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Exact Diagonalization: Applications

Quantum Magnets: nature of novel phases, critical points in 1D, 
dynamical correlation functions in 1D & 2D

Fermionic models (Hubbard/t-J): gaps, pairing properties,
correlation exponents, etc

Fractional Quantum Hall states: energy gaps,
overlap with model states, entanglement spectra

Quantum dimer models or other constrained models (anyon 
chain..)

Full Configuration Interaction in Quantum Chemistry
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Area Law

Topological entanglement entropy

S(ρ) = Tr[−ρ log ρ]

(Topological) Entanglement Entropy

 Let us look at reduced density matrices, and their entanglement entropies

ar
X

iv
:h

ep
-t

h
/0

5
1

0
0

9
2

v
2
  

2
3

 J
an

 2
0

0
6

Topological entanglement entropy

Alexei Kitaev1,2 and John Preskill1
1 Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

We formulate a universal characterization of the many-particle quantum entanglement in the
ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a
disk in the plane, with a smooth boundary of length L, large compared to the correlation length.
In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a
marginal density operator ρ for the degrees of freedom in the interior. The von Neumann entropy
S(ρ) of this density operator, a measure of the entanglement of the interior and exterior variables,
has the form S(ρ) = αL−γ+ · · ·, where the ellipsis represents terms that vanish in the limit L → ∞.
The coefficient α, arising from short wavelength modes localized near the boundary, is nonuniversal
and ultraviolet divergent, but −γ is a universal additive constant characterizing a global feature of
the entanglement in the ground state. Using topological quantum field theory methods, we derive
a formula for γ in terms of properties of the superselection sectors of the medium.

PACS numbers: 03.65.Ud, 71.10.Pm, 73.43.Nq

In a quantum many-body system at zero temperature,
a quantum phase transition may occur as a parameter
varies in the Hamiltonian of the system. The two phases
on either side of a quantum critical point may be charac-
terized by different types of quantum order; the quantum
correlations among the microscopic degrees of freedom
have qualitatively different properties in the two phases.
Yet in some cases, the phases cannot be distinguished by
any local order parameter.

For example, in two spatial dimensions a system with a
mass gap can exhibit topological order [1]. The quantum
entanglement in the ground state of a topologically or-
dered medium has global properties with remarkable con-
sequences. For one thing, the quasiparticle excitations of
the system (anyons) exhibit an exotic variant of indistin-
guishable particle statistics. Furthermore, in the infinite-
volume limit the ground-state degeneracy depends on the
genus (number of handles) of the closed surface on which
the system resides.

While it is clear that these unusual properties emerge
because the ground state is profoundly entangled, up un-
til now no firm connection has been established between
topological order and any quantitative measure of en-
tanglement. In this paper we provide such a connection
by relating topological order to von Neumann entropy,
which quantifies the entanglement of a bipartite pure
state.

Specifically, we consider a disk in the plane, with a
smooth boundary of length L, large compared to the
correlation length. In the ground state, by tracing out
all degrees of freedom in the exterior of the disk, we
obtain a marginal density operator ρ for the degrees
of freedom in the interior. The von Neumann entropy
S(ρ) ≡ −trρ log ρ of this density operator, a measure of
the entanglement of the interior and exterior variables,
has the form

S(ρ) = αL − γ + · · · , (1)

where the ellipsis represents terms that vanish in the limit
L → ∞. The coefficient α, arising from short wavelength
modes localized near the boundary, is nonuniversal and
ultraviolet divergent [2], but −γ (where γ is nonnegative)
is a universal additive constant characterizing a global
feature of the entanglement in the ground state. We call
−γ the topological entanglement entropy.

This universal quantity reflects topological properties
of the entanglement that survive at arbitrarily long dis-
tances, and therefore can be studied using an effective
field theory that captures the far-infrared behavior of
the medium, namely a topological quantum field theory
(TQFT) that describes the long-range Aharonov-Bohm
interactions of the medium’s massive quasiparticle exci-
tations. We find

γ = logD , (2)

where D ≥ 1 is the total quantum dimension of the
medium, given by

D =

√

∑

a

d2
a ; (3)

here the sum is over all the superselection sectors of the
medium, and da is the quantum dimension of a particle
with charge a.

Any abelian anyon has quantum dimension d = 1;
therefore, for a model of abelian anyons, D2 is simply
the number of superselection sectors. Thus for a Laugh-
lin state [3] realized in a fractional quantum Hall system
with filling factor ν = 1/q where q is an odd integer, we
have D =

√
q. For the toric code [4], which has four sec-

tors, the topological entropy is γ = log 2, as has already
been noted in [5].

However, nonabelian anyons have quantum dimension
greater than one. The significance of da (which need not
be a rational number) is that the dimension Naaa···a of

1

System
Environment

ρ = TrE |ψ〉〈ψ|
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We formulate a universal characterization of the many-particle quantum entanglement in the
ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a
disk in the plane, with a smooth boundary of length L, large compared to the correlation length.
In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a
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In a quantum many-body system at zero temperature,
a quantum phase transition may occur as a parameter
varies in the Hamiltonian of the system. The two phases
on either side of a quantum critical point may be charac-
terized by different types of quantum order; the quantum
correlations among the microscopic degrees of freedom
have qualitatively different properties in the two phases.
Yet in some cases, the phases cannot be distinguished by
any local order parameter.

For example, in two spatial dimensions a system with a
mass gap can exhibit topological order [1]. The quantum
entanglement in the ground state of a topologically or-
dered medium has global properties with remarkable con-
sequences. For one thing, the quasiparticle excitations of
the system (anyons) exhibit an exotic variant of indistin-
guishable particle statistics. Furthermore, in the infinite-
volume limit the ground-state degeneracy depends on the
genus (number of handles) of the closed surface on which
the system resides.

