Quantum simulation (and information processing) with Rydberg atoms

In these weeks you have learned about:

Quantum many-body dynamics

Quantum phase transitions

Quantum circuits

Quantum error correction

Quantum spin chains

In these three lectures: Experimental platform where we can implement some of these ideas In particular, three broadly defined goals:

Quantum simulation of many-body phases and dynamics

figures from Lukin, Browaeys groups

Quantum information processing

Quantum metrology

. . .

figures from Lukin, Thompson, Bernien groups

What are the requirements for a quantum platform that wants to achieve those goals?

How do we choose the building blocks of our quantum machine?

Quantum platforms explored so far

Superconducting qubits, trapped ions, neutral atoms, photons, defects in solids...

Individual neutral atoms

These lectures:

- Excellent isolation from the environment
- Well-developed toolbox:
 - High-fidelity initialization, manipulation and readout
 - Strong, switchable Rydberg interactions
- Highly scalable defect-free arrays
- Tunable system parameters

Images from: C. Monroe, Google, M. Greiner, J. Petta, I. Bloch, J-W. Pan, M. Loncar groups

Reference

Outline

- Lecture 1: Programmable Rydberg arrays introduction to the platform
- Lecture 2: Quantum simulation experiments with programmable Rydberg arrays
- Lecture 3: Quantum information processing with programmable Rydberg arrays

Outline

- Lecture 1: Programmable Rydberg arrays introduction to the platform
- Lecture 2: Quantum simulation experiments with programmable Rydberg arrays
- Lecture 3: Quantum information processing with programmable Rydberg arrays

Programmable Rydberg arrays – a bit of history

One of the most recent quantum platforms: ~ 7 years old

New approach to the creation of large ordered arrays of atoms:

Top-down: optical lattices

Programmable Rydberg arrays – a bit of history

One of the most recent quantum platforms: ~ 7 years old

New approach to the creation of large ordered arrays of atoms:

Top-down: optical lattices

I. Bloch's lectures next week:

D. Greif et al Science 2016

Bottom-up: tweezer arrays Lukin, Browaeys, Ahn groups (2016)

Programmable Rydberg arrays

neutral atoms

+

individual control and site-resolved readout

strong interactions via Rydberg excitations

+

• optical tweezer

Original idea:

Light pressure from laser beams used to suspend dielectric objects

optical tweezer = tightly focused laser beam
 → traps single atoms

Trapping of individual atoms in tweezers: First experiments by P. Grangier (Institut d'Optique, Palaiseau):

Loading of single atoms ensured by light-assisted collisions:

related work: M. Weber et al, PRA 73 (2006) K. D. Nelson et al, Nat Phys 3 (2007) A. Kaufman et al, Science 345 (2014)

optical tweezer = tightly focused laser beam
 → traps single atoms

- optical tweezer = tightly focused laser beam
 → traps single atoms
- 1D tweezer array generated by an AOD
 - \rightarrow stochastic loading from MOT
- Image atoms
- Remove empty traps
- Rearrange remaining traps into regular atom array

		40.8 M		1 4 1.1		1. 1. 1.	1.60		· · · · · · · · · · ·	1.	
		×4.	-		5.00	a De Cher	14.5	**	 		0.45
*	4 4 4 V	e • •	* *		\$	6 8 ¥ \$ 3			 4	* * * *	

Early ideas on atom rearrangement and entropy removal:

- D. S. Weiss ... K. B. Whaley, PRA 70 (2004)
- J. Vala ... K. B. Whaley, PRA 71 (2005)
- Y. Miroshnychenko ... A. Rauschenbeutel, Nature 442 (2006)
- J. Beugnon ... P. Grangier, Nat Phys 3 (2007)
- M. Schlosser ... G. Birkl, New J Phys 14 (2012)

First atom array experiments: M. Endres ... M. Lukin, Science 354 (2016) D. Barredo ... A. Browaeys, Science 354 (2016) H. Kim ... J. Ahn, Nat Comm 7 (2016)

Optical tweezer array – 1D, 2D and 3D

Lukin, Browaeys, Ahn, Regal, Endres, Kaufman, Saffman, Thompson, Ni, Bakr, Bloch, Bernien, ... 2D array of optical tweezers

Atoms:

Thompson, Ni, Bakr, Bloch, Bernien, Zhan, Covey, ...

Thompson, Ni, Bakr, Bloch, Bernien, Zhan, Covey, ...

Programmable geometry

Square

:::::	:::::		::::	13
:::::	1111		int	11
	111		111	::
:::::	;::::	:::::	::::	11
			HH	11
:::::	1111	1111	::::	::
	:::::			

Tilted Square

Honeycomb

Triangular

Kagome

Link-kagome (ruby)

Programmable Rydberg arrays

Core ingredients:

arrays with 100s (up to 1000!) neutral atoms with programmable geometries

Programmable Rydberg arrays

Core ingredients:

ι_____γ

arrays with 100s (up to 1000!) neutral atoms with programmable geometries

Rydberg states and long-range interactions

Coherent coupling to Rydberg states

e.g. for ⁸⁷Rb

Coherent coupling to Rydberg states

e.g. for ^{87}Rb

Rydberg blockade and Ising Hamiltonian

But can we access different types of Hamiltonians (types of interaction)?

Interactions between Rydberg atoms (and spin models)

Resonant dipole-dipole interactions

Barredo et al, PRL (2015) de Leseleuc et al, PRL (2017)

Coherent driving

for detailed explanation of dipole-dipole interactions, see Antoine Browaeys' lectures at Boulder Summer School 2021

Rydberg dressing

Coupling off-resonantly to the Rydberg state \rightarrow ground-state weakly admixed with the Rydberg state

I. Bouchoule et al, PRA 6 (2002); G. Pupillo et al, PRL 104 (2010); J.E. Johnson et al, PRA 82 (2010); J.B. Balewski et al, New J. Phys. 16 (2014)

Rydberg dressing

Coupling off-resonantly to the Rydberg state \rightarrow ground-state weakly admixed with the Rydberg state

I. Bouchoule et al, PRA 6 (2002); G. Pupillo et al, PRL 104 (2010); J.E. Johnson et al, PRA 82 (2010); J.B. Balewski et al, New J. Phys. 16 (2014)

Different types of tweezer arrays

Molecules

Alkali atoms

Alkaline-earth atoms

Atomic mixtures

QuEra: programmable quantum simulator available on the cloud

Aquila is QuEra's first-generation machine. Its core is based on programmable arrays of neutral Rubidium atoms, trapped in vacuum by tightly focused laser beams.

Endres, Thompson, Kaufman, Bloch, Doyle, Ni, Bernien, Cheuck, Covey... + startup companies: QuEra, Atom Computing, Pasqal, Cold Quanta...

Programmable quantum platform: modes of operation

Analog

Engineer the system Hamiltonian such that the desired phase is the ground state in accessible range of parameters

Implement quantum circuit to generate the desired entangled state

