited \& diffuse over barrier
\therefore steady rotation: dye is light driven molecular motor
torque results from rotation of dye; no momentum transfer from light.
P. Palffy-Muhoray, T. Kosa and Weinan E, Appl. Phys. A 75, 294 (2002)

Schematic of Brownian motor:

dye in trans-state starts to rotate towards director

it exerts torque on director \& vice versa
as it becomes parallel to pump polarization
it is excited into cis-state, undergoes diffusion

relaxes into trans-state, rotates towards director...

Dynamics

- dye: Fokker-Planck

$$
\begin{aligned}
& \frac{\partial \rho_{\mathrm{t}}}{\partial \mathrm{t}}=D_{t} \nabla^{2} \rho_{t}+\nabla \cdot\left(M_{t} \rho_{t} \nabla U_{t}\right)-\rho_{t} f_{t}+\rho_{c} f_{c} \\
& \frac{\partial \rho_{\mathrm{c}}}{\partial \mathrm{t}}=D_{c} \nabla^{2} \rho_{c}+\nabla \cdot\left(M_{c} \rho_{c} \nabla U_{c}\right)-\rho_{c} f_{c}+\rho_{t} f_{t}
\end{aligned}
$$

- transition rates

$$
\begin{aligned}
& f_{t}=f_{t o} \mathrm{e}^{\mathrm{U}_{\mathrm{t}} / k T}+v e_{t}^{2}\left(\hat{\mathbf{l}}_{d} \cdot \hat{\mathbf{E}}\right)^{2} \\
& f_{c}=f_{c o} \mathrm{e}^{\mathrm{U}_{\mathrm{c}} / k T}+v e_{c}^{2}\left(\hat{\mathbf{l}}_{d} \cdot \hat{\mathbf{E}}\right)^{2}
\end{aligned}
$$

Dynamics

- liquid crystal
- bulk:

$$
\gamma \frac{\partial \hat{\mathbf{n}}}{\partial t}=K \nabla^{2} \hat{\mathbf{n}}(I-\hat{\mathbf{n}} \hat{\mathbf{n}})
$$

- surface:

$$
\begin{aligned}
\gamma_{s} \frac{\partial \hat{\mathbf{n}}}{\partial t}= & \{\mathrm{K}(\hat{\mathbf{N}} \nabla \cdot \hat{\mathbf{n}}+\hat{\mathbf{N}} \times \nabla \times \hat{\mathbf{n}}) \\
& \left.-d_{d}<\rho_{\mathrm{t}} \frac{\partial U_{t}}{\partial \hat{\mathbf{n}}}>-d_{d}<\rho_{\mathrm{c}} \frac{\partial U_{c}}{\partial \hat{\mathbf{n}}}>\right\}(I-\hat{\mathbf{n}} \hat{\mathbf{n}})
\end{aligned}
$$

Simulations

- optical field drives orientational current
- dye exerts steady torque on nematic

Summary of Anomalous Photoalignment

- light-driven molecular motors
- dye* molecules are rotors in nematic potential
- energy (but not momentum) from light
- steady unidirectional rotation
- orientational ratchet / Landauer's blowtorch mechanism
- work: steady torque on director by viscous stress + dissipation
- achiral

Molecular Motors 2. Yokoyama - Tabe Experiment

Yokoyama - Tabe Experiment

- chiral Langmuir monolayer
- substrate: glycerol $+\mathrm{H}_{2} \mathrm{O}$

Collective Molecular Rotor/Pump

Yuka Tabe and H. Yokoyama, Nature
Materials, 2, 806(2003).
\square

Chiral LC molecules on glycerol

FELIX013 on pure glycerol (SmC* phase)

counterclockwise rotation

CS4001 on pure glycerol (SmCA* phase)

clockwise rotation

Chirality inversion

(R)-OPOB

on pure glycerol

(S)-OPOB

on pure glycerol

Precession speed linearly depends on $\Delta \mathrm{P}_{\mathrm{W}} / \mathrm{P}_{0}$

$\Delta P_{w} / P_{0}=P_{v}-P_{s}$
P_{v} : actual water vapor pressure
\mathbf{P}_{s} : saturated water vapor pressure

