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• Lecture 1: Programmable Rydberg arrays – introduction to the platform

• Lecture 2: Quantum simulation experiments with programmable Rydberg arrays

• Lecture 3: Quantum information processing with programmable Rydberg arrays

+ conclusion/discussion about opportunities and challenges for quantum 
science with Rydberg arrays



Programmable quantum platform: modes of operation
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Rydberg qubit: Hyperfine qubit:

• Long lived coherence in tweezers

• High-fidelity manipulation + readout

• Suitable for universal quantum gates (non-interacting)

Toolbox: Qubit encoding (alkali)

𝑇!∗ ∼	4-10 ms [1-4] up to 200 ms [5]
𝑇! >	1 s (up to 12.6 s in [3])

mainly used in quantum 
simulation applications

$%𝑅𝑏

[1] Kuhr … Meschede, PRA 2005, [2] Xia … Saffman, PRL 2015, 
[3] Wang … Weiss, PRL 2015, [4] Levine … Lukin, PRA 2022, 

[5] Sheng … Zhan, PRL 2018
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Toolbox: Single-qubit operations (alkali)

Hyperfine rotations:
- Global microwave (slow, robust)
- Raman transitions

Hyperfine qubit in 34𝑅𝑏

π-pulse fidelity (Raman): 0.999873 1  [1]

[1] H. Levine et al, PRA 2022; [2] Sheng et al, PRL 2018 state of the art for global single-qubit gates (mw): 0.99995 1  [2] 



Native 2-qubit gate: CZ (controlled-phase) gate  

standard protocol using Rydberg blockade originally 
proposed by Jaksch et al., PRL 85, 2208 (2000)

local Rydberg coupling

00 	 → 	 00
01 	 → 	 − 01
10 	 → 	 − 10
11 	 → 	 − 11

Unitary map:

CONTROL TARGET

technically challenging 

can we build a CZ gate using global Rydberg coupling?

Toolbox: Two-qubit gate

challenge: designing a symmetric protocol for states 
with one or two atoms coupled to the Rydberg state

Uncoupled

Single-particle coupling

Collective couplingΩ
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𝑟𝑟
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Rydberg 
blockade:



00 → 00
01 →
10 →
11 →

We implement:

00 → 00
01 → 01 𝑒)*!"
10 → 10 𝑒)*"!
11 → 11 𝑒)*""

We implement:|Ω|
laser 

phase

𝜏 𝜏1 2

𝜉 00 → 00
01 → − 01
10 → − 10
11 → − 11

Target map:

equivalent up to a global 
single-qubit phase, 
if 𝜙"" = 2𝜙!" − 𝜋

𝑅+𝑟
Ω

0
Ω!"

1

H. Levine et al, PRL 2019
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( 𝑟1 + 1𝑟 )  =

Toolbox: Two-qubit gate
Levine-Pichler gate
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CZ gate: 97.4(3)% fidelity

See also:
ℱ = 89%	from Saffman group, PRL (2019)
ℱ = 98%	from Zhan group, PRA (2022)



Google, Satzinger et al arXiv: 2207.06431

Google SC qubit state-of-the-art (when doing on 
~10s of qubits in parallel): F,-	= 99.4%

Levine-Pichler CZ gate (2019): 97.4(3)% fidelity

Quantum error correction has a threshold

P!~
p
p"#

$%&
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As we grow the lattice (increase distance d), do we 
increase or decrease the logical qubit error rate?

p./ ≈	1% CZ gate error (surface code)

Improving two-qubit gate fidelity to 99-99.9% is critical to 
building a large-scale quantum computer

Toolbox: Two-qubit gate
But… 2-qubit gate fidelities still limited!

slide credit: Dolev Bluvstein

Recent significant improvements:
- new gate ideas
- technical improvements to reduce intermediate-state scattering and Doppler dephasing 



Robust, continuous family of gates

𝐴 cos 𝜔𝑡 + 𝜑 + 𝛿𝑡

Single-pulse, continuous-phase gates (based on S. 
Jandura, G. Pupillo, arXiv:arXiv:2202.00903 (2022))

Key observation: experimental robustness and tunability

Amplitude

Phase

Calibration

Toolbox: Two-qubit gate

|Ω|

Laser phase
𝜏 𝜏

𝜉
LP gate:

S. Evered*, D. Bluvstein*, M. Kalinowski*, et al arXiv: 2304.05420 (2023)



Robust, continuous family of gates: Experimental implementation and benchmarking of new CZ gate fidelities
Toolbox: Two-qubit gate

averaged across 20-60 qubits in parallel
1. Bell state measurement

2. Benchmarking protocol 𝐹#$ = 99.54(2)%

Apply sequence of random rotations interspersed with entangling gate – 
carefully calculated final rotation brings back to initial state if no errors occur

See also related work (including erasure) 
from Endres (Scholl 2305.03406) and Thompson (Ma 2305.05493)S. Evered*, D. Bluvstein*, M. Kalinowski*, et al arXiv: 2304.05420 (2023)



Robust, continuous family of gates: Remaining error sources → Can we go higher?
Toolbox: Two-qubit gate

See also related work (including erasure) from Endres (Scholl 
2305.03406) and Thompson (Ma 2305.05493)

Next frontier: 99.9% fidelity
• Good understanding of atomic physics error model
• 99.9% can be done with e.g. 3x Rabi frequency and 2x detuning, which requires technical optimizations

Simulated error sources

Saffman review 
article (2016)
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Evered 2023

