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In the previous lectures you have heard about topological insulators and topological
superconductors. These are phases with an energy gap in the bulk, and can be described
by free fermions. Here we will attempt to remove these restrictions one at a time. First
we will close the band gap, while remaining close to a noninteracting model, and ask if
topological properties can survive in semimetals or metals. We will see that the answer is
yes, provided we also assume translation symmetry (i.e. a perfect crystalline lattice) and
we will spend most of the first part of these lectures discussing the simplest realization of
this physics, Weyl semimetals. Next, we will introduce interactions, but to keep things
tractable, we will revert to ‘insulators’ with an energy gap in the bulk. We will show
that there are interacting generalizations of topological insulators, the symmetry protected
topological phases. A few years back we used to jokingly refer to the interacting SPT
direction as ‘Beyond the band-wagon’ since it was so much less popular than topological
band insulators. However, it has now developed into a major field but experiments still
lags significantly behind theory, and we need more experimentally feasible proposals for
their realization. Therefore, to allow for a broader understanding of these topics, we will
adopt an intuitive viewpoint here - that of focusing of symmetry defects (duality) and their
condensation - to describe these phases. While this is not the most general approach, it
provides valuable intuition and will hopefully whet your appetite for the more formal and
complete treatments that will follow in coming weeks.

PART 1 - Weyl Semimetals

1. Background Material

Where we review the theory of accidental degeneracies, relativistic wave equations for
fermions and topological invariants of band insulators

In this section we will review two seemingly unrelated topics that both originated in the
early days of quantum mechanics - relativistic wave equations for fermions, including the
Dirac and Weyl equations and the problem of level repulsion and accidental degeneracies in
quantum mechanics. We will see that these provide complementary perspectives on Weyl
semimetals and are unified by the identification of their topological properties. To this end
we will review topological invariants of insulators in the third part.
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1.1. Accidental Degeneracies. In the early days shortly after the birth of quantum
mechanics,von-Neumann and Wigner . asked the following question - under what condi-
tions can a pair of energy levels be degenerate. In addition to symmetry enforced degen-
eracies, one could also have an accidental degeneracy, and in the latter case the question of
relevance is - how many parameters does one need to tune to obtain the degeneracy? Given
a spectrum E(λi) as a function of some parameters λi [?], let us focus on a pair of energy
levels 1, 2. Now change one parameter and ask if we can bring these levels into degener-
acy. Naively it may appear that we can simply tune the energy difference to zero - but
actually we need to consider generic perturbations of the Hamiltonian. Then, the energy
levels (upto an overall constant) are determined by the most general 2 × 2 Hamiltonain:

∆H = εzσz + εxσx + εyσy, and the energy splitting is ∆E = 2
√
ε2x + ε2y + ε2z. Therefore, a

degeneracy requires tuning all three terms to zero simultaneously. In general this cannot
be accomplished by tuning just one parameter. In the absence of any symmetry, by the
same logic, we need to tune three independent parameters to attain a degeneracy. This
will be relevant for band structures where the number of independent parameters is the
number of spatial dimensions of the crystal, each of which provides a crystal momentum.
This was realized by Conyers Herring who was the first to apply the theory of accidental
crossings to band structure in the1930s. The connection to topology may be less clear at
the moment - but these points of degeneracy in the extended three parameter space are
termed diabolic points and have been discussed in the context of Berry’s phase [1]which
provides the link to topological properties as we discuss below. Essentially, the presence
of the degeneracy at the origin of parameter space (say) can be inferred by monitoring the
energy levels on the surface of a sphere surrounding the origin.

There is an interesting connection between the cast of characters involved here, which
is probably no coincidence. VonNeumann and Wigner went to the same high school
in Budapest before they ended up as colleagues at Princeton. The only change -
their names. Jeno Pal and Janos became Eugene and John respectively. Conyers
Herring’s thesis was entitled‘Energy Coincidences in the Theory of Brillouin Zones’,
and his thesis advisor was of course Eugene Wigner.

Exercise 1: Consider a system, for example an atom, with spin orbit interactions such
that each energy level is doubly degenerate (Kramers degeneracy). We would like
to bring a pair of these degenerate pairs together by tuning parameters. How many
parameters would you need to tune to do this - assuming that the only symmetry
present is time reversal symmetry.