Onsager Reciprocal Relations

Entropy Production:

$$
T \dot{S}=\tau \frac{\partial \phi}{\partial t}+J \cdot v_{m} \Delta P
$$

Onsager Relations:

$$
\frac{d \phi}{d t}=\frac{1}{\gamma} \tau+b v_{m} \Delta P
$$

$$
J=b \tau+\frac{1}{n} v_{m} \Delta P
$$

v_{m} : molecular volume of water in vapor
η γ : rotational viscosity of LC director
η : water mobility through the film
b: Lehmann coefficient (\propto chirality strength)

Phenomenological Theory of Lehmann effect

>Shibata \& Mikhailov, Europhys. Lett., 73 (2006)
$>$ H. Brand et al., Phys. Rev. Lett. 96 (2006)
$>$ Tsori \& de Gennes, Euro.Phys. J. E 14 (2004)
$>$ T. Okuzono, Kyoto Workshop (2005)

Equation of motion :

$$
\begin{gathered}
\gamma \frac{\partial \mathbf{c}}{\partial t}=-\frac{\delta F}{\delta \mathbf{c}}+\underbrace{\varphi \mathbf{z}}_{\text {Lehman term }} \times \frac{\partial P}{\partial \mathbf{~}} \\
F=\int d r\left[\frac{K}{2} \sum_{i=x, y}\left|\nabla c_{i}\right|^{2}-\frac{\tau}{2}|\mathbf{c}|^{2}+\frac{u}{4}|\mathbf{c}|^{4}\right.
\end{gathered}
$$

Time: 00000

Summary of Yokoyama - Tabe experiment

- substrate \& monolayer system is motor
- energy stored in chemical potential of $\mathrm{H}_{2} \mathrm{O}$
- vapor current drives rotation of chiral molecules
- work: produces circulating flow, dissipation

Molecular Motors 3. ATP Synthase

$F_{1} F_{0}$ ATP Synthase

- enzyme that synthesizes
adenosine-5'-triphosphate (ATP) from
adenosine diphosphate (ADP) + phosphate
- reaction:

$$
\text { ADP }+\mathrm{P}_{\mathrm{i}} \rightarrow \text { ATP }
$$

- ATP:
"molecular unit of currency" of intracellular energy transfer

$F_{1} F_{0}$ ATP Synthase

- energy from glucose sets up H^{+}gradient
- H^{+}current drives motor
- stator opens \& closes, producing ATP

$F_{1} F_{0}$ ATP Synthase

A complete A TP molecule is bound to 51

BL binds ADP and
inorganic phosphate $\left(P_{i}\right)$.
PL binds ADP and
inorganic phosphate $\left(P_{i}\right)$.

 energy

They subunit has rotated.
$\beta_{\text {T becomes open and ATP is }}$ rel eased. β_{L} becomes bght and β_{O} becomes loose.

The phosphate ion reacts with the ADP molecule so that añew ATP molecule is formed. We are back to the first stage.

$F_{1} F_{0}$ ATP Synthase

- normal human produces
~100lbs of APT/day
- motor can run backwards

Boyer \& Walker, Nobel Prize in Chemistry, 1997

Why does rotor turn?

- sequential protonation \& deprotonation of side groups coupled with rotation
- chemical potential difference of H^{+}drives current, which drags surface of C -rotor.
- pot. diff. \rightarrow
current \rightarrow
rotation.
A. Aksimentiev et al.Biophysical Journal 86 , 1332 (2004)

Modeling

- system of Langevin equations

$$
\begin{aligned}
\xi_{\mathrm{i}} \frac{d \theta_{\mathrm{i}}}{d t} & =-\frac{\partial \Psi\left(\theta_{\mathrm{a}}, \theta_{\mathrm{R}}, \theta_{1}, \theta_{2}, \theta_{2}, \theta_{4}\right)}{\partial \theta_{\mathrm{i}}}+\eta_{\mathrm{i}}(t), \\
i & =a, R, 1, \ldots, 4
\end{aligned}
$$

- Lennard-Jones + hydrophobic +screened Coulomb

$$
U_{\mathrm{EL}}(\vec{r})=\frac{e^{2}}{4 \pi \varepsilon_{0} e} \frac{q_{1} q_{2}}{|\vec{r}|} \exp (-\lambda|\vec{r}|] ;
$$

