Quantum simulation (and information processing) with Rydberg atoms

Outline

- Lecture 1: Programmable Rydberg arrays introduction to the platform
- Lecture 2: Quantum simulation experiments with programmable Rydberg arrays
- Lecture 3: Quantum information processing with programmable Rydberg arrays
 + conclusion/discussion about opportunities and challenges for quantum science with Rydberg arrays

Programmable quantum platform: modes of operation

Analog

Engineer the system Hamiltonian such that the desired phase is the ground state in accessible range of parameters

Implement quantum circuit to generate the desired entangled state

Programmable quantum platform: modes of operation

Analog

Engineer the system Hamiltonian such that the desired phase is the ground state in accessible range of parameters

Implement **quantum circuit** to generate the desired entangled state

Experimental toolbox

Qubit encoding

Single-qubit operations

Two-qubit gates (extension to multi(>2)-qubit gates)

Reconfigurable any-to-any connectivity

Mid-circuit operations

Applications

Initial steps toward quantum error correction applications

Experimental toolbox

Qubit encoding

Single-qubit operations

Two-qubit gates (extension to multi(>2)-qubit gates)

Reconfigurable any-to-any connectivity

Mid-circuit operations

Applications

Initial steps toward quantum error correction applications

Experimental toolbox

Qubit encoding

Single-qubit operations

Two-qubit gates (extension to multi(>2)-qubit gates)

Reconfigurable any-to-any connectivity

Mid-circuit operations

Applications

Initial steps toward quantum error correction applications

Experimental toolbox

Qubit encoding

Single-qubit operations

Two-qubit gates (extension to multi(>2)-qubit gates)

Reconfigurable any-to-any connectivity

Mid-circuit operations

Applications

Initial steps toward quantum error correction applications

Toolbox: Qubit encoding (alkali)

mainly used in quantum simulation applications

- Long lived coherence in tweezers ightarrow

 $T_2^* \sim$ 4-10 ms [1-4] up to 200 ms [5] $T_2 >$ 1 s (up to 12.6 s in [3])

- High-fidelity manipulation + readout
- Suitable for universal quantum gates (non-interacting)

Kuhr ... Meschede, PRA 2005, [2] Xia ... Saffman, PRL 2015,
 Wang ... Weiss, PRL 2015, [4] Levine ... Lukin, PRA 2022,
 Sheng ... Zhan, PRL 2018

Toolbox: Single-qubit operations (alkali) Hyperfine qubit in ^{87}Rb

[1] H. Levine et al, PRA 2022; [2] Sheng et al, PRL 2018

state of the art for global single-qubit gates (mw): 0.99995(1) [2]

Toolbox: Two-qubit gate

Native 2-qubit gate: CZ (controlled-phase) gate

standard protocol using Rydberg blockade originally proposed by Jaksch et al., PRL **85**, 2208 (2000)

TARGET

 $|r1\rangle$

|11>

technically challenging

 $|W\rangle = \frac{1}{\sqrt{2}}(|r1\rangle + |1r\rangle)$

11

 $\sqrt{2}\Omega$

local Rydberg coupling

 \dots $U \gg \Omega$

 $|1r\rangle$

can we build a CZ gate using global Rydberg coupling? challenge: designing a symmetric protocol for states with one or two atoms coupled to the Rydberg state

CONTROL

Toolbox: Two-qubit gate

But... 2-qubit gate fidelities still limited!

Gooale.	Satzinger	et al ar	Xiv: 2207.	06431
000gt0,	Gatzniger	orurun	////. 2207.	00-01

Component	Error probability
SQ gates	1.09×10^{-3}
CZ gates	6.05×10^{-3}
Data qubit idle	2.46×10^{-2}
Reset	1.86×10^{-3}
Readout	1.96×10^{-2}
CZ leakage	2.0×10^{-4}
Leakage from heating	6.4×10^{-4}
CZ crosstalk	9.5×10^{-4}

Google SC qubit state-of-the-art (when doing on ~10s of qubits in parallel): F_{CZ} = 99.4%