1.2. Dirac and Weyl Fermions. The Dirac equation is general dimension (let d denote
spatial dimension, and we set the speed of light c = 1) is:

(1) (iγµ∂µ −m)ψ = 0
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where µ = 0, 1 . . . , d label time and space dimensions, and the d + 1 Gamma matrices
satisfy the anticommutation relation {γµ, γν} = 0 for µ 6= ν and (γ0)2 = −(γi)2 = I,
where i = 1, . . . , d. The minimal sized matrices that satisfy this property depend of course
on the dimension, and are 2k+1 × 2k+1 dimensional matrices in both spatial dimensions
d = 2k + 1 and 2k + 2. You are probably more familiar with following form of the Dirac
equation in 3+1D:

(2) i∂tψ = −i~α · ~∇ψ +mβψ

we then identify γ0 = β and γi = βαi.
Hermann Weyl noticed that this equation can be further simplified [?] in certain cases

(massless fermions) in odd spatial dimensions. For simplicity let us consider d = 1. Then
we just need two anti-commuting matrices eg. the 2 × 2 Pauli matrices eg. γ0 = σz and
γ1 = iσy. Therefore the Dirac equation in 1 + 1 dimension is involves a two component
spinor and can be written as: i∂tψ = (γ0γ1p + mγ0)ψ, where p = −i∂x. If we were
describing a massless particle m = 0, this equation can be further simplified by simply
picking eigenstates of the Hermitian matrix γ5 = γ0γ1 = σx. If γ5ψ± = ±ψ±. We then
have the 1D Weyl equation:

(3) i∂tψ± = ±pψ±

The resulting dispersion is simply E±(p) = ±p which denotes a right (left) moving par-
ticle, which are termed chiral, or Weyl, fermions. Analogous dispersions arise at the one
dimensional edge of an Integer Quantum Hall state, but are not allowed in an isolated one
dimensional system where Chiral fermions must appear in opposite pairs. The fermion
mass term interconverts the opposite chiralities. We will see that an analogous situation
prevails in 3+1 dimensions - indeed the analogy with 1D fermions will be a theme that we
will repeatedly return to.

In any odd spatial dimension d = 2k + 1 one can form the Hermitian matrix γ5 =
ikγ0γ1 . . . γd. This is guaranteed to commute with the ‘velocity’ matrices γ0γi, which can
be simultaneously diagonalized along with the massless Dirac equation. At the same time it
differs from the identity matrix since it anticommutes with γ0. In even spatial dimensions,
the latter property no longer holds, since all the Gamma matrices are utilized, and their
product is just the identity.

Let us now specialize to d = 3. The Gamma matrices are, as Dirac found, now 4 × 4
matrices, and can be represented as γ0 = I ⊗ τx, γi = σi ⊗ iτy and γ5 = −I ⊗ τz. Again,
if we identify chiral components: γ5ψ± = ±ψ±, where ψ± are effectively two component
vectors, we have for the massless Dirac equation:

i∂tψ± = H±ψ±

H± = ∓~p · ~σ(4)

Thus Weyl fermions propagate parallel (or antiparallel) to their spin, which defines their
chirality. We will see that a single chirality of Weyl fermions cannot be realized in 3D, but
opposite pairs can arise, which is separated by momentum are the Weyl semimetals.
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Here is an excerpt from an interesting (and comical) interview with Paul Dirac, when
he visited Wisconsin in 1929. Dirac’s monosyllabic answers are quite in keeping with
all the other stories about him. But there is an interesting connection to Hermann
Weyl - he mentions him as the one person he cannot understand!
Journalist: They tell me that you and Einstein are the only two real sure-enough
high-brows and the only ones who can really understand each other. I wont ask you
if this is straight stuff for I know you are too modest to admit it. But I want to know
this — Do you ever run across a fellow that even you can’t understand?”

Dirac: ‘Yes,’

Journalist: ‘This well make a great reading for the boys down at the office,’ says I.
‘Do you mind releasing to me who he is?’