A. Aksimentiev et al.Biophysical Journal 86 ,1332 (2004)

Modeling

- proposed sequence

based on simulations

A. Aksimentiev et al.

Biophysical Journal 86 ,1332 (2004)

Summary of ATP Synthase

- rotary molecular motor
- rotation driven by proton current
- energy from stored electrochemical potential
- work: creation of ATP + dissipation

Molecular Motors 4. Actin \& Myosin

Biological transport

- all organisms (eukaryotic cells of yeasts, plants, animals) contain 'motor proteins'
- two well known examples:

- kinesins

- two active heads
- hydrolyses ATP
- moves along microtubules
- myosins
- two active heads
- hydrolyses ATP
- moves along actin fibers

Muscle force and movement

actin

myosin filament length $=1.55 \mu \mathrm{~m}$

muscle fiber
C.J. Pennycuick, Newton Rules Biology (Oxford, 1995)

Summary of Actìn \&Myosin

- processive motor (unidirectional translation)
- hand-over-hand motion
- driven by chemical energy of ATP
- work: translation of cargo against force, dissipation

Molecular Motors 5. LC elastomers

LC elastomer network changes shape

If orientational order increases,

If orientational order decreases,

Summary of LC elastomers

- elongational motor:
- change in orientational order produces stress
- stress produces change in shape
- driven by heat, light, or impurities
- work: motion against force, dissipation

Broken Symmetry

Proper- and pseudo-tensors

tensor rank	0	1	2	3	4
proper	$\pi, \quad x$	$\mathbf{E ,}, \mathbf{P}, \mathbf{D}$	$\delta_{\alpha \beta}$, $\varepsilon_{\alpha \beta}$, $\varepsilon_{\alpha \beta}$	$d_{\alpha \beta \gamma}$	etc.
pseudo	$\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$	$\mathbf{H}, \mathbf{M}, \mathbf{B}$	$\Gamma_{\alpha \beta}$	$\varepsilon_{i j k}$	

scalar vector
changes sign on inversion
does not change sign on inversion

handedness = pseudoscalar c*!

Symmetry and motors

- symmetry of the system determines motion of motor!

Translational motion

YAFOO! ANSWERS

My rugs are alive and moving!?

I have wall to wall carpets in my apartment. I have placed large rugs on top of the carpet. Without damaging the carpet or the rug, how can I stop them from wrinkling and moving? Is it caused by static electricity?

Translational motion

YKHOO!』ANSWERS

My rugs are alive and moving!?

I have wall to wall carpets in my apartment. I have placed large rugs on top of the carpet. Without damaging the carpet or the rug, how can I stop them from wrinkling and moving? Is it caused by static electricity?

 tilted strands
Translation

YKHOO!』ANSWERS

My rugs are alive and moving!?

I have wall to wall carpets in my apartment. I have placed large rugs on top of the carpet. Without damaging the carpet or the rug, how can I stop them from wrinkling and moving? Is it caused by static electricity?

 tilted strands
Translation

YKHOO!』ANSWERS

My rugs are alive and moving!?

I have wall to wall carpets in my apartment. I have placed large rugs on top of the carpet. Without damaging the carpet or the rug, how can I stop them from wrinkling and moving? Is it caused by static electricity?

/1/DRNTIUIII/

tilted strands

Translation

YKHOO!』ANSWERS

My rugs are alive and moving!?

I have wall to wall carpets in my apartment. I have placed large rugs on top of the carpet. Without damaging the carpet or the rug, how can I stop them from wrinkling and moving? Is it caused by static electricity?

tilted strands

Translation

YKHOO!』ANSWERS

My rugs are alive and moving!?

I have wall to wall carpets in my apartment. I have placed large rugs on top of the carpet. Without damaging the carpet or the rug, how can I stop them from wrinkling and moving? Is it caused by static electricity?

$1 / 1 /$

tilted strands

Translation

YKHOO!』ANSWERS

My rugs are alive and moving!?

I have wall to wall carpets in my apartment. I have placed large rugs on top of the carpet. Without damaging the carpet or the rug, how can I stop them from wrinkling and moving? Is it caused by static electricity?

/IIIIITIUIITIII tilted strands

Translation

YKHOO!』ANSWERS

My rugs are alive and moving!?

