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Content

« Transfer matrices and matrix product operators MPO in statistical
physics
— Transfer matrices for classical partition functions
— Quantum Hamiltonians as Matrix product operrators
— Exponentials of local Hamiltonians as MPO
— MPO and the Algebraic Bethe Ansatz

« Matrix product states as variational ansatz
— Why does the ansatz makes sense?
— DMRG as an alternating least squares optimization problem

— Time-evolution as an alternating least squares optimization problem
— Higher dimensional generalizations



Matrix Product States as variational states for simulating
strongly correlated guantum systems

 Why?

— History of Quantum Mechanics is to a large extent one in which we try
to find approximate solutions to Schrddinger equation

— Most relevant breakthroughs in context of many-body physics: guess
the right wavefunction (BCS, Laughlin, ...)

— Is there a way to come up with a systematic way of parameterizing the
wavefunctions arising in relevant Hamiltonians?

* In case of 1-D quantum spin chains: NRG / DMRG : MPS
* In case of 2-D quantum spin systems: PEPS / MERA/ ....

— Central concept: matrix product operators



Transfer matrices in classical spin systems

« Consider partition function for ferromagnetic Ising model
Z = Zexp{ﬂZsist
{s:} (i.J)

* By introducing dual variables, this can be turned into a product of
tensors:
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Much easier to work with diagrams:

Vector: X,
Matrix:  Xuv
Tensor with 4 legs: x4,

Multiplying matrices: »,, =Y X,.%,.

Contracting tensors:



1-dimensional Ising model

Z= Z sziﬂa xs,u = -
{ta} fsi}
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This is a product of matrices: transfer matrix T= - —

2cosh 0
Tﬂlﬂz - szﬂlxsﬂ2 = |: 0 2sinh ﬂ:| /Z ="Tr (TN)

Therefore the partition function can efficiently be calculated



2-dimensional Ising model

« Equivalent construction:
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T s the transfer matrix, and can be written in the form of a matrix
product operator: T ZTr{AilAizA%-"b_ RO RO R
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Calculating the partition function for the infinite system is equivalent to
finding leading eigenvalue of the transfer matrix T

e, ST
Ay max,, <‘I"‘P> = f=—Llog4,




Properties of MPO

Algebra of MPO: product of 2 MPO yields another MPO with larger
bond dimension

Gauge transformations leave MPO invariant

Matrix product states: subclass of MPO in the sense that operators
Ol are vectors:

— Multiplication of MPS with MPO vyields MPS with larger bond dimension

Central property: expectation values of MPO with respect to MPS
can be calculated efficiently (simple matrix multiplication):




Related problem: find ground states of 1-D
guantum Hamiltonian

Local quantum Hamiltonians of the form

H=" pach @i +3 O
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can be written in MPO form:

H = Y (v ByBiy..Biyvy) Xiy ® Xip ® ... Xy

t1T0...
Xo =1 X, =0, Xz =0y X3 =0, Xy=0
v = |0} vy = |4}
By = |0){0] + |4)(4]
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Finding ground states of 1-D quantum Hamiltonians is therefore
equivalent to the variational problem
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Note: Hamiltonians with exponentially decaying interactions of the
form

K=Y nalioh@ol+ 30
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still have exact simpe MPO description: just replace

By = |0){0] + Az |13{1] + Ay|2)(2] + Az |3} (3] + |4} (4]



Even more MPOQO'’s: exponentials of local quantum
Hamiltonians

* EXxponential exp (ZN l) can also be represented as a MPO
— Lies at the heart of all time-evolution algorithms for DMRG/MPS

» First step: exponential of local interaction as an MPO:
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« Similar for any Hamiltonian: follows from singular value decomposition

» [For case of TEBD using Trotter expansion, the evolution operator is
hence a MPO:

: :




Exponentials of local commuting quantum Hamiltonians

* In case of Hamiltonian which is a sum of commuting terms: whole
thing is one big MPO

exp (EZZ:‘Z;_L) = HL‘}ZIJI:‘EZ,'ZE'_UI
- > (Bl Bw)(B},Bj)..(B,By)) 2" 2] @ Z2 29 ® ...
i1718252... 7N 71

= Y T (B;,BIBy,BLB;. BBl )2} 02 P e

ij1iada...
(Z BH Tk Bz) (Z Bif-;--f-'-)B?:) ] ZE % Zj:
iy ig

Z Tr
Eika...

okt 0 T _ { cosh(e) ]
_ Z T {:’_‘"-"—C""*_._C""“}Z;"" i o= ZB.-B; = ( 0 sinh(e)
Eqka...

o — Z By BT = ( 0 +/ sinh(e) cosh(e) )

y/sinh(e) cosh(e) 0




Interludum: Matrix Product Operators and the Bethe
ansatz:

« Algebraic Bethe ansatz is all about MPO:

t(A)= Y Trid 4745} 0,80, ®0, ® ..
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« Crucial Property of this family of MPO: they all commute (==Yang-
Baxter equation):

A H
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U=A-p)-ic(X®X+YQ®RY +Z®Z)

— Gauge transformation of MPS/MPO leave it invariant!