While it is clear that these unusual properties emerge
because the ground state is profoundly entangled, up un-
til now no firm connection has been established between
topological order and any quantitative measure of en-
tanglement. In this paper we provide such a connection
by relating topological order to von Neumann entropy,
which quantifies the entanglement of a bipartite pure
state.

Specifically, we consider a disk in the plane, with a
smooth boundary of length L, large compared to the
correlation length. In the ground state, by tracing out
all degrees of freedom in the exterior of the disk, we
obtain a marginal density operator ρ for the degrees
of freedom in the interior. The von Neumann entropy
S(ρ) ≡ −trρ log ρ of this density operator, a measure of
the entanglement of the interior and exterior variables,
has the form

S(ρ) = αL − γ + · · · , (1)

where the ellipsis represents terms that vanish in the limit
L → ∞. The coefficient α, arising from short wavelength
modes localized near the boundary, is nonuniversal and
ultraviolet divergent [2], but −γ (where γ is nonnegative)
is a universal additive constant characterizing a global
feature of the entanglement in the ground state. We call
−γ the topological entanglement entropy.

This universal quantity reflects topological properties
of the entanglement that survive at arbitrarily long dis-
tances, and therefore can be studied using an effective
field theory that captures the far-infrared behavior of
the medium, namely a topological quantum field theory
(TQFT) that describes the long-range Aharonov-Bohm
interactions of the medium’s massive quasiparticle exci-
tations. We find

γ = logD , (2)

where D ≥ 1 is the total quantum dimension of the
medium, given by

D =

√

∑

a

d2
a ; (3)

here the sum is over all the superselection sectors of the
medium, and da is the quantum dimension of a particle
with charge a.

Any abelian anyon has quantum dimension d = 1;
therefore, for a model of abelian anyons, D2 is simply
the number of superselection sectors. Thus for a Laugh-
lin state [3] realized in a fractional quantum Hall system
with filling factor ν = 1/q where q is an odd integer, we
have D =

√
q. For the toric code [4], which has four sec-

tors, the topological entropy is γ = log 2, as has already
been noted in [5].

However, nonabelian anyons have quantum dimension
greater than one. The significance of da (which need not
be a rational number) is that the dimension Naaa···a of

1

Kitaev & Preskill PRL ’06
Levin & Wen PRL ’06

D Total quantum dimension

For topologically ordered phases:
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Fractional QH states on the torus

 The torus can be tuned continuously by varying L1 and L2  (L1 L2 = 2π Ns).

 We study orbital partitioning, which is expected to correspond to real space
 partitioning
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Area law at constant L1 (ν=1/3 Laughlin)

 Increasing Ns (and thus L2) at constant L1 ⇒ Saturation at large lA
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Entanglement entropy S(L1) (ν=1/3 Laughlin)

 For large enough Ns, S(L1) converges for each L1 
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Boundary entropy 
density (α)

S(L1) = 2αL1 − 2γ + . . .
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Extracting the topological entanglement entropy

 Use a running γ extraction, and monitor L1 convergence

 2γ converges towards expected Log(3) ! 
 Most accurate numerical determination for FQH states to date.

-2

-1.5

-1

-0.5

0

S A
(L

1) 
- L

1 d
S A

/d
L 1

0 3 6 9 12 15 18
L1

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

S A
(L

1) 
- L

1 d
S A

/d
L 1

-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0

S A
(L

1) 
- L

1 d
S A

/d
L 1

0 3 6 9 12 15 18
L1

-8

-6

-4

-2

0

2

4

S A
(L

1) 
- L

1 d
S A

/d
L 1

ν=1/3, Laughlin(a)

(b)

-Ln(3)

ν=1/3, Coulomb

-Ln(3)

(c)

(d) ν=1/5, Coulomb

ν=1/5, Laughlin

-Ln(3)

-Ln(3)

-Ln(5)

-Ln(5)

L1

AML, Bergholtz & Haque, NJP (2010)

S(L1) = 2αL1 − 2γ + . . .

Friday, July 16, 2010



Exact Diagonalization: Applications

Quantum Magnets: nature of novel phases, critical points in 1D, 
dynamical correlation functions in 1D & 2D

Fermionic models (Hubbard/t-J): gaps, pairing properties,
correlation exponents, etc

Fractional Quantum Hall states: energy gaps,
overlap with model states, entanglement spectra

Quantum dimer models or other constrained models (anyon 
chain..)

Full Configuration Interaction in Quantum Chemistry
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Correlation Density Matrices

Concept

Applications to spin chains and the Kagome AFM 

“Tower of States” spectroscopy

Continuous symmetry breaking: magnetic vs spin nematic order

Outline
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Is there a systematic way to detect important correlations between
parts A and B embedded in a larger system ?

The correlation density matrix:

contains all the required information

The correlation density matrix: definition & features

Consider two disjoints clusters A and B. The correlation density
matrix (as introduced by Cheong1 & Henley) between them is
defined as

ρc
AB = ρAB − ρA ⊗ ρB

and has the following features:

1. it allows to compute Tr(ρc
ABÔAÔB) = 〈ÔAÔB〉 − 〈ÔA〉〈ÔB〉

for any ÔA and ÔB

2. it contains all informations about correlations between
A and B

1Siew-Ann Cheong, PhD thesis, Many-body fermion density matrices,
Cornell University, May 2006

The correlation density matrix (CDM)

A
B

|Ψ>

Friday, July 16, 2010



The correlation density matrix (CDM)

Contains all information on any connect correlation function between
A and B:

The key step is to perform a singular value decomposition

where the σi give the strength of the correlation i and the Xi and Yi are the
operators of the correlator acting in A and B.