I have wall to wall carpets in my apartment. I have placed large rugs on top of the carpet. Without damaging the carpet or the rug, how can I stop them from wrinkling and moving? Is it caused by static electricity?

$/ 1 / 1 / / 1 / / 1 / / 1 / 1 / / 1 /$

 tilted strands
Symmetry and motors

- symmetry of the system determines motion of motor!
- broken left-right symmetry:
- proper vector exists in system
- translation in direction of vector (carpet, kinesin, myosin)

Symmetry and motors

- symmetry of the system determines motion of motor!
- broken translational symmetry:
- proper vector exists in system
- translation in direction of vector (carpet, kinesin, myosin)
[Q: is there a vector in Landauer's blow torch?]
- broken chiral symmetry
- pseudoscalar c* exists in system
- broken chiral + broken translational symmetry
- pseudoscalar + proper vector = pseudovector
- rotation (Yokoyama - Tabe, ATP Synthase, etc.)

Symmetry and motors

- if system has proper dyad (director)
- strain (elongation)
- if system has proper dyad and gradient (vector),
- proper vector (curvature, bend)
- if system has proper dyad, gradient \& pseudoscalar
- pseudovector (twist)

Symmetry \& deformation/motion

Symmetry	can construct	deformation/motion	material
\longrightarrow	vector	translation	in kinesin, actin
\longleftrightarrow	dyad	uniaxial strain	nematic networks
C*	-	-	
$\mathrm{C}^{*} \quad \longrightarrow$	pseudovector	rotation	Lehman, ATP, Tabe
$\longrightarrow \longleftrightarrow C_{C}^{*}$	pseudovector	twist	LCE twist
	proper vector	bend	LCE photoactuation

Connectìng molecular \& macrosopic scales

- cumulative effect of many molecular motors \rightarrow macroscopic response
- rotating dye system, Yokoyama-Tabe expt:
- distributed local vorticity \rightarrow bulk torque \& bulk flow
- ATP synthase:
- produces bulk ATP
- myosin \& actin
- muscle fibers form long muscles, these contract
- effective shape change
- contraction, elongation and bend and twist

Smooth shape change: elongation

- liquid crystal elastomers:
- coupling of orientational order and strain
- large mechanical response to excitations
- elongation due to temperature change
- motor based on elongation

H. Finkelmann, nematic LCE

Another motor based on elongation

- rubber band heat engine

Another motor based on elongation

- collagen contracts in salt water

Aharon Katzir-Katchalsky
1913-1972

Another motor based on elongation

- a modified version

M. V. Sussman and A. Katchalsky, Science, 167, 45 (1970)

Dunking bird of the first kind

- heat engine
- Carnot efficiency limit

Dunking bird of the second kind

- not a heat engine
- isothermal
- involves shape change

(b)
N. Abraham, P. Palffy-Muhoray., Am.J. Phys. 72, 782 (2004)

Bend Motors

- samples of liquid crystal elastomers with azo dye bend on exposure to light

LC + diacrylate network + functionalized azo-chromophore
timescale: 10 s

Yanlei Yu, Makoto Nakano, Tomiki Ikeda, Nature 425, 125 (2003)

Water vapor sensitive network

K. Harris, C. Bastiaansen, D. Broer, J. MEM Syst., 16, 480 (2007)

Bend Motors

sample: nematic elastomer EC4OCH3

+ 0.1\% dissolved
Disperse Orange 1 azo dye

Response time: 70ms

Photoinduced oscillations

- if sample bends $>90^{\circ}$ both sides are illuminated, producing oscillations

Start position

S. Serak, N. Tabiryan, R. Vergara, T. White, R. Vaia, T. Bunning, Soft Matter 6, 779-783 (2010)

Bend Motors

- floating nematic LCE sample illuminated from above

M. Chamacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Nature Mat. 3, 307, (2004)

Bend Motors

- robotic arm

T. Ikeda, Chuo University (priv. comm.)

Bend Motor: focus of current interest

- azo-dye doped liquid crystal elastomer

M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita, C. Barrett, T. Ikeda, Angew. Chem. 47, 4986 (2008)

Bend Motor: focus of current interest

- shape-memory Ni-Ti alloy,
- two phases:
- orthorhombic martensite (cold)
- cubic austenite (hot)

