Quantum Optics and Information

Alexey V. Gorshkov

Joint Quantum Institute (JQI)
Joint Center for Quantum Information and Computer Science (QuICS)
NIST and University of Maryland

2021 Boulder Summer School
July 19, 20, 21
2021
Outline for the three lectures

- interacting photons in Rydberg media

- dynamics of quantum systems with long-range interactions
Interacting photons in Rydberg media

References:

Quantum optics:
• lecture notes for Misha Lukin’s class Modern Atomic and Optical Physics II, compiled by Lily Childress: https://lukin.physics.harvard.edu/teaching
• Meystre and Sargent, “Elements of Quantum Optics”
• Loudon, “Quantum Theory of Light”

Waveguide QED:

Interacting photons in Rydberg media:

Thanks to colleagues whose slides I am borrowing: Misha Lukin, Bill Phillips, Thomas Pohl,…
Outline

- motivation and basic idea
- E&M field quantization
- propagation of light through atomic ensembles; electromagnetically induced transparency (EIT)
- Rydberg atoms
- basic idea revisited
- photon interacting with stationary excitation
 - on resonance: single-photon switch, subtractor
 - off resonance: two-photon quantum gate
- dynamics of multiple photons
 - on resonance: source of single photons
 - off resonance: two-photon gate, bound states, many-body physics
- more applications
Outline

• motivation and basic idea
• E&M field quantization
• propagation of light through atomic ensembles; electromagnetically induced transparency (EIT)
• Rydberg atoms
• basic idea revisited
• photon interacting with stationary excitation
 - on resonance: single-photon switch, subtractor
 - off resonance: two-photon quantum gate
• dynamics of multiple photons
 - on resonance: source of single photons
 - off resonance: two-photon gate, bound states, many-body physics
• more applications
Photons interact only in Sci-Fi
But light CAN act on light under the right circumstances
One of the first scientific achievements following the first laser...

...was the first demonstration of non-linear optics
The first non-linear optics needed the first laser
Electrons vs. Photons

\[F = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} \] (large)

transistor

small electrical signals control huge currents

photons hardly interact

nonlinear crystal

even huge optical intensities only control tiny optical signals
Electronics vs. Photonics

- **Electrons** process information.
- **Photons** transmit information.

- On-chip optical routing.
Electronics vs. Photonics

- **Electrons**
 - Process information

- **Photons**
 - Transmit information

Converting photons to electrical signals is “expensive”
Electronics vs. Photonics

Electrons
process information

Photons
transmit information

Can we make photons process without conversion?
• photon-photon interactions too weak for processing information
Photon-photon interactions

Typical approach to achieving interactions between optical photons:

• nonlinearity induced by individual atoms (or artificial atoms)

Kimble @ Caltech

Vuckovic @ Stanford

Hard!
Photon-photon interactions

Typical approach to achieving interactions between optical photons:

- nonlinearity induced by individual atoms (or artificial atoms)

This talk: Map strong atom-atom interactions onto strong photon-photon interactions
Medium where photons interact strongly

Map strong atom-atom interactions onto strong photon-photon interactions

EIT = electromagnetically induced transparency

Experiments: Adams, Kuzmich, Lukin & Vuletic, Pfau & Löw, Grangier, Weidemüller, Hofferberth, Dürr & Rempe, Simon, Firstenberg, Ourjoumtsev, H. de Riedmatten, etc…

Theory: Kurizki, Fleischhauer, Petrosyan, Mølmer, Pohl, Lesanovsky, Kennedy, Brion, Büchler, Sørensen, most experimental groups above, etc…
Outline

• motivation and basic idea
• E&M field quantization
• propagation of light through atomic ensembles; electromagnetically induced transparency (EIT)
• Rydberg atoms
• basic idea revisited
• photon interacting with stationary excitation
 - on resonance: single-photon switch, subtractor
 - off resonance: two-photon quantum gate
• dynamics of multiple photons
 - on resonance: source of single photons
 - off resonance: two-photon gate, bound states, many-body physics
• more applications
E&M field quantization

- Lukin/Childress lecture notes
- Meystre and Sargent, "Elements of Quantum Optics"
- consider free field (no sources)
- Maxwell’s equations \Rightarrow wave equation
 \[
 \nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0
 \]
- knowing \mathbf{E}, find \mathbf{B} via $\nabla \times \mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$ (SI units used)
- large cavity of length L & volume V, with $\mathbf{E} = 0$ on mirrors
- eigenmodes = standing waves
 \[
 \sin(k_j z) \quad k_j L = \pi j
 \]
 $j = 1, 2, 3, \ldots$
consider \(\hat{x} \)-polarized field

\[
E_x(z, t) = \sum_j \sqrt{\frac{2\nu_j^2}{\varepsilon_0 V}} q_j(t) \sin k_j z \quad \nu_j = ck_j
\]

\[A_j \text{ amplitude}\]

\[
\Rightarrow B_y(z, t) = \frac{1}{c^2} \sum_j \frac{\dot{q}_j(t)}{k_j} A_j \cos k_j z
\]
• classical energy:

\[H = \frac{1}{2} \int dV \left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) \]

\[= \sum_j \frac{\nu_j^2 q_j^2}{2} + \frac{\dot{q}_j^2}{2} \to \frac{1}{2} \sum_j (\nu_j^2 \dot{q}_j^2 + \dot{p}_j^2) = \sum_j \hbar \nu_j \left(\hat{a}_j^\dagger \hat{a}_j + \frac{1}{2} \right) \]

• independent harmonic oscillators with frequency \(\nu_j \), unit mass, position \(q_j \)

• Quantization: \(q_j \to \hat{q}_j \quad \dot{q}_j \to \hat{p}_j \quad [\hat{q}_j, \hat{p}_j] = i \hbar \delta_{j,j'} \)

• creation/annihilation:

\[\hat{a}_j = \frac{1}{\sqrt{2\hbar \nu_j}} \left(\nu_j \hat{q}_j + i \hat{p}_j \right) \]

\[\hat{q}_j = \sqrt{\frac{\hbar}