The correlation density matrix: definition & features

Consider two disjoints clusters A and B. The correlation density
matrix (as introduced by Cheong1 & Henley) between them is
defined as

ρc
AB = ρAB − ρA ⊗ ρB

and has the following features:

1. it allows to compute Tr(ρc
ABÔAÔB) = 〈ÔAÔB〉 − 〈ÔA〉〈ÔB〉

for any ÔA and ÔB

2. it contains all informations about correlations between
A and B

1Siew-Ann Cheong, PhD thesis, Many-body fermion density matrices,
Cornell University, May 2006

The correlation density matrix: definition & features
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matrix (as introduced by Cheong1 & Henley) between them is
defined as

ρc
AB = ρAB − ρA ⊗ ρB

and has the following features:

1. it allows to compute Tr(ρc
ABÔAÔB) = 〈ÔAÔB〉 − 〈ÔA〉〈ÔB〉

for any ÔA and ÔB

2. it contains all informations about correlations between
A and B

1Siew-Ann Cheong, PhD thesis, Many-body fermion density matrices,
Cornell University, May 2006

The correlation density matrix: SVD

ρc
AB =

min{dim2(A),dim2(B)}∑

i=1

σiX
′
i Y

′†
i

where the operators X ′ and Y ′ respectively live in the A and in the
B cluster, and are Frobenius-normalized (follows from unitarity in
the decomposition) i.e. have an equal ”weight”:

Tr
(
XiX

†
j

)
= δij and Tr

(
YiY

†
j

)
= δij

! yields all the correlations, i.e. operators X ′ and Y ′ weighted
by their corresponding singular values σ, the correlations with
largest σ’s are the dominant ones

! the sum
∑min{dim2(A),dim2(B)}

i=1 σ2
i is not an extensive quantity

with repect to the size of the clusters (there exists an upper
bound).

The correlation density matrix: SVD
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A
B

|Ψ>

S.-A. Cheong & C.L. Henley, PRB 2009
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CDM
J1-J2 frustrated Heisenberg Chain (all AF)

Benchmark on
existing phase 
diagrams.

singular values
respect SU(2)
symmetry in S=0 GS
(multiplicities).

works very well for the 
well understood 
Majumdar-Ghosh
chain.

Dimerized

cr
iti

ca
l

J. Sudan & AML

J1

J2
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CDM
J1-J2 frustrated Heisenberg Chain (F-AF)

vector chiral phase
at low m

spin multipolar liquids 
at high m

CDM helped us under-
stand that spin 
multipolar phases are 
generically imprinted in 
close-by magnetically 
ordered states
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The Kagome Antiferromagnet

H = J
∑

〈i,j〉

Si · Sj

Friday, July 16, 2010



New States of Quantum Matter

Some kagome facts so far

Absence of magnetic order for S=1/2,
Spin gap probably finite ~0.05 - 0.1 J
Waldtmann et al, EPJB ’98, Jiang et al, PRL 08

Puzzlingly high density of singlets 
below the finite size spin gap. 
Lecheminant et al PRB ‘97, Mila PRL ’98

Nature of the ground state unclear,
nature and origin of high singlet 
density not really understood

Friday, July 16, 2010
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New States of Quantum Matter

Kagome AFM
Static Spin Structure Factor

Ring of enhanced 
scattering at the 
extended BZ 
boundary

No magnetic order!
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FIG. 1: (Color) Dynamical spin structure factor of the N=36 sample. The eight panels display frequency scans S(Q, ω) (η = 0.02J) at
labeled wavevectors Q in the extended Brillouin zone shown in the lower right center. Note that the intensity scales differ among the different
panels. The Γ point has no weight and is not shown. The blue vertical lines show the pole location and intensity of the continued fraction. The
vertical dotted magenta line denotes the finite size spin gap in the corresponding momentum sector. The dashed red line marks the position
of the first frequency moment ω̄ =

∫
dω ω S(Q, ω)/S(Q). In the rightmost column the static spin structure factor of the pure Heisenberg

model on the kagome lattice is shown, as an intensity plot (1) and along the path Γ − (e) − (g) − Γ (2). The static structure factor for the
q = 0 (3) and

√
3×

√
3 (4) Néel order states induced by appropriate second neighbor couplings are also displayed.

Dynamical spin structure factor – The energy and momen-
tum dependence of the dynamical structure factor:

S(Q, ω) = − 1
π

Im〈Sz(−Q)
1

ω − (H − EGS) + iη
Sz(Q)〉 ,

(3)
is directly relevant for inelastic neutron scattering (INS) ex-
periments and therefore a quantity of central interest. In mag-
netically ordered systems we expect to see dispersive, long-
lived spin waves [11], while one-dimensional systems in ap-
propriate regimes reveal spinon continua with a rich struc-
ture [12].

Our numerical results for the kagome lattice are presented
in the left part of Fig. 1. The shaded panels display an en-
ergy cut at the wave vector indicated by the panel position
and its label referring to specific points in the extended BZ.
Each panel displays the broadened (η=0.02J) spectral func-
tion (black line), the locations and weights of the poles of the
continued fraction expansion (blue vertical lines), the finite
size spin gap in the corresponding momentum sector (dot-
ted vertical line), and the first frequency moment ω̄(Q) =

∫
dω ω S(Q, ω)/S(Q) (dashed vertical line).
Consistent with the static structure factor, the dynami-

cal spin response function concentrates essentially in the ex-
tended BZ (points g, f, e, h, d of Fig. 1). The main specificity
of this system is the stretching of the magnetic response in
each Q-sector on a very large number of excited states span-
ning a large bandwidth of ∼ 2 − 3J , beginning immediately
above the (finite-size) gap. This is quite different from the
spectrum of a Néel ordered system on the same system size,
where typically ∼ 90% of the spectral weight is carried by
very few poles in each Q-sector associated to the Bragg peak
and the one-magnon modes [13].