Existing rotary bend motors

LCE bends on exposure to light

wire becomes stiff when heated

Model

- bend vs. compression:
- if ends are brought closer, will filament compress or bend?

$$
\longleftarrow L-\Delta L \longrightarrow
$$

$$
\frac{\Delta L}{L} \simeq \frac{1}{24}\left(\frac{L}{R}\right)^{2}
$$

$$
\mathcal{E}_{b} / l=\frac{1}{2} E\left(\frac{d}{R}\right)^{2} \frac{w d}{12} \quad \mathcal{E}_{c} / l=\frac{1}{2} E\left(\frac{\Delta L}{L}\right)^{2} w d
$$

$$
\frac{\mathcal{E}_{c}}{\mathcal{E}_{b}} \sim\left(\frac{L}{d}\right)^{2}\left(\frac{L}{R}\right)^{2}
$$

Bend is much cheaper energetically than stretch;
$\rightarrow \quad$ length is constant.

Model

Model

s - arc length along filament
$\mathbf{R}(s)$ - position vector of point on filament

Model

- bend energy density:

$$
\mathcal{E}_{b} / l=\frac{1}{2} E I \frac{1}{R^{2}}=\frac{c}{R^{2}}
$$

stiffness
fn . of position

$$
\begin{aligned}
\mathcal{E}= & \int_{s_{0}}^{s_{1}} c\left(\frac{1}{R_{1}}-\kappa\right)^{2} d s+\int_{s_{1}}^{s_{2}} c\left(\frac{\partial^{2} \mathbf{R}}{\partial s^{2}}-\kappa\left(\frac{\partial \mathbf{R}}{\partial s} \times \hat{\mathbf{z}}\right)\right)^{2} d s+ \\
& \int_{s_{2}}^{s_{3}} c\left(\frac{1}{R_{2}}-\kappa\right)^{2} d s+\int_{s_{3}}^{s_{4}} c\left(\frac{\partial^{2} \mathbf{R}}{\partial s^{2}}-\kappa\left(\frac{\partial \mathbf{R}}{\partial s} \times \hat{\mathbf{z}}\right)^{2} d s+\int_{s_{4}}^{s_{0}} c\left(\frac{1}{R_{1}}-\kappa\right)^{2} d s,\right.
\end{aligned}
$$

2

$$
\begin{aligned}
& \begin{array}{ccc}
& S_{x} & \theta_{2} \\
\theta_{3} &
\end{array} \\
& \begin{array}{lll}
R_{1} & \theta_{1} \\
\theta_{4}
\end{array} s_{o}
\end{aligned}
$$

- constraints:
- filament length is constant
- displacement in x-dir. is fixed

$$
\begin{aligned}
& R_{1}\left(1-\cos \theta_{1}\right)-\int_{s_{1}}^{s_{2}} \hat{\mathbf{t}} \cdot \hat{\mathbf{x}} d s+R_{2}\left(1-\cos \theta_{2}\right)=L+R_{1}+R_{2} \\
& R_{1}\left(1-\cos \theta_{4}\right)+\int_{s_{3}}^{s_{4}} \hat{\mathbf{t}} \cdot \hat{\mathbf{x}} d s+R_{2}\left(1-\cos \theta_{3}\right)=L+R_{1}+R_{2}
\end{aligned}
$$

- displacement in y-dir. is fixed

$$
\begin{aligned}
& R_{1} \sin \theta_{1}+\int_{s_{1}}^{s_{2}} \hat{\mathbf{t}} \cdot \hat{\mathbf{y}} d s-R_{2} \sin \theta_{2}=0 \\
& R_{1} \sin \theta_{4}+\int_{s_{3}}^{s_{4}} \hat{\mathbf{t}} \cdot \hat{\mathbf{y}} d s-R_{2} \sin \theta_{3}=0 \\
& \text { BoULDER School }
\end{aligned}
$$