Dirac: ‘Weyl,’
The complete interview is here:
https : //www.math.rutgers.edu/ greenfie/mill courses/math421/int.html

1.2.1. Topological Invariants for Band Insulators. Band theory describes the electronic

states within a crystal in terms of one particle Bloch wave-functions |un(~k)〉 that are de-

fined within the unit cell and are labelled by crystal momentum ~k and band index n.
The Berry phase of the Bloch wavefunctions is captured by the line integral of the Berry

connection An(~k) = −i〈un(~k)|∇~k|um(~k)〉, or equivalently the surface integral of the Berry

flux: Fab(~k) = (∂kaAb−∂kbAa). For a two dimensional insulator, the net Berry flux, which
is a single component object, is quantized to integers:

(5)
∑
n

∫
d2~k

2π
F(~k) = N

which is directly related to the quantized Hall conductance. In a three dimensional crystal,

the Berry flux behaves like a dual magnetic field εabcBc(~k) = Fab(~k), switching the roles of
position and momentum. The semiclassical equations of motion for an electron now take
the form:

ṙa = ∂E(k)/∂ka + εabck̇bBc(6)

k̇a = −∂V(r)/∂ra − εabcṙbeBc(7)

The presence of the Berry phase term (the so called anomalous velocity) restores a sym-
metry that - however one difference between B and B the latter has magnetic monopoles.
We will see that these are precisely Weyl points in the band structure.

Exercise 2: Using these semiclassical equations, how that for a 2D Chern band with
Chern number C the Hall effect is quantized.
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1.3. Topological Properties of Weyl Semimetals. Where we apply the concepts devel-
oped in the previous section to characterize Weyl semimetals. In topological semimetals,
the conduction and valence bands coincide in energy over some region of the Brillouin
Zone. A key input in determining conditions for such band touchings is the degeneracy of
bands, which in turn is determined by symmetry. If spin rotation symmetry is assumed,
eg. by ignoring spin orbit coupling, the bands are doubly degenerate. Alternately, doubly
degenerate bands also arise if both time reversal T and inversion symmetry I (r → −r)
are simultaneously present in a three dimensional crystal.

Exercise 3: Show that the combination of inversion and time reversal leads to doubly
degenerate bands in a 3D crystal. What about a 2D crystal where inversion is defined
again as r → −r which is just a 180 degree rotation? Do we expect doubly degenerate
bands here? If not, provide a simple counterexample.

Therefore we must break at least one of these two symmetries to obtain nondegenerate
bands. The conditions for a pair of such nondegenerate bands to touch can be captured by
discussing just a pair of levels whose effective Hamiltonian can generically be expanded as:

H(~k) = f0(~k)I+f1(~k)σx+f2(~k)σy+f3(~k)σz. To bring the bands in coincidence we need to
set all three of the coefficients f1 = f2 = f3 = 0 simultaneously, which, by the arguments
of the previous section requires that we have three independent variables, i.e. that we are
in three spatial dimensions. Then, we can expect band touchings, without any special fine
tuning (although for certain choices of parameters there may be no band touchings in the
Brillouin Zone).

We can further discuss the generic dispersion near the band touching point, by expanding

the Hamiltonian about ~k = δ~k + ~k0. This gives:

(8) H(~k) ∼ f0(~k0)I + v0 · δ~k I +
∑

a=x,y,z

va · δ~k σa

where vµ = ∇kfµ(~k)
∣∣
~k=~k0

is an effective velocity which is typically nonvanishing in the

absence of additional symmetries. Note, if we revert to the special limit where va = â,
we obtain the Weyl equation (9). We therefore refer to these band touchings as Weyl
nodes. While this makes a connection to Weyl fermions with a fixed chirality (Chirality
= Sign (vx · vy × vz)) it remains unclear why Weyl nodes should come in opposite chiral-
ity pairs. To realize this we need a topological characterization of Weyl nodes which is
furnished by calculating the Berry flux on a surface surrounding the Weyl point.

Weyl points are monopoles of Berry flux (Chirality is charge - opposite charges and
charge 2 Weyl node etc.) That is, if we consider the sphere surrounding a Weyl point,
and think of this as a 2D band structure, it has a nonvanishing Chern number C = ±1.
However, if we expand this surface so that it covers the entire Brillouin one, then by
periodicity, it is actually equivalent to a point, and must have net Chern number zero.
Therefore, the net Chern number of all Weyl points in the Brillouin Zone must vanish
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1.3.1. Weyl Semimetals with Broken T symmetry. The simplest setting to discuss Weyl
semimetals is to assume broken time reversal symmetry, but to preserve inversion. This
allows for the minimal number of Weyl nodes, i.e. two, with opposite chirality. Inversion
symmetry guarantees they are at the same energy and furthermore provides a simple
criterion to diagnose the existence of Weyl points based on the parity eigenvalues at the
time reversal invariant momenta (TRIMS).