In order to address finite size effects we present spectral
function at the wave vectors (g) and (i) for N = 24 and 36
spins in Fig. 2(a) and (b). The characteristic width in energy
as well as the prominent response at low ω for wave vector (g)
are clearly stable with respect to finite size effects. Fig. 2 gives
a hint of the finite size effects on the local spin dynamics. Be-
yond fine structures that are most probably finite size effects,
the combination of the two figures shows that the smearing of
the spectral weight on a very large number of incoherent ex-

New States of Quantum Matter

Kagome AFM
Dynamical Spin Structure Factor (~ INS)

ED, 36 sites AML, C. Lhuillier, arXiv:0901.1065

Broad response
in energy

Spiky features
at lowest energies,
Remnant of VBC?

Relation to INS
experiments on 
Herbertsmithite ?
Lee et al ‘07,
Helton et al. ‘07,
deVries et al, ‘09 

Friday, July 16, 2010



New States of Quantum Matter

Groundstate of the Kagome AFM

 Valence Bond Solid ?

Leung & Elser, PRB 93

Model state

ED Results
 36 sites

NO, 
or very weak

YES
Marston & Zheng, JAP ’91
...
Singh & Huse, PRB 07
Evenbly & Vidal, arXiv:0903

}
Friday, July 16, 2010



New States of Quantum Matter

Groundstate of the Kagome AFM

 Valence Bond Solid ?
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New States of Quantum Matter

Low Energy Singlet Spectrum (N=36 sites) 2

II. MODEL, SAMPLE AND SPECTRUM

We study in this paper the Heisenberg antiferromagnetic
(J > 0) model with spins S = 1/2 on the Kagomé lattice,
whose Hamiltonian reads

H = J
∑

〈i,j〉

Si · Sj (1)

where the sum runs over all NN spin pairs. Five samples are
considered, each of which is depicted in Fig. 1: with 12 (this
sample will be called s12), 18 (s18), 24 (s24), 30 (s30), and
36 (s36) sites. Periodic boundary conditions are assumed for
every sample. Sample s36 is particularly interesting in two

12 18

24

36

30

FIG. 1: The samples of 12, 18, 24, 30, and 36 sites we use. Periodic
boundary conditions are assumed.

respects: firstly it was the largest size we could reach with ED
and secondly, many studies15,17,18 have concluded that the unit
cell of the quantum model we study could have 36 sites, which
let us expect that s36 captures its essential features. The study
presented in this paper will therefore be focused on the sample
s36. Its low energy singlet levels within the spin gap are dis-
played in Fig. 2 for every irreducible representation (IRREP)
of the different momentum sectors. The first Brillouin zone
(BZ) of s36 is a hexagon: Γ refers to momentum zero, M to
the 3 middle points of the zone boundary, K to the 2 corners
of the BZ, and X to K/2. The black dashed horizontal line
denoted by “spin gap” in the spectrum Fig. 2 shows the energy
of the lowest triplet state. If the momentum degeneracies are
taken into account, there are 183 singlet states within the spin
gap for the sample s36.

III. VON NEUMANN BLOCK ENTROPY

Entropy is a concept applied across information theory,
mathematics, and also condensed matter physics in order to
measure the entanglement between one block and its comple-
ment – say A and Ā – of a spin system. The Von Neumann
entropy of block A is defined as

S(A) := −Tr(ρA ln ρA)
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FIG. 2: Singlet states within the spin gap in the spectrum of sample
s36 for every IRREP. Γ refers to momentum zero, (whose little group
is C6v), M to the 3 middle points of the hexagonal zone boundary
(little group C2v), K to the 2 corners of the BZ (little group C3v), and
X to K/2 (little group C1h). States in circles have particularly strong
dimer correlations (dimer correlations will be discussed in Section
V.)

where ρA is the density matrix of block A, and is identical
to S(Ā). The quantity S(A) has an upper bound which
is reached if the block A is maximally correlated to its
environment; in this case, its entropy per site would be given
by ln 2.

Computations of block entropies in a given quantum
state provide interesting informations about the nature of this
state: a significantly high entropy means that the block is
strongly correlated (and thus entangled) to its environment,
whereas a low entropy indicates that the state under study is
close to a tensor product between the block and its environ-
ment.

In the left panel of Fig. 3, the block entropies are shown for
different low energy states in IRREPS of the Γ momentum of
s36, for all possible blocks containing 3 sites one can build
on that sample. The color of the symbols is a function of
the number of NN spin pairs, among each possible pairing
of sites one can imagine within the blocks. White symbols
indicates that there is no NN spin pair, black symbols that
there is one such pair, red symbols that there are two such
pairs, and green symbols that there are three such pairs.