Model: Energy with constraints

$$
\begin{aligned}
\mathcal{E}= & \int_{0}^{s_{1}} c\left(\frac{1}{R_{1}}-\kappa\right)^{2} d s+\int_{s_{1}}^{s_{2}} c\left(\hat{\mathbf{t}}^{\prime}-\kappa(\hat{\mathbf{t}} \times \hat{\mathbf{z}})\right)^{2} d s+\int_{s_{2}}^{s_{3}} c\left(\frac{1}{R_{2}}-\kappa\right)^{2} d s \\
& +\int_{s_{3}}^{s_{4}} c\left(\hat{\mathbf{t}}^{\prime}-\kappa(\hat{\mathbf{t}} \times \hat{\mathbf{z}})\right)^{2} d s+\int_{s_{4}}^{1} c\left(\frac{1}{R_{1}}-\kappa\right)^{2} d s \\
& +f_{1 x}\left\{R_{1}\left(1-\cos \frac{s_{1}}{R_{1}}\right)-\int_{s_{1}}^{s_{2}} \hat{\mathbf{t}} \cdot \hat{\mathbf{x}} d s+R_{2}\left(1-\cos \left(\frac{s_{x}-s_{2}}{R_{2}}\right)\right)-\left(L+R_{1}+R_{2}\right)\right\} \\
& +f_{1 y}\left\{R_{1} \sin \frac{s_{1}}{R_{1}}+\int_{s_{1}}^{s_{2}} \hat{\mathbf{t}} \cdot \hat{\mathbf{y}} d s-R_{2} \sin \left(\frac{s_{x}-s_{2}}{R_{2}}\right)\right\} \\
& +f_{2 x}\left\{R_{1}\left(1-\cos \left(\frac{1-s_{4}}{R_{1}}\right)\right)+\int_{s_{3}}^{s_{4}} \hat{\mathbf{t}} \cdot \hat{\mathbf{x}} d s+R_{2}\left(1-\cos \left(\frac{s_{3}-s_{x}}{R_{2}}\right)\right)-\left(L+R_{1}+R_{2}\right)\right\} \\
& +f_{2 y}\left\{R_{1} \sin \left(\frac{1-s_{4}}{R_{1}}\right)+\int_{s_{3}}^{s_{4}} \hat{\mathbf{t}} \cdot \hat{\mathbf{y}} d s-R_{2} \sin \left(\frac{s_{3}-s_{x}}{R_{2}}\right)\right\}
\end{aligned}
$$

Lagrange multipliers are components of forces in top and bottom filaments.

Model: Energy minìmizatìon

- ODEs are obtained by minimizing \mathcal{E} w.r.t. $\quad \hat{\mathbf{t}}=(\cos \theta, \sin \theta)$

$$
\begin{array}{lcc}
-2\left(c \theta^{\prime \prime}+c^{\prime} \theta^{\prime}+(c \kappa)^{\prime}\right)+f_{1 x} \sin \theta+f_{1 y} \cos \theta=0, & \text { if } & s \in\left(s_{1}, s_{2}\right) \\
-2\left(c \theta^{\prime \prime}+c^{\prime} \theta^{\prime}+(c \kappa)^{\prime}\right)-f_{2 x} \sin \theta+f_{2 y} \cos \theta=0, & \text { if } & s \in\left(s_{3}, s_{4}\right) .
\end{array}
$$

- these govern the shape of the filaments on top and bottom
- BC for θ is obtained by minimizing \mathcal{E} w.r.t. $s_{1}, s_{2}, s_{3}, s_{4}$
- this gives continuous tangent and curvature at contact pts.

Numerical Solution

1. Assign initial values for s_{1}, s_{2}, s_{x} and $f_{1 x}, f_{1 y}$ and solve ODE

$$
-2\left(c \theta^{\prime \prime}+c^{\prime} \theta^{\prime}+(c \kappa)^{\prime}\right)+f_{1 x} \sin \theta+f_{1 y} \cos \theta=0
$$ with BCs.

2. Assign initial values for s_{3}, s_{4} and $f_{2 x}, f_{2 y}$ and solve ODE

$$
-2\left(c \theta^{\prime \prime}+c^{\prime} \theta^{\prime}+(с \kappa)^{\prime}\right)-f_{2 x} \sin \theta+f_{2 y} \cos \theta=0
$$

with BCs.
3. Vary the forces $f_{1 x}, f_{1 y}, f_{2 x}, f_{2 y}$ to satisfy constraints (root finding)
4. Vary $s_{1}, s_{2}, s_{3}, s_{4}, s_{x}$ and go to 1. until $\frac{\partial \mathcal{E}}{\partial s_{i}}=0, \quad i=1, \ldots 4, x$.