Let us discuss this in the context of the following toy model. We imagine a magnetically
ordered system so the bands have no spin degeneracy, but has a pair of orbitals on each
site of a simple cubic lattices. Further assume that the orbitals have opposite parity (such
as s, p orbitals), so τz, which is diagonal in the orbital basis, is required in the definition

of inversion symmetry: H(~k)→ τ zH(−~k)τz.

H(~k) = tz(2− cos kx − cos ky + γ − cos kz)τz

+tx sin kxτx + ty sin kyτy(9)

for −1 < γ < 1 we have a pair of Weyl nodes at location ±~k0 = (0, 0,±k0) where cos k0 = γ.

The low energy excitations are obtained by approximating H±(~q) ≈ H(±~k0 + ~q) where we
assume small |~q| � k0. Then, H± =

∑
a v

±
a qaτa where v± = (tx, ty, tz sin k0).

Note, at the 8 TRIM momenta (nx, ny, nz)π where na = 0, 1, only the first term in
the Hamiltonian is active, and if γ > 1 the parity eigenvalues of all the TRIMs is the
same. However, if eg. γ = 0, the parity eigenvalue of the Γ point is inverted. It is readily
shown that this immediately implies Weyl nodes, i.e. an odd number of inverted parity
eigenvalues is a diagnostic of Weyl physics. At the same time let us compare the Chern
numbers Ω(kz) of two planes in momentum space kz = 0 and kz = π. It is readily seen that
the Chern number vanishes at Ω(kz = π) = 0, but Ω(kz = 0) = 1. As we increase γ → 1,
the entire Brillouin Zone is filled with unit Chern number along the kz direction, and a
three dimensional version of the integer quantum Hall state is realized [?, ?]. Therefore
the Weyl semimetal appears as a transitional state between a trivial and a topological
insulator.

When the chemical potential is at EF = 0, the Fermi surface consists solely of two

points ±~k0. On increasing EF , two nearly spherical Fermi surfaces appear around the
Weyl points and we have a metal. The Fermi surfaces as 2D sections of the Brillouin Zone
and compute the Berry Flux penetrating them. These turn out to be quantized to ±1,
which is the special feature characteristic of a Weyl metal. When EF > E∗ = tz(1 − γ)
the Fermi surfaces merge through a Lifshitz transition and the net Chern number on the
Fermi surface vanishes. At this point, we would cease to call this phase a Weyl metal. This
discussion highlights the importance of the Weyl nodes being sufficiently close, compared
to E∗, to the chemical potential. Ideally, we would like the chemical potential to be tuned
to the location of the Weyl nodes just from stoichiometry, as happens for graphene.

1.4. Physical Consequences of Topological Properties. We have seen that there
are topological aspects of Weyl semimetals which is most simply stated in terms of them
being monopoles of Berry curvature. Here we will explore some of the consequences that
topology. From experience with topological insulators and quantum Hall states, we are
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used to two different manifestations of topology. The first is to look for nontrivial surface
states, and the second is to study response to an applied electric and/or magnetic field.
We will follow this general guideline in this case as well. We will not be disappointed -
indeed Weyl semimetals have an unusual response to electric and magnetic fields die to the
previously known chiral anomaly. And they have have special surface states called Fermi
arcs. The latter was not anticipated in the high energy literature as it requires a boundary.

1.4.1. Fermi arc surface states. . Surface states are usually associated with band insulators.
Within the bulk band gap, surface states are well defined and exponentially localized
near the surface. How can we define surface states when the bulk is gapless, as in Weyl
semimetals? For this we need to further assume translation invariance, so we label surface
states by crystal momenta within the 2D surface Brillouin zone (sBZ). Then, we only
requires that there are regions of the sBZ which are free of bulk states at the same energy.
Indeed if we consider the idealized limit of a pair of Weyl nodes at the chemical potential

(EF = 0) at momenta ±~k∗0 in the sBZ, once can define surface states at the same energy
at all momenta except the projection of the Weyl points onto the sBZ. At those two point,
surface states can leak into the bulk even at EF = 0 and are not well defined. If we
move away from this energy, the region occupied by bulk states will grow as shown in the
FIGURE. The presence of these bulk states allow for surface states that are impossible to
realize, not just in 2D but also on the surface of any fully gapped bulk band structure.