The result is clear: for each of the ten states, the circles with
the same color collapse onto a same “pile” of circles showing
that the entropy of a given block is roughly a function of
the number of NN spin pairs within this block and is nearly
independent on the distance between the sites as soon as they
are not nearest neighbors. Moreover, the piles of a given
color are aligned, indicating that the entropy does not depend
on the state neither. For the white circles corresponding to
blocks without NN spin pairs, the entropy is close to its upper
bound 3 ln 2. This leads to the conclusion that two spins, if

N=36 MERA Energy
Evenbly & Vidal
PRL 2010

Sudan & AML, ‘09
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New States of Quantum Matter

Dimer correlations of low lying singlets (N=36)
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II. MODEL, SAMPLE AND SPECTRUM

We study in this paper the Heisenberg antiferromagnetic
(J > 0) model with spins S = 1/2 on the Kagomé lattice,
whose Hamiltonian reads

H = J
∑

〈i,j〉

Si · Sj (1)

where the sum runs over all NN spin pairs. Five samples are
considered, each of which is depicted in Fig. 1: with 12 (this
sample will be called s12), 18 (s18), 24 (s24), 30 (s30), and
36 (s36) sites. Periodic boundary conditions are assumed for
every sample. Sample s36 is particularly interesting in two
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FIG. 1: The samples of 12, 18, 24, 30, and 36 sites we use. Periodic
boundary conditions are assumed.

respects: firstly it was the largest size we could reach with ED
and secondly, many studies15,17,18 have concluded that the unit
cell of the quantum model we study could have 36 sites, which
let us expect that s36 captures its essential features. The study
presented in this paper will therefore be focused on the sample
s36. Its low energy singlet levels within the spin gap are dis-
played in Fig. 2 for every irreducible representation (IRREP)
of the different momentum sectors. The first Brillouin zone
(BZ) of s36 is a hexagon: Γ refers to momentum zero, M to
the 3 middle points of the zone boundary, K to the 2 corners
of the BZ, and X to K/2. The black dashed horizontal line
denoted by “spin gap” in the spectrum Fig. 2 shows the energy
of the lowest triplet state. If the momentum degeneracies are
taken into account, there are 183 singlet states within the spin
gap for the sample s36.

III. VON NEUMANN BLOCK ENTROPY

Entropy is a concept applied across information theory,
mathematics, and also condensed matter physics in order to
measure the entanglement between one block and its comple-
ment – say A and Ā – of a spin system. The Von Neumann
entropy of block A is defined as

S(A) := −Tr(ρA ln ρA)
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s36 for every IRREP. Γ refers to momentum zero, (whose little group
is C6v), M to the 3 middle points of the hexagonal zone boundary
(little group C2v), K to the 2 corners of the BZ (little group C3v), and
X to K/2 (little group C1h). States in circles have particularly strong
dimer correlations (dimer correlations will be discussed in Section
V.)

where ρA is the density matrix of block A, and is identical
to S(Ā). The quantity S(A) has an upper bound which
is reached if the block A is maximally correlated to its
environment; in this case, its entropy per site would be given
by ln 2.

Computations of block entropies in a given quantum
state provide interesting informations about the nature of this
state: a significantly high entropy means that the block is
strongly correlated (and thus entangled) to its environment,
whereas a low entropy indicates that the state under study is
close to a tensor product between the block and its environ-
ment.

In the left panel of Fig. 3, the block entropies are shown for
different low energy states in IRREPS of the Γ momentum of
s36, for all possible blocks containing 3 sites one can build
on that sample. The color of the symbols is a function of
the number of NN spin pairs, among each possible pairing
of sites one can imagine within the blocks. White symbols
indicates that there is no NN spin pair, black symbols that
there is one such pair, red symbols that there are two such
pairs, and green symbols that there are three such pairs.

The result is clear: for each of the ten states, the circles with
the same color collapse onto a same “pile” of circles showing
that the entropy of a given block is roughly a function of
the number of NN spin pairs within this block and is nearly
independent on the distance between the sites as soon as they
are not nearest neighbors. Moreover, the piles of a given
color are aligned, indicating that the entropy does not depend
on the state neither. For the white circles corresponding to
blocks without NN spin pairs, the entropy is close to its upper
bound 3 ln 2. This leads to the conclusion that two spins, if
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FIG. 10: The states that are circled in the spectrum Fig. 2 has “particularly large” dimer correlations. The correlation pattern of those of
them that have been skipped in Fig. 7 are displayed here in the last three rows. Correlations in the ground state (i.e. first level in [Γ, A1]) are
shown as well for comparison in the first row. The black bond is taken as reference bond, the colored bonds are probing bonds. Their width is
proportional to the strength of the correlation, and their color indicate the sign of the correlation (blue means positive, red means negative).

6

of the type

B2 bodies := {(Sk · Sl)1Imnpq|k < l}
B4 bodies := {(Sk · Sl)(Sm · Sn)1Ipq|k < l, m < n, and k < m}
B6 bodies := {(Sk · Sl)(Sm · Sn)(Sp · Sq)|k < l, m < n, p < q,

and k < m < p}

– i.e. products of Sk · Sl operators – have an overlap with the
X̂i’s and the Ŷj’s corresponding to the dominant SV’s that are
numbered in Fig. 6.

Set B2 bodies has 15 elements, set B4 bodies has 45 elements,
and set B6 bodies has 15 elements. B2 bodies ∪ B4 bodies ∪ B6 bodies
has therefore 75 elements, which is roughly one half of the
total number of independent singlet operators that live on 6
sites. We will nevertheless see that this set is nearly complete
for decomposing the operators X̂i’s and Ŷj’s corresponding to
the dominant SV’s.

The sum of the squared overlaps of the X̂i’s and Ŷj’s with
the elements of B2 bodies, of B4 bodies, and of B6 bodies – after
these elements have been orthonormalized w. r. to the Frobe-
nius norm ||Ô||F :=

√
Tr(ÔÔ†) – is given in Table I for

every dominant SV which is numbered in Fig. 6. This sum is
the same for the X̂ and the Ŷ operators.

