# Quantum Simulation and Computing with Atomic Ions

# Christopher Monroe

# UNIVERSITY OF MARYLAND





# **Computing and Information**



Alan Turing (1912-1954) universal computing machines moving CPU



memory tape



Claude Shannon (1916-2001) quantify information: the bit

$$I = -\sum_{i=1}^{k} p_i log_2 p_i$$

# **Quantum Information Theory**



Classical Information:  $S(AB) \ge S(A) + S(B)$ 

Entangled qubits: $\psi_{AB} = |\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle$ S(AB) = 0but.... $\begin{array}{c} S(A) > 0 \\ S(B) > 0 \end{array}$ 

S(AB) < S(A) + S(B) !



# **Quantum Error Correction**

CLASSICAL: Shannon (1948) Calderbank, Shor, Steane (1995) Bravyi, Kitaev (1998)





Improved performance (so long as p < 1/C)

#### **F**

# Good News...

parallel processing on 2<sup>N</sup> inputs

e.g., N=3 qubits



## ...Bad News...

measurement gives random result

# ...Good News!

quantum interference





 $\begin{array}{l} a_{0} |000\rangle + a_{1} |001\rangle + a_{2} |010\rangle + a_{3} |011\rangle \\ a_{4} |100\rangle + a_{5} |101\rangle + a_{6} |110\rangle + a_{7} |111\rangle \end{array}$ 

N=300 qubits have more configurations than there are particles in the universe! depends on all inputs

# Why is Quantum Computing Interesting to Physics (and Ultracold Matter)?

- 1. Entanglement is the root of all difficulty in many-body physics (see condensedmatter, nuclear, cosmology)
- 2. Ultracold matter is the basis for all well-performing qubits

# **Quantum Computer Technologies**

#### Natural Qubits

#### Synthetic Qubits



Source: Science, Dec. 2016

# lon Traps

# How to trap an ion



Ion Trap Tricks to "get around"  $\nabla \cdot \mathbf{E} = 0$ :

- (1) Apply magnetic field along z; e**v**×**B** Lorentz force confines in xy plane <u>PENNING TRAP</u>
  - large capacity (1-10<sup>8</sup>)
  - ions rotate around z
  - confinement frequency limited by  $\omega_c = \frac{eB}{mc}$

m = 9 amuB = 1 T $\omega_c = 2\pi (1 \text{ MHz})$ 



J. Bollinger, NIST A. M. Rey, JILA



Ion Trap Tricks to "get around"  $\nabla \cdot \mathbf{E} = 0$ :

- (1) Apply magnetic field along z; ev×B Lorentz force confines in xy plane
   <u>PENNING TRAP</u>
  - large capacity (1-10<sup>8</sup>)
  - ions rotate around z
  - confinement limited by eB/mc
- (2) Apply sinusoidal electric field quadrupole (like rotating saddle)

<u>RF (PAUL) TRAP</u>

- ions stationery (on average)
- strong confinement

W. Paul & H. Dehmelt Adv. At. Mol. Phys. 3, 53 (1967) Rev. Mod. Phys, 62, 531 (1990)

## Dynamics of a single ion in a rf trap

$$\ddot{x} + (\kappa^2 \cos \Omega t) x = 0$$
  $\kappa^2 = \frac{eV_0}{mR^2}$  R = "characteristic" distance from ion to electrode

<u>Mathieu Equation</u>: x(t) bounded for  $\kappa \ll \Omega$   $x(t) = x_0 \left(1 + \frac{\kappa^2}{\Omega^2} \cos \Omega t\right) \cos \omega t$ 



#### Electromagnetic traps for charged and neutral particles

Wolfgang Paul

Physikalisches Institut, Universität Bonn, Bonn, Germany

Reviews of Modern Physics, Vol. 62, No. 3, July 1990



### 3D ion trap geometry



# "Linear" hybrid RF/DC Ion Trap

# transverse confinement: 2D rf ponderomotive potential

$$\omega_r = \frac{2\sqrt{2}eV_0}{m\Omega R^2} = \sqrt{\frac{qeV_0}{mR^2}}$$



# "Linear" hybrid RF/DC Ion Trap

axial confinement: static "endcaps"





3-layer geometry:•allows 3D offset compensation•scalable to larger structures





## **Planar Geometry Niceties**



- Leverage semiconductor fabrication processes
  - need low-loss substrate
  - must support high E-fields
- control electrodes through backplane: scalable to lots of electrodes
- on-chip filtering of dc electrodes



# Science











Quantum Information Processing

MAAAS

Rei T

Honeywell



# **Trapped Ion Spins/Qubits** and their Entanglement

-------



# **Trapped ion qubits**



# Atomic Qubit (<sup>171</sup>Yb<sup>+</sup>)



# <sup>171</sup>Yb<sup>+</sup> Qubit Initialization

atom emits 1 photon every ~10ns



# <sup>171</sup>Yb<sup>+</sup> Qubit Detection

atom emits 1 photon every ~10ns



# <sup>171</sup>Yb<sup>+</sup> Qubit Detection



# <sup>171</sup>Yb<sup>+</sup> Qubit Manipulation



D. Hayes et al., PRL 104, 140501 (2010)

# National Ignition Facility: 351nm (Livermore National Laboratory)



P<sub>avg</sub> ~ 5W at 355nm 10 psec pulses, 120 MHz rep rate





J. Mizrahi, et al., Phys. Rev. Lett. 110, 203001 (2013).

# Measuring a single qubit (real data)



