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Decodability transition in error corrupted topological states
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Ground state topological order

(i) Topological ground state degeneracy @

(ii) Anyonic excitations ]




Recent demonstrations of topological order

1. Z, topological order in Rydberg atom arrays

Semeghini et al. Science 2021

 Measured Wilson and t’"Hooft lines
(Open string order parameters)

2. Toric code state realized in a SC qubit array ENITE .

Google quantum AI Science 2021 23 ﬁ " =5
T &
e Measured the topological '

entanglement entropy -

But these systems are not prepared in their ground state!
They are mixed states due to decoherence.



Corrupted topological states
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 |s topological order sharply defined in such corrupted mixed states?
 What are the possible phases?

 How to diagnose mixed topological states ?



Two conflicting perspectives on the fate of
topological order in the corrupted mixed state

1. Existence of an error threshold — Topological transition in p ?

For Toric Code: Dennis et al., J Math. Phys. 2002 .
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i)  Detect error syndromes: *
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probability at a critical error rate.

In principle can depend on the
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Intrinsic Topological transition in the underlying mixed state p ?



Two conflicting perspectives on the fate of
topological order in the corrupted mixed state

2. Local decoherence = finite depth unitary circuit

Topologically ordered state Ancillas
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Cannot get singular change in any expectation value:

(3]0]®) = tr(pO)

From this perspective, the mixed state remains
topological for any finite decoherence strength.

How to resolve the conflict ?



Resolution: transitions in an errorfield double

Treat the density matrix as a state vector in a doubled Hilbert space:

po = |%o) (ol — |po)) = [tho) @ [tho)

. RN
p) = H;Ke,z‘ Ko,i Yo, to) ##H' *H' H'H. H'H. ‘H’H.*
Nirp

Decoherence is a non-unitary transformation of the state vector.

=> Can drive phase transitions in |p)) , diagnosed by super-observables:

oy = §el00Ip) tr(Op O'p)

(ploy — tr(p?)

Physical interpretation: overlap ~ distinguishability between the
ensembles defined by the two mixed states p and (Op Of




Decoherence induced anyon condensation

Example: bit-flip errors in the toric code p— (1=7)p+vXipX;
i AN
p) =exp v ) XiX; | |vo, o) AE AR AR 4K A,
EZJ YY"
g, = IV><Y)
=exp | 7 ) _ (memy)(memmy) | [po))
(ee')
Drives condensation of mm M i
Diagnosed by the open string order parameter "ﬁ/ﬂ ) MMX
(creation operator of mm ) mm = 7" wr
Omm(r) = Om(r) ® Of(r) = HXiY,-\ ______ _ ;,”//;.,,
(Omm(r))) # 0

= Overlap between the corrupted state and the same corrupted state injected
with a single m anyon. If vanishing, then the anyon excitation is well defined.



Mapping to a boundary transition
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Important distinction from bulk anyon condensation

Boundary condensation of mm doesn’t lead to confinement of e

" Wilson loop Boundary Bulk
condansate condansate
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= |Large world lines occur with decaying probability

mm

= Wilson loop always follows a perimeter law

= Condensing mm on the boundary doesn’t confine e
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Pauli-X errors 2(TQFT)
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Condensed phase of mm !

»Pauli-Y and -Z errors can give condensed phases of e¢ and ff

»How to classify the possible error-induced phases?



Mapping to one dimensional edge states

(1+1)D spatial defect

1D defect
/
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2 X (topo. order)

Edge of quadruple topological order



K-matrix classification for Abelian topological order

Generalized Chern-Simons edge theory:
1
Llg] = y > Kryd,:¢' 0,67 —V1,0,¢'0,0”
I,J

+£swap + *CN

Restrict to incoherent errors (don’t create
superpositions of different anyon pairs) K, = a,a,
Different ways to gap the edge:  Restrict to incoherent errors

topological trivial

_\ B —— intermediate states —— B

Generally classified by “Lagrangian subgroups” of anyon condensates
Levin PRX 2013, Barkeshli et al, PRB 2013




K-matrix classification for Abelian topological order

Generalized Chern-Simons edge theory:

1
Llg] = y IZ; Kr70-¢" 0y¢” = V150,0" 0,0’

+£swap + *CN
Model Memory |Edge condensate (generators of Lagrangian subgroup) |Error that realizes the phase
I |Quantum ei1€é2, €12, M1Mma, Mi1Mma2 No error
IT | Classical €1€1, ez€a, €1€2, MM MM Incoherent e error
Toric code |III| Classical mi1m1, Moo, M1 M2, €1€1€2€E2 Incoherent m error
IV | Classical fifi, f2fa, fifo, €1€1€2€0 Incoherent f error
V| Trivial e1é1, e2e2, mimi, Mmama2 Incoherent e and m error
I |Quantum M, 1Ma,2, Ma,1Ma,2, Mp, 1M, 2, M, 1M} 2 No error
IT | Quantum Ma,1Ma,1, Ma,2Ma,2, Mb,1Mb,2, Mb,11Mb,2 Incoherent m, error
Double semion |[III | Quantum My, 1MMb,1, Mp,2Mb, 2, Ma,1Ma,2, Ma,1Ma,2 Incoherent my error
IV | Quantum blgl, bggz, blgz, Mq,1Ma,1Ma,2Ma,2 Incoherent b error
V | Trivial Ma,1Ma,1, Ma,2Mqa,2, My, 1M, 1, My, 2MMp, 2 Incoherent m, and my error

* Because of the doubling this applies also to chiral topological states

e Can be generalized to chiral non abelian states



Ground state topological order

(i) Topological ground state degeneracy @
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(ii) Anyonic excitations T
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(iii) Topological entanglement entropy

How to generalize these defining properties to corrupted mixed states?



Information theoretic diagnostics

(i) Coherent information R Ugs
U
« Encode information into the degenerate ground state | H:[)

* Apply decoherence channel

« How much of the information can be recovered? @

IC(R>Q) = SQ — SQR.

* For successful quantum error correction need I, = Sg



Information theoretic diagnostics

(i) Quantum relative entropy

Doubled string order parameter

Information theoretic measure of the
integrity of anyon excitations

Distinguishability between the corrupted
state and the with an extra anyon.

D(pl|pa) := trplog p — trplog pa
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Information theoretic diagnostics

(iii) Topological entanglement entropy

’ \
\ 1
e f
|
1
‘ \ 1
N ]

Sub-system logarithmic negativity

A measure of quantum entanglement in a mixed state

Conjectured topological term



Example: TC+incoherent errors

e Toric code with incoherent errors, i.e. bit-flip and phase errors (generalizations
to Zn Toric code with certain errors are straightforward)

1 - XopoX
A = H X,, B = H Z, po = (1 = pIpo + P XspoXs

p
zestar(s) zeplaq(p) po = (L =pJpy +p.ZipoZ,

e There are two representations of the error-corrupted state

po Y (1=2p)I(1 - 2p)elg g,
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The toric code as a test case

Nx[p] = (1 = pz)p + pXipX;
Nzlpl = (1 —p.)p+ p.ZipZi

Pauli-X and Z errors

Density matrix as an effective loop model:

No errors: Errors add loop tension:

— _x| x|_ z| z|
pO:H1+2ASH1+Bp:ZQ$92 p= Ze Halgel=p=l9:=1g o
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The toric code as a test case

Information theoretic quantities derived from the stat-mech model for

trp" = 2,

n flavors of loops (with one constraint)
= n-1 flavor Ising model
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Information theoretic diagnostics in the stat-mech model

All three diagnostics detect ferromagnetic ordering and undergo transition simultaneously
- Relative entropy is order parameter correlation

Ferro: O(1)
n 1 (1) (1)
D( ) = 1—n IOg <ail air > . .
Para: o |i; — i,|

- Coherent info is related to inserting large defects

(dg1,dq2)
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- Negativity is excess free energy for spin pinning
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Connection to quantum error correction

Quantum error correction algorithm:
* Detect anyons by syndrome measurements

€
* Annihilate anyons in pairs éj
e

T_\j
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non-unitary, partial loss of coherent info. ~—

Pc = Pc,algo

Dennis et. al. 2002: Optimal algorithm for correcting incoherent errors in
the toric code. Maps to critical point of random bond Ising model (RBIM)

Indeed we can show an exact duality between the n-flavor Ising and the
replicated RBIM

4 )
Error configuration picture (low-T expansion)

p= > P(Ce,Co)X%Z%|Wg) (| 2% X trp” = Zrpiv
\ Cxacz )




Summary

- Decoherence induced topologically ordered
phases map to boundary anyon condensation

T | 1D defect
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- Characterized by information theoretic measures

(i) Quantum relative entropy D(p||pa) := trplog p — trplog p,

(ii) Coherent information I.(R)Q) := Sq — Sqr-

Eai=loglo™ i = Al —yn  aw

(iii) Topological entanglement negativity




Outlook

* Quantization of log negativity demonstrated only for Toric
code. More general understanding?

* Generalize the edge theory to information theoretic
quantities (replica limit of n-copy CS theory)

« Characterize non abelian states subject to dissipation

* Intrinsic error thresholds for quantum computation with
non-abelian anyons.