Levine-Pichler CZ gate (2019): 97.4(3)% fidelity

Recent significant improvements:

- new gate ideas
- technical improvements to reduce intermediate-state scattering and Doppler dephasing

Quantum error correction has a threshold

As we grow the lattice (increase distance d), do we increase or decrease the logical qubit error rate?

 p_{th} \thickapprox 1% CZ gate error (surface code)

Improving two-qubit gate fidelity to 99-99.9% is critical to building a large-scale quantum computer

slide credit: Dolev Bluvstein

Toolbox: Two-qubit gate Robust, continuous family of gates

Single-pulse, continuous-phase gates (based on S. Jandura, G. Pupillo, arXiv:arXiv:2202.00903 (2022))

S. Evered*, D. Bluvstein*, M. Kalinowski*, et al arXiv: 2304.05420 (2023)

Key observation: experimental robustness and tunability

Toolbox: Two-qubit gate

Robust, continuous family of gates: Experimental implementation and benchmarking of new CZ gate fidelities

S. Evered*, D. Bluvstein*, M. Kalinowski*, et al arXiv: 2304.05420 (2023)

See also related work (including erasure) from Endres (Scholl 2305.03406) and Thompson (Ma 2305.05493)

Toolbox: Two-qubit gate

Robust, continuous family of gates: Remaining error sources \rightarrow Can we go higher?

Simulated error sources			
Error source	Time optimal		
Scattering* $ 1\rangle$	0.038%		
Scattering $ 0\rangle$	0.017%		
Rydberg decay	0.133%		
$T_2^* = 3\mu\mathrm{s}$	0.134%		
Position fluct.	0.012%		
Power fluct.	0.001%		
Rydberg $m_J = -\frac{1}{2}$	0.06 - $0.15%$		
Total fidelity	99.51 - 99.60%		

Next frontier: 99.9% fidelity

- Good understanding of atomic physics error model
- 99.9% can be done with e.g. 3x Rabi frequency and 2x detuning, which requires technical optimizations

how can we generate long-range entanglement (efficiently)?

• •

6.8 GHz

pair of atoms: can be entangled using Rydberg blockade -----> LOCAL

- Rydberg pulse: only atoms within blockade radius get entangled
- Map down to hyperfine qubit Long coherence time, non-interacting

how can we generate long-range entanglement (efficiently)?

pair of atoms: can be entangled using Rydberg blockade -----> LOCAL

- Rydberg pulse: only atoms within blockade radius get entangled
- Map down to hyperfine qubit Long coherence time, non-interacting

• Tweezers: allow to move atoms across the array

how can we generate long-range entanglement (efficiently)?

6.8 GHz

pair of atoms: can be entangled using Rydberg blockade -----> LOCAL

- Rydberg pulse: only atoms within blockade radius get entangled
- Map down to hyperfine qubit Long coherence time, non-interacting

 Tweezers: allow to move atoms across the array

• 2nd Rydberg pulse: new layer of gates with different connectivity

how can we generate long-range entanglement (efficiently)?

pair of atoms: can be entangled using Rydberg blockade -----> LOCAL

Rydberg pulse: only atoms within blockade radius get entangled Map down to hyperfine qubit Long coherence time, non-interacting Tweezers: allow to move atoms Long-range entanglement with across the array local gates + atom transport D. Bluvstein, et al, Nature 604, 451-456 (2022)

• 2nd Rydberg pulse: new layer of gates with different connectivity

related work on coherent transport: Beugnon et al, Nat Phys 2007; Dordevic et al, Science 2021

D. Bluvstein, et al, Nature 604, 451-456 (2022)

Transporting entanglement across the array: Bell pairs

Many potential applications: complex quantum computing architectures & new probes for many-body phases Coherence is preserved when

- transporting the atoms over a hundred μm in a few hundred μs (~10⁻⁴ T₂)

related work on coherent transport: Beugnon et al, Nat Phys 2007; Dordevic et al, Science 2021

Many different applications

Many different applications

Experimental toolbox

Qubit encoding

Single-qubit operations

Two-qubit gates (extension to multi(>2)-qubit gates)

Reconfigurable any-to-any connectivity

Mid-circuit operations

Applications

Initial steps toward quantum error correction applications

Application: Toric code on a 3D torus

D. Bluvstein, et al, Nature 604, 451-456 (2022)

Application: Toric code on a 3D torus

D. Bluvstein, et al, Nature 604, 451-456 (2022)

Application: Toric code on a 3D torus

Stabilizers

D. Bluvstein, et al, Nature 604, 451-456 (2022)

Two logical qubits!

Toolbox: Mid-circuit readout

Fundamental tool for QEC

With single species alkali atoms:

Move ancilla qubits in separate zone

Imaging with localized resonant beam

Coming soon from Lukin group, Harvard

see also different approach from Graham ... Saffman, arXiv (2023)

Experimental toolbox

Qubit encoding

Single-qubit operations

Two-qubit gates (extension to multi(>2)-qubit gates)

Reconfigurable any-to-any connectivity

Mid-circuit operations

Applications

Initial steps toward quantum error correction applications

Research direction started by Manuel Endres (Caltech), Jeff Thompson (Princeton) and Adam Kaufman (JILA) - 2017

2 valence electrons \rightarrow interesting spectral structure

credit slide: Adam Kaufman

Research direction started by Manuel Endres (Caltech), Jeff Thompson (Princeton) and Adam Kaufman (JILA) - 2017

2 valence electrons \rightarrow interesting spectral structure

credit slide: Adam Kaufman

Enables:

- mid-circuit operations
- erasure conversion

Nuclear qubits:

- robust to light shifts
- long T1 time

omg: Allcock et al, APL 2021, Chen et al, PRA 2022 related idea: Wu et al, Nat Comm 2022

experimental realization with Yb atoms: Lis et al, arXiv:2305.19266 (2023)

Mid-circuit readout with omg architecture

- qubit encoded in *g*
- data qubits (DQ) that we do not want to image are transferred to *m*,
 - ancilla qubits (AQ) stay in g (local light shifts prevent excitation)
- imaging of atoms in *g* leaves atoms in *m* unperturbed

Lis et al, arXiv:2305.19266 (2023)

More mid-circuit operations with omg architecture

ancilla qubits can be measured and also reset (cooling and re-initialization) while data qubits are left unperturbed

${}^{1}S_{0} = |g\rangle$ ground-state optical qubit Electronic Nuclear

0

 ${}^{3}\mathsf{P}_{0} = |m\rangle$

m

aubit g

qubit

m computational subspace

Lis et al, arXiv:2305.19266 (2023)

see also alternative approach in: Norcia et al, arXiv (2023)

g computational subspace

Mid-circuit erasure conversion

idea: convert dominant physical errors into erasures (= errors in known locations) → lower requirements for QEC see original proposal: Y. Wu ... J. Thompson, Nat Comm 13 (2022)

fast destructive imaging @ 399nm
slow (quasi-)non-destructive imaging @556nm

Single-qubit gates with mid-circuit erasure conversion

detect decay out of the qubit states, by imaging atoms in the ground state manifold \rightarrow converts into erasure errors

 \rightarrow easier to handle for QEC

Ma ... Thompson, arXiv:2305.05493 (2023)

see also related work: Huie et al, arXiv (2023), Scholl et al, arXiv (2023)

Dual-species atom arrays

Selective control of the two atomic species (separate wavelengths of control lasers)

Mid-circuit readout of "spectator qubits"

Singh et al, arXiv:2208.11716 (2023)

Dual-species atom arrays

Selective control of the two atomic species (separate wavelengths of control lasers)

Mid-circuit correction of correlated phase errors

Dual-species atom arrays

Selective control of the two atomic species (separate wavelengths of control lasers)

Reloading of spectator qubits while maintaining coherence in data qubits

Experimental toolbox

Qubit encoding

Single-qubit operations

Two-qubit gates (extension to multi(>2)-qubit gates)

Reconfigurable any-to-any connectivity

Mid-circuit operations

Applications

Initial steps toward quantum error correction applications