Now we can discuss the nature of the surface states that arise in Weyl semimetals, which,

at EF = 0 are Fermi arcs that terminate at ±~k∗0. These are a direct consequence of the
fact that Weyl nodes are sources and sinks of Berry flux. Hence, if we consider a pair
of planes at kz = 0 and kz = π in model (9). Since they enclose a Weyl node, or Berry
monopole, there must be a difference in Berry flux piercing these two planes that accounts
for this source. Indeed, in model (9) we see that kz = 0 (kz = π) has Chern number C = 1
(C = 0). In fact, any plane −k0 < kz < k0 will have Chern number C = 1, so each of
the of 2D Hamiltonians Hkz(kx, ky), represents a 2D Chern insulator. If we consider a
surface perpendicular to the x direction, we can still label states by kz, ky. The 2D Chern
insulators Hkz will each have a Chiral edge mode that will disperse as ε ∼ vky near the
Fermi energy. in the simplest model, v is independent of kz as long as it is between the
Weyl nodes. The Fermi energy EF = 0 crosses these states at ky = 0 for all −k0 < kz < k0,
leading to a Fermi arc that ends at the Weyl node projections on the sBZ, and in this
particular model, is a straight line (symmetry of reflection and time reversal).

Exercise: Show by explicit calculation on the microscopic model that fermi arc
surface states exist.

It is worth mentioning an alternate continuum derivation of the Fermi arc surface states
contained in the lecture notes (see Witten’s Lectures), where suitable boundary conditions
are formulated to characterize scattering of Weyl electrons from the boundary of the solid.

1.4.2. Weyl Semimetals with Broken I symmetry. If T is preserved then inversion sym-
metry must be broken to realize a Weyl semimetal. A key difference from the case of the
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T broken Weyl semimetals is that the total number of Weyl points is always a multiple of

four. This arises since under time reversal a Weyl node at ~k0 is converted into a Weyl node

at −~k0 with the same chirality. Since the net chirality must vanish, there must be another
pair with the opposite chirality.

A useful perspective on T symmetric Weyl semimetals is to view them as the transition
phase between a 3D topological insulator and a trivial insulator. The 3D TI is defined in
the presence of just time reversal symmetry, but when inversion is also present there is
a simple ‘parity’ criterion to diagnose band topology (Fu-Kane). To achieve a transition
between a topological and trivial state, Kramers doublets with opposite parities cross each
other at one of the TRIMS. their opposite parity eigenvalues allowing for such a crossing
while tuning just a single parameter. At the transition point, a four fold degeneracy occurs
at the TRIM, leading generically to a Dirac dispersion on moving away from it. Hence
the transition between a trivial and topological insulator, in the presence of inversion,
proceeds via a Dirac point. However, on breaking inversion, the Kramers doublets at the
TRIM points can no longer cross each other while adjusting just a single tuning parameter.
How then is the transition accomplished? The key observation is that the bands are now
nondegenerate away from the TRIMs, and by our previous counting, can be brought into
coincidence by tuning just the crystal momenta. Tuning an additional parameter to drive
the transition involves moving the Weyl nodes annihilating them after suitably modifying
the topology (see article by Murakami ).

2. Summary

We have shown that a topological semimetal occurs when a submanifold of the Brillouin
zone that avoids the band touching (a plane in this case) has a topological index (chern
number) which varies on moving through the Brilluoin zone. This requires the band gap to
close leading to a topological semimetal. Note, this references the classification of gapped
topological insulators, but in a different dimension than the physical dimension.

Exercise: Is graphene a topological semimetal? If so what is the relevant classifica-
tion? State which symmetries you assume.

Your feedback on these notes will be very helpful. In addition to catching
typos and mistakes in equations - let me know if you have a better way to
arrive at the physical conclusions or a more compact derivation of the results.
Or, if you know of an interesting anecdote relating to this material!
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