TABLE I: Contribution of every n-bodies sector to the dominant
singular values that are numbered in Fig. 6.

arrow 1 arrow 2 arrow 3 arrow 4 arrow 5 arrow 6
2-bodies sector 0.046 0.543 0.396 0.396 0.319 0.546
4-bodies sector 0.181 0.446 0.472 0.472 0.440 0.385
6-bodies sector 0.773 0.011 0.107 0.107 0.196 0.014

sum 1.000 1.000 0.975 0.975 0.955 0.945

One thus concludes that the overlaps between (Sk · Sl)-
products observables and the operators corresponding to the
dominant hexagon-hexagon singular values are 100% for
sample s24 and larger than 94% for sample s30; even though
(Sk · Sl)-products operators represent only about one half
of the total number of independent singlet operators acting
within blocks with 6 sites. This supports the idea that dimer
correlations are the most relevant for describing the low-
energy physics of the spin-1/2 Kagomé AFM.

V. TOWARDS A VALENCE BOND CRYSTAL

Both our entropic and CDM studies of the spin-1/2 Kagomé
AFM are compatible with the fact that a VBC is a good can-
didate for describing the low-energy physics: entropic studies
put forward the point that spin correlations are very weak be-
yond one lattice spacing, and the CDM method points out the
dimer correlations as the dominant ones.

In this section – where we focus on the s36 topology – we
aim to support the VBC scenario first by showing that some of
the low-energy states exhibit unexpected large dimer correla-
tions; this is indeed the signature of a VBC. We then compare
correlations from ED with those in three different VBC’s, one

of which – that is for the first time pointed out by us – provid-
ing a good overall description of the ED correlations.

A. Dimer correlations in the sample s36

It turns out that traces of a VBC are present in certain states
on the singlet spectrum of s36, Fig. 2: some of them – which
are in black circles in the spectrum – have particularly strong
dimer correlations Eq. (5). For illustration, the weak dimer
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FIG. 7: Dimer correlations Eq. (5) of the first level in the IRREP
[Γ, A1] (ground state, top) are quite weak compared to those in both
the first level of [Γ, B1] and the second level of [M, A2] (bottom).
The black bond is taken as reference bond, the colored bonds are
probing bonds. Their width is proportional to the strength of the
correlation, and their color indicates the sign of the correlation (blue
means positive, red means negative).

correlations in the ground state – the first level in the IRREP
[Γ, A1] – are compared to the strong correlations in both the
first level in [Γ, B1] and the second level in [M,A2] in Fig. 7.
The reference bond is black, and the probing bonds are blue
(positive correlation) or red (negative correlation); their width
is proportional to the strength of the correlation. For the sake
of clarity and briefness, the comparison with the other states
that are circled in the spectrum is skipped here, but done in
the Appendix A.

B. Sample s36: exact eigenstates vs valence bond crystals

The natural question arises whether there exists a VBC that
decomposes onto the good IRREPS. Such a crystal would
“solve” the low-energy physics of the sample s36 and could
also provide interesting informations about the infinite system
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proportional to the strength of the correlation, and their color indicate the sign of the correlation (blue means positive, red means negative).
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of the type

B2 bodies := {(Sk · Sl)1Imnpq|k < l}
B4 bodies := {(Sk · Sl)(Sm · Sn)1Ipq|k < l, m < n, and k < m}
B6 bodies := {(Sk · Sl)(Sm · Sn)(Sp · Sq)|k < l, m < n, p < q,

and k < m < p}

– i.e. products of Sk · Sl operators – have an overlap with the
X̂i’s and the Ŷj’s corresponding to the dominant SV’s that are
numbered in Fig. 6.

Set B2 bodies has 15 elements, set B4 bodies has 45 elements,
and set B6 bodies has 15 elements. B2 bodies ∪ B4 bodies ∪ B6 bodies
has therefore 75 elements, which is roughly one half of the
total number of independent singlet operators that live on 6
sites. We will nevertheless see that this set is nearly complete
for decomposing the operators X̂i’s and Ŷj’s corresponding to
the dominant SV’s.

The sum of the squared overlaps of the X̂i’s and Ŷj’s with
the elements of B2 bodies, of B4 bodies, and of B6 bodies – after
these elements have been orthonormalized w. r. to the Frobe-
nius norm ||Ô||F :=

√
Tr(ÔÔ†) – is given in Table I for

every dominant SV which is numbered in Fig. 6. This sum is
the same for the X̂ and the Ŷ operators.

TABLE I: Contribution of every n-bodies sector to the dominant
singular values that are numbered in Fig. 6.

arrow 1 arrow 2 arrow 3 arrow 4 arrow 5 arrow 6
2-bodies sector 0.046 0.543 0.396 0.396 0.319 0.546
4-bodies sector 0.181 0.446 0.472 0.472 0.440 0.385
6-bodies sector 0.773 0.011 0.107 0.107 0.196 0.014

sum 1.000 1.000 0.975 0.975 0.955 0.945

One thus concludes that the overlaps between (Sk · Sl)-
products observables and the operators corresponding to the
dominant hexagon-hexagon singular values are 100% for
sample s24 and larger than 94% for sample s30; even though
(Sk · Sl)-products operators represent only about one half
of the total number of independent singlet operators acting
within blocks with 6 sites. This supports the idea that dimer
correlations are the most relevant for describing the low-
energy physics of the spin-1/2 Kagomé AFM.

V. TOWARDS A VALENCE BOND CRYSTAL

Both our entropic and CDM studies of the spin-1/2 Kagomé
AFM are compatible with the fact that a VBC is a good can-
didate for describing the low-energy physics: entropic studies
put forward the point that spin correlations are very weak be-
yond one lattice spacing, and the CDM method points out the
dimer correlations as the dominant ones.

