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Content

• Transfer matrices and matrix product operators MPO in statistical 

physics

– Transfer matrices for classical partition functions

– Quantum Hamiltonians as Matrix product operrators

– Exponentials of local Hamiltonians as MPO

– MPO and the Algebraic Bethe Ansatz

• Matrix product states as variational ansatz

– Why does the ansatz makes sense?

– DMRG as an alternating least squares optimization problem

– Time-evolution as an alternating least squares optimization problem

– Higher dimensional generalizations



Matrix Product States as variational states for simulating 

strongly correlated quantum systems

• Why?

– History of Quantum Mechanics is to a large extent one in which we try 
to find approximate solutions to Schrödinger equation

– Most relevant breakthroughs in context of many-body physics: guess 
the right wavefunction (BCS, Laughlin, …)

– Is there a way to come up with a systematic way of parameterizing the 
wavefunctions arising in relevant Hamiltonians?

• In case of 1-D quantum spin chains: NRG / DMRG : MPS

• In case of 2-D quantum spin systems: PEPS / MERA / ….

– Central concept: matrix product operators



Transfer matrices in classical spin systems 

• Consider partition function for ferromagnetic Ising model

• By introducing dual variables, this can be turned into a product of 

tensors:



Much easier to work with diagrams:

• Vector: 

• Matrix:

• Tensor with 4 legs:

• …  

• Multiplying matrices:

• Contracting tensors:     



1-dimensional Ising model

Z=

This is a product of matrices: transfer matrix T=

Therefore the partition function can efficiently be calculated



2-dimensional Ising model

• Equivalent construction: 

T=

• T is the transfer matrix, and can be written in the form of a matrix 

product operator:



Z=

Calculating the partition function for the infinite system is equivalent to 

finding leading eigenvalue of the transfer matrix T



Properties of MPO

• Algebra of MPO: product of 2 MPO yields another MPO with larger 

bond dimension

• Gauge transformations leave MPO invariant

• Matrix product states: subclass of MPO in the sense that operators 

Oi are vectors:

– Multiplication of MPS with MPO yields MPS with larger bond dimension

• Central property: expectation values of MPO with respect to MPS 

can be calculated efficiently (simple matrix multiplication):



Related problem: find ground states of 1-D 

quantum Hamiltonian

• Local quantum Hamiltonians of the form 

can be written in MPO form:

• Finding ground states of 1-D quantum Hamiltonians is therefore 

equivalent to the variational problem



• Note: Hamiltonians with exponentially decaying interactions of the 

form

still have exact simpe MPO description: just replace



Even more MPO’s: exponentials of local quantum 

Hamiltonians

• Exponential                         can also be represented as a MPO

– Lies at the heart of all time-evolution algorithms for DMRG/MPS

• First step: exponential of local interaction as an MPO:

• Similar for any Hamiltonian: follows from singular value decomposition

• For case of TEBD using Trotter expansion, the evolution operator is 

hence a MPO: 



Exponentials of local commuting quantum Hamiltonians

• In case of Hamiltonian which is a sum of commuting terms: whole 

thing is one big MPO



Interludum: Matrix Product Operators and the Bethe 

ansatz:

• Algebraic Bethe ansatz is all about MPO:

• Crucial Property of this family of MPO: they all commute (==Yang-

Baxter equation):

– Gauge transformation of MPS/MPO leave it invariant!



• What has this to do with the Heisenberg model?

– This can easily be seen because                   is the shift operator (shifts 

qubits 1,2,3,…N to 2,3,4,…1); taking the derivative replaces one of  

those “swaps” with the idenity; logarithmic derivative undoes all the other 

swaps, leaving the Heisenberg Hamiltonian!

– It follows that                                           and hence they have the same 

eigenvectors

• Let’s now define new operators similar to               but with OBC:

– These will play the role of creation operators and commute for all  



• All eigenstates of the Heisenberg model are of the form

– The parameters              are found by imposing that these are eigenstates
of                     =        Bethe equations (follows simply from working out 
commutation relations; this leads to coupled equations between the          )

• In terms of MPS/MPO: all eigenstates can exactly be represented as

– Note that the bond dimension increases exponentially with number of MPO’s 
applied



Matrix product States

• Crucial insight: for gapped transfer matrices / Hamiltonians, a very 

good approximation to the extremal eigenvector will be obtained by 

subsequently applying the MPO to an arbitrary starting state (called 

power method in linear algebra)

– Because of the algebra of MPO/MPS, this is just another MPS but with a larger 

bond dimension

• Therefore MPS must capture all properties for representing the 

extremal eigenvectors!



• Therefore MPS seem to be natural candidates for variational

wavefunctions of quantum Hamiltonians

– Note: we can play the same game for systems with periodic boundary conditions, 

for systems  in higher dimensions and for different systems involving e.g. 

fermions; this gives rise to DMRG with periodic boundary conditions, to 2-

dimensional generalization of MPS, i.e. projected entangled pair states (PEPS), 

to the fermionic analogues of PEPS, …

• Alternative justifications for the use of MPS: 

– Purifications of systems with finite correlation length

– MPS represent optimal balance between strong local correlations and 

translational invariance

– Area laws (even with logarithmic corrections) imply polynomial bond dimension 

for MPS  (cfr Hastings)



Matrix Product States

• Valence bond picture: translational invariant by construction

• Has extremal local correlations

• Obeys area law by construction

• Theorem: if an area law is satisfied, then the state can be well 
approximated by a MPS:

• In case of local gapped 1-D Hamiltonians: area law is guaranteed

• Conclusion: all states in finite 1-D chains can be represented by 
MPS: breakdown of exponential wall !



How to do the variation?

• Cost function for extremal eigenvalue is a multiquadratic problem on 

the variables of the MPS

– Standard and pretty robust optimization method for solving such a problem is 

known as alternating least squares

– Essentially equivalent to DMRG algorithm of White

– Allows for simple generalization to e.g. PBC

• To make the algorithm better conditioned: exploit gauge degrees of 

freedom to orthonormalize vectors: denominator N becomes equal 

to the identity 

– Note: not possible to do this for PBC! 



• Variational formulation of time evolution: variational dimensional 

reduction

given a MPS        and an MPO   O, find the MPS        that minimizes

– It turns out that this is also a multiquadratic optimization problem that is 

very well conditioned and can be solved using DMRG-like sweeping!

– Core method for simulating PEPS

– The error in the approximation is known exactly!

– Allows to do time evolution without breaking translational invariance

How to formulate time-evolution as a 

variational principle?



Generalizing MPS to higher dimensions: PEPS

• Area law is satisfied by construction : scalable!

• Precursors: AKLT, Nishino; PEPS introduced in context of 
measurement-based quantum computation



How to calculate expectation values?

• Equivalent to contracting tensor network consisting of MPS and MPO!

– Obvious way of doing this: recursively use 

– Optimization: alternating least squares as in DMRG

• Alternatively: imaginary time evolution ; infinite algorithm ;  renormalization



Holographic principle: dimensional reduction

• Crucial property of MPS/PEPS: dimensional reduction

– Start from quantum system in 2 dimensions (2+1)

– The PEPS ansatz maps the quantum Hamiltonian to a state 

corresponding to a partition function in 2 dimensions (2+0)

– The properties of such a state are described by a (1+1) dimensional 

theory (eigenvectors of transfer matrices)

– Those eigenvectors are well described by MPS 

– Properties of MPS are trivial to calculate: reduction to a partition 

function of a 1-D system (1+0)