Numerical Solution: varying the curvature

Numerical Solution: varyìng the stiffness

Calculating torques

- to calculate the net torque, we consider part of system
- look at forces

Note: integrating the ODE w.r.t. to s gives

$$
2 c\left(\theta^{\prime}+\kappa\right)-f_{1 x} \int_{0}^{s} \sin \theta(\tilde{s}) d \tilde{s}-f_{1 y} \int_{0}^{s} \cos \theta(\tilde{s}) d \tilde{s}=K_{1}, \text { (upper part) }
$$

ODE is precisely the condition that the torque on wheel remain constant, regardless of where the filament is cut!

What happens on the pulleys?

- Problem: elastic beam on rigid cylinder

Interesting observation

- straight beam touches cylinder along one line

- curved beam touches cylinder over extended area

Transition?

Experiment

Determination of point of contact

Data

Modelling: as before

Force distribution on pulleys

- when force \mathbf{F} is applied to filament,
- point contact if

$$
F \leq F_{c}
$$

- extended contact if $\quad F>F_{c}$

- torque balance:

$$
F(L-R \sin \theta)-\int_{\theta}^{\theta_{c}} R \sin (\phi-\theta) f(\phi) R d \phi=\frac{E I}{R}
$$

- Volterra integral equation of first kind.

Force distribution on pulleys

- When force \mathbf{F} is applied to filament,

L

- point contact if

$$
F \leq F_{c}
$$

- extended contact if $\quad F>F_{c}$

- Solution for force density:

$$
f(\theta)=\frac{F}{R}\left(\delta\left(\theta-\theta_{c}\right) \cos \theta_{c}+\sin \theta_{c}\right)
$$

where $\sin \theta_{c}=\left(\frac{F-F_{c}}{F}\right) \frac{L}{R}$

Force distribution

How does rotation come about?

How does rotation come about?

- away from the small wheel,
- longer lever arm on one side

- near small wheel
- greater point torque on one side
- curvature is the same,
- but stiffer on one side
- have pontaneous curvature on one side

How does rotation come about?

- away from the small wheel,
- longer lever arm on one side
- near small wheel
- greater point torque on one side
- curvature is the same,
- but stiffer on one side
- have pontaneous curvature on one side

Motion due to point torques

- how can a point torque in filament cause translation?

Motion due to point torques

- how can a point torque in filament cause bulk translation?
- net force is zero,

Motion due to point torques

- how can a point torque in filament cause translation?
- net force is zero, but torque causes constraint force to appear

Motion due to point torques

- how can a point torque in filament cause translation?
- net force is zero, but torque causes constraint force to appear
- net force along \mathbf{F}_{1}
- translation

- angular momentum transport!

Motion due to point torques

- how can a point torque in filament cause translation?
- net force is zero, but torque causes constraint force to appear
- net force along \mathbf{F}_{1}
- translation

- no rotation without friction between filament \& whee!!

Angular momentum current

- point torque in filament causes constraint force F to appear*
- reaction force -F appears; exerts torque on hand
- angular momentum current flows into bend motor from hand

- * via stress transport:

$$
\nabla(\nabla \cdot \boldsymbol{\sigma})=\frac{\rho}{E} \frac{\partial^{2} \boldsymbol{\sigma}}{\partial t^{2}}
$$

Summary

- detailed model for bend motors driven by
- local spontaneous curvature caused by light (LCE-Ikeda)
- local stiffening caused by heat (Nitinol-Wang)
- corrects/completes existing qualitative explanations
- prediction:
- LCE motor with perp. alignment runs the other way: confirmed!
- understand angular momentum transport
- efficiency calculation: remains to be done

Angular momentum

stimulus is applied
filament bends
torque appears
angular momentum flows into motor
rotation starts
angular momentum is conserved \&
earth speeds up

Conclusions

- variety of molecular -scale mechanisms can be exploited
- rotary (dyes, Yokoyama-Tabe)
- need better molec. motors with processive translation
- elongation (LC elastomers/networks)
- symmetry plays important role in determining motion
- macroscopic phenomena are cumulative effects of molecular motors
- understand bend motors well
- many exciting possibilties to explore!