In this section – where we focus on the s36 topology – we
aim to support the VBC scenario first by showing that some of
the low-energy states exhibit unexpected large dimer correla-
tions; this is indeed the signature of a VBC. We then compare
correlations from ED with those in three different VBC’s, one

of which – that is for the first time pointed out by us – provid-
ing a good overall description of the ED correlations.

A. Dimer correlations in the sample s36

It turns out that traces of a VBC are present in certain states
on the singlet spectrum of s36, Fig. 2: some of them – which
are in black circles in the spectrum – have particularly strong
dimer correlations Eq. (5). For illustration, the weak dimer
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[Γ, A1] (ground state, top) are quite weak compared to those in both
the first level of [Γ, B1] and the second level of [M, A2] (bottom).
The black bond is taken as reference bond, the colored bonds are
probing bonds. Their width is proportional to the strength of the
correlation, and their color indicates the sign of the correlation (blue
means positive, red means negative).

correlations in the ground state – the first level in the IRREP
[Γ, A1] – are compared to the strong correlations in both the
first level in [Γ, B1] and the second level in [M,A2] in Fig. 7.
The reference bond is black, and the probing bonds are blue
(positive correlation) or red (negative correlation); their width
is proportional to the strength of the correlation. For the sake
of clarity and briefness, the comparison with the other states
that are circled in the spectrum is skipped here, but done in
the Appendix A.

B. Sample s36: exact eigenstates vs valence bond crystals

The natural question arises whether there exists a VBC that
decomposes onto the good IRREPS. Such a crystal would
“solve” the low-energy physics of the sample s36 and could
also provide interesting informations about the infinite system
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Correlation Density Matrices

Concept

Applications to spin chains and the Kagome AFM 

“Tower of States” spectroscopy

Continuous symmetry breaking: magnetic vs spin nematic order
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“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry breaking ?
 (eg in superfluids/superconductors, magnetic order, spin nematic order)

 Order parameter is zero on a finite system ! (symmetric partition function)

 So usually one looks into order parameter correlations [(order parameter)2]
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Order parameter is not a conserved quantity 

Order parameter is zero on a finite size sample (Wigner-Eckart)

How does one get spontaneous symmetry breaking anyway ?

Ground state degeneracy is building up as we approach 
the thermodynamic limit, which will allow to form a symmetry breaking
wave packet at zero energy cost

“Tower of States” spectroscopy
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“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry breaking ?
 (eg in superfluids/superconductors, magnetic order, spin nematic order)

 Low-energy dynamics of the order parameter
 Theory: P.W. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -

S(S+1)

Continuum

Magnons

Tower of
States

1/N 1/L

E
ne

rg
y

 Dynamics of the free order 
 parameter is visible in the finite size
 spectrum. Depends on the continuous
 symmetry group.

 U(1):  (Sz)2   SU(2):  S(S+1)

 Symmetry properties of levels in the
 Tower states are crucial and constrain
 the nature of the broken symmetries.
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Square lattice Heisenberg antiferromagnet

Hamiltonian

Fourier transform

Keep only the (0,0) and (π,π) mode

Lieb Mattis model recovered 
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0.5
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C. Lhuillier, cond-mat/0502464

H = 2J
∑

k

γk Sk · S−k

γk

H0 =
4J

N
(S2

tot − S2
A − S2

B)

H = J
∑

〈i,j〉

Si · Sj
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Symmetry decomposition of order parameter

Order parameter manifold forms a representation space for the symmetry
group of the Hamiltonian

Decompose this (reducible) representation into irreducible representations

A B A B

1 step translation
bond reflection

plaquette rotation

A B A B

SU(2) operation
with non-collinear

axis 
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Symmetry decomposition of order parameter

As a result of the group theoretical analysis one obtains

1 irrep with S=0, (0,0) A1

1 irrep with S=1, (π,π) A1

1 irrep with S=2, (0,0) A1

1 irrep with S=3, (π,π) A1

...

M X 
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Beyond the collinear Neel state

 Bilinear-biquadratic S=1 model on the triangular lattice (model for NiGaS4).
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H =
∑

〈i,j〉

cos(θ) Si · Sj + sin(θ) (Si · Sj)
2
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Tower of States
S=1 on triangular lattice: Antiferromagnetic phase

 ϑ=0 : coplanar magnetic order, 
          120 degree structure

 Breaks translation symmetry. Tree site unit cell
 ⇒ nontrivial momenta must appear in TOS

 non-collinear magnetic structure
 ⇒ SU(2) is completely broken, 

 number of levels in TOS increases with S

 Quantum number are identical to the S=1/2 case

FM

(b)

!!"

"#!!""!!"

#$%

#!!"

(a)

FQ

?

FM
AFM

"!!&

!!"

"#!!"

!!&

!

SO

"!!&

!!&

! #$%

"!!"

#!!"

FQ

AFM

AFQ

SU(3)SU(3)

SU(3)

SU(3)

SU(3)

SU(3)

S(S+1)
Friday, July 16, 2010



Tower of States
S=1 on triangular lattice: Ferroquadrupolar phase

 ϑ=-π/2 : ferroquadrupolar phase, finite 
quadrupolar moment,  no spin order

 No translation symmetry breaking.
 ⇒ only trivial momentum appears in TOS

 Ferroquadrupolar order parameter, only even S 

 all directors are collinear
 ⇒ SU(2) is broken down to U(1), 

 number of states in TOS is independent of S.
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Tower of States
S=1 on triangular lattice: Antiferroquadrupolar phase

 ϑ=3π/8 : antiferroquadrupolar phase, finite 
quadrupolar moment,  no spin order,
three sublattice structure.