Levine PRL 2019

Maller PRL 2015
Zhang PRL 2010

Isenhower PRL 2010, Wilk PRL 2010

slide credit: Dolev Bluvstein

S. Evered*, D. Bluvstein*, M. Kalinowski*, et al arXiv: 2304.05420 (2023)



Toolbox: Dynamically reconfigurable connectivity

pair of atoms: can be entangled using Rydberg blockade LOCAL

• Rydberg pulse:
only atoms within blockade radius 
get entangled

• Map down to hyperfine qubit
Long coherence time, 
non-interacting

how can we generate long-range 
entanglement (efficiently)?
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D. Bluvstein, et al, Nature 604, 451-456 (2022)

Long-range entanglement with 
local gates + atom transport

related work on coherent transport: 
Beugnon et al, Nat Phys 2007; Dordevic et al, Science 2021 



Transporting entanglement across the array: Bell pairs

Coherence is preserved when 
transporting the atoms over a hundred μm 
in a few hundred μs (~10-4 T2 )

Entangle pairs

11
0 
μm

Transport 
entanglement

Many potential applications: 
complex quantum computing architectures 
& new probes for many-body phases

D. Bluvstein, et al, Nature 604, 451-456 (2022)Toolbox: Dynamically reconfigurable connectivity

related work on coherent transport: 
Beugnon et al, Nat Phys 2007; Dordevic et al, Science 2021 



Many different applications

1D cluster states Steane Code

Surface Code (2D)

Ancilla
Data qubit

Toric Code (3D)
|𝑔𝑔𝑔𝑔… ⟩

𝑍! = |𝑟𝑔𝑟𝑔… ⟩

Measurement of 
entanglement entropy

D. Bluvstein, et al, Nature 604, 451-456 (2022)Toolbox: Dynamically reconfigurable connectivity

end of lecture 2
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+ Dynamical decoupling

1st parallel layer:

2nd parallel layer:

SLM AOD

Position defines gate (blockade) → efficient control over many qubit 
positions gives efficient control over complex quantum circuits

Shows successful 
creation of the state

Application: 12-atom cluster state D. Bluvstein, et al, Nature 604, 451-456 (2022)



D. Bluvstein, et al, Nature 604, 451-456 (2022)

Application: Toric code on a 3D torus



D. Bluvstein, et al, Nature 604, 451-456 (2022)

Application: Toric code on a 3D torus



X plaquettes Z stars

Stabilizers Two logical qubits!

raw

error 
detection

D. Bluvstein, et al, Nature 604, 451-456 (2022)

Efficient realization of QEC thanks 
to highly-parallel optical control

Application: Toric code on a 3D torus



Toolbox: Mid-circuit readout

Fundamental tool for QEC
With single species alkali atoms: Move ancilla qubits in 

separate zone

Imaging with localized 
resonant beam

Coming soon from Lukin group, Harvard see also different approach from Graham … Saffman, arXiv (2023)
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Alkaline-earth(-like) atoms
Research direction started by Manuel Endres (Caltech), Jeff Thompson (Princeton) and Adam Kaufman (JILA) - 2017

credit slide: Adam Kaufman

2 valence electrons → interesting spectral structure
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detection

Nuclear spin 𝐼
(fermions)

Yb: 1/2, 5/2
Sr: 9/2

Hybridize under 
hyperfine coupling

• new type of qubit encoding with 
advantageous features

• new tools for qubit manipulation
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Alkaline-earth(-like) atoms

omg: Allcock et al, APL 2021, Chen et al, PRA 2022
related idea: Wu et al, Nat Comm 2022 experimental realization with Yb atoms: Lis et al, arXiv:2305.19266 (2023)

Enables:
- mid-circuit operations
- erasure conversion

Nuclear qubits:
- robust to light shifts
- long T1 time

from Lis et al, arXiv:2305.19266 (2023)

omg architecture:



Lis et al, arXiv:2305.19266 (2023)

Alkaline-earth(-like) atoms Mid-circuit readout with omg architecture

- qubit encoded in g
- data qubits (DQ) that we do not want to image are transferred to m, 

ancilla qubits (AQ) stay in g (local light shifts prevent excitation)
- imaging of atoms in g leaves atoms in m unperturbed



Lis et al, arXiv:2305.19266 (2023)

Alkaline-earth(-like) atoms More mid-circuit operations
with omg architecture

ancilla qubits can be measured and also reset (cooling and re-initialization) 
while data qubits are left unperturbed

see also alternative approach in: Norcia et al, arXiv (2023)



Alkaline-earth(-like) atoms

Ma … Thompson, arXiv:2305.05493 (2023)

Single-qubit gates with mid-circuit 
erasure conversion

- fast destructive imaging @ 399nm
- slow (quasi-)non-destructive 
imaging @556nm

Mid-circuit erasure conversion

detect decay out of the qubit states, by imaging 
atoms in the ground state manifold
→ converts into erasure errorsuncorrected

corrected

→ easier to handle for QEC

see also related work: Huie et al, arXiv (2023), Scholl et al, arXiv (2023)

see original proposal: Y. Wu … J. Thompson, Nat Comm 13 (2022)
idea: convert dominant physical errors into erasures (= errors in known locations) → lower requirements for QEC



Dual-species atom arrays
Selective control of the two atomic species (separate wavelengths of control lasers)

Mid-circuit readout of “spectator qubits”

Singh et al, arXiv:2208.11716 (2023)



Dual-species atom arrays
Selective control of the two atomic species (separate wavelengths of control lasers)

Mid-circuit correction of correlated phase errors

Singh et al, arXiv:2208.11716 (2023)



Dual-species atom arrays

Singh et al, arXiv:2208.11716 (2023)

Selective control of the two atomic species (separate wavelengths of control lasers)

Reloading of spectator qubits while maintaining coherence in data qubits
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