 What has this to do with the Heisenberg model?

H —21—111(’[(2.)
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— This can easily be seen because T(— i/2) IS the shift operator (shifts
qubits 1,2,3,...N to 2,3,4,...1); taking the derivative replaces one of
those “swaps” with the idenity; logarithmic derivative undoes all the other
swaps, leaving the Heisenberg Hamiltonian!

— It follows that [H neis > ¥ (/1 )] = (0 and hence they have the same
eigenvectors

* Let's now define new operators similarto 7 (/’L ) but with OBC:

B(A)= ) (0|a*4a"45.1) 0, ® 0, ® 0, ® ..

1112 13 ———

— These will play the role of creation operators and commute for all A



» All eigenstates of the Heisenberg model are of the form

|W11,1213_ > = B(4,)B(4,)B(4, )|000 2

r(2)o00 )= f(2)o00 )

— The parameters {/11- } are found by imposing that these are eigenstates
of (A ) = Bethe equations (follows simply from working out
commutation relations; this leads to coupled equations between the {4, })
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* Interms of MPS/MPO: all eigenstates can exactly be represented as

— Note that the bond dimension increases exponentially with number of MPQO'’s

applied



Matrix product States

« Crucial insight: for gapped transfer matrices / Hamiltonians, a very
good approximation to the extremal eigenvector will be obtained by
subsequently applying the MPO to an arbitrary starting state (called
power method in linear algebra)

— Because of the algebra of MPO/MPS, this is just another MPS but with a larger
bond dimension

« Therefore MPS must capture all properties for representing the
extremal eigenvectors!



 Therefore MPS seem to be natural candidates for variational
wavefunctions of qguantum Hamiltonians

— Note: we can play the same game for systems with periodic boundary conditions,
for systems in higher dimensions and for different systems involving e.g.
fermions; this gives rise to DMRG with periodic boundary conditions, to 2-
dimensional generalization of MPS, i.e. projected entangled pair states (PEPS),

to the fermionic analogues of PEPS, ...

« Alternative justifications for the use of MPS:
— Purifications of systems with finite correlation length
— MPS represent optimal balance between strong local correlations and
translational invariance
— Area laws (even with logarithmic corrections) imply polynomial bond dimension
for MPS (cfr Hastings)



Matrix Product States

« Valence bond picture: translational invariant by construction
« Has extremal local correlations
» Obeys area law by construction

e Theorem: if an area law is satisfied, then the state can be well
approximated by a MPS:
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* In case of local gapped 1-D Hamiltonians: area law is guaranteed

« Conclusion: all states in finite 1-D chains can be represented by
MPS: breakdown of exponential wall !



How to do the variation?

Cost function for extremal eigenvalue is a multiquadratic problem on
the variables of the MPS

— Standard and pretty robust optimization method for solving such a problem is
known as alternating least squares

— Essentially equivalent to DMRG algorithm of White
— Allows for simple generalization to e.g. PBC

« To make the algorithm better conditioned: exploit gauge degrees of

freedom to orthonormalize vectors: denominator N becomes equal
to the identity

— Note: not possible to do this for PBC!



How to formulate time-evolution as a
variational principle?

* Variational formulation of time evolution: variational dimensional
reduction

given a MPS | 7) and an MPO O, find the MPS |y) that minimizes

min,,, ||w) -0 7)|,

— It turns out that this is also a multiquadratic optimization problem that is
very well conditioned and can be solved using DMRG-like sweeping!

— Core method for simulating PEPS
— The error in the approximation is known exactly!
— Allows to do time evolution without breaking translational invariance




Generalizing MPS to higher dimensions: PEPS

« Arealaw is satisfied by construction : scalable!

* Precursors: AKLT, Nishino; PEPS introduced in context of
measurement-based quantum computation



How to calculate expectation values?

« Equivalent to contracting tensor network consisting of MPS and MPO!

— Obvious way of doing this: recursively use min ) H I,V> - 0‘ Z>H2

— Optimization: alternating least squares as in DMRG
« Alternatively: imaginary time evolution ; infinite algorithm ; renormalization



Holographic principle: dimensional reduction
* Crucial property of MPS/PEPS: dimensional reduction

— Start from quantum system in 2 dimensions (2+1)

— The PEPS ansatz maps the quantum Hamiltonian to a state
corresponding to a partition function in 2 dimensions (2+0)

— The properties of such a state are described by a (1+1) dimensional
theory (eigenvectors of transfer matrices)

— Those eigenvectors are well described by MPS

— Properties of MPS are trivial to calculate: reduction to a partition
function of a 1-D system (1+0)