 Breaks translation symmetry. Tree site unit cell
 ⇒ nontrivial momenta must appear in TOS

 Antiferroquadrupolar order parameter, complicated
 S dependence. Can be calculated using group
 theoretical methods.
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Exact Diagonalization: Applications

Quantum Magnets: nature of novel phases, critical points in 1D, 
dynamical correlation functions in 1D & 2D

Fermionic models (Hubbard/t-J): gaps, pairing properties,
correlation exponents, etc

Fractional Quantum Hall states: energy gaps,
overlap with model states, entanglement spectra

Quantum dimer models or other constrained models (anyon 
chain..)

Full Configuration Interaction in Quantum Chemistry
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We study the quantum dimer model on the square lattice

RK point (V/t=1) is gapless, all other points are believed to be confining,
i.e. VBS phases.

For V/t very large and negative a columnar phase is expected.

Still ongoing debate on the nature of phase(s) for -1 <V/t <1
columnar, plaquette, mixed columnar-plaquette, ...

Tower of states in a quantum dimer model 

2

D C D C

A A B

D C

B AA B

CD

B

FIG. 1: Schematic drawings of the ideal columnar state (left)
and the ideal resonating plaquette state (right). The thick
lines represent a high average dimer probability (1 for the
ideal columnar state and 1/2 for the ideal plaquette state).
The letters in the right panel show the assignment of the four
different plaquette sublattices.

article is a synthesis of the Continuous–time lattice Dif-
fusion Monte Carlo method introduced in Ref.11 and
the Reptation Monte Carlo method introduced in Ref.12.
This amalgam of methods which we term Continuous–
Time Reptation Monte Carlo (CTRMC) is easy to
implement and is free of population–bias and time–
discretization errors that hamper various other forms of
projector Monte Carlo techniques. The method is not
restricted to QDMs and can be applied to any quantum
lattice model free of the sign problem.

Before we explain our results we will discuss the phase
diagram of the square lattice QDM in greater detail.

II. PHASE DIAGRAM

The square lattice QDM Hamiltonian is

H = −J
∑

plaq

(

| 〉〈 | + H.c.
)

+ V
∑

plaq

(

| 〉〈 | + | 〉〈 |
)

(1)
where the summations are taken over all elementary pla-
quettes of the lattice. We will choose units of energy such
that the flipping energy J = 1.

The state space of the square lattice QDM is naturally
divided into separate topological sectors each invariant
under the action of the Hamiltonian. Any dimer config-
uration belongs to a topological sector characterized by
the winding numbers of its transition graph to a refer-
ence configuration, which we take to be the ideal colum-
nar state shown in Fig. 1 left panel. The transition graph
is obtained by overlaying the reference configuration on
the dimer configuration in question and erasing overlap-
ping dimers. This leaves a set of loops which might wind
around the lattice. For V < 1 the topological sector with
zero winding numbers have the lowest energy, see Fig. 2,
and we will restrict our simulations to this topological
sector.

A schematic zero temperature phase diagram of the
QDMs is shown in Fig. 3. For V = 1, the RK-point, the
ground state is the equal–amplitude superposition of all
dimer coverings of the lattice. For the square lattice this

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
V

-0.5

-0.4

-0.3

-0.2

-0.1

0

E
0

(1,1)

(1,0)

(0,0)

FIG. 2: Color online. Energy per plaquette for the lowest
lying state in three different topological sectors characterized
by the transition graph winding numbers (wx, wy) with re-
spect to the columnar reference configuration. From top to
bottom the energy curves have winding numbers (1, 1),(1, 0)
and (0, 0).

Vc V
p

RVB

1

Plaq.Col. Stag.

FIG. 3: Generic T = 0 phase diagram of QDMs. The phases
are from left: columnar phase, resonant plaquette phase, RVB
liquid, staggered phase. For QDMs on bipartite lattices: Vp =
1.

implies that dimer-dimer correlations have no long-range
order, but are critical and decay as a power law7. We
will refer to this state as the RVB liquid although it is
gapless and is believed to exist only at a single point in
the phase diagram for QDMs on bipartite lattices10,13.
For non-bipartite lattices like the triangular4,8 and the
Kagome lattice14 the RVB liquid has gapped excitations
and extends over a finite region in parameter space.

The QDMs exhibits a number of crystalline phases.
For V → −∞ the ideal columnar state with a maximal
number of parallel dimers will be preferred, see Fig. 1.
This four-fold degenerate (on a square lattice) state is di-
agonal in the dimer basis thus the kinetic term will tend
to destroy it. These quantum fluctuations will for finite V
lead to “disorder” within the columns, but it is expected
that the broken rotational symmetry of the ideal colum-
nar state still survives at least up to a critical value of V .
Thermal effects will also tend to destroy the V → −∞
columnar state, these were studied in Ref.15. It is rea-
sonable to believe that the kinetic term will eventually,
for big enough values of V , turn the ground state into
a state resembling the ideal resonating plaquette state

t

Leung, Syljuasen, Poilblanc, ...

Friday, July 16, 2010



Energy spectrum of the square lattice RK QDM
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Square Lattice RK QDM

Collapse of levels associated to columnar VBS Quadratic prefactor of 1/N

D. Schwandt, S. Capponi, AML
ED up to 72 sites
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U(1) Tower in a Dimer model 

Appearance of a divergent U(1) to VBS crossover length scale in dimer histograms 
upon approaching the RK point

“Sz”2 tower despite non-obvious “Sz” in dimer model
D. Schwandt, S. Capponi, AML
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Thank you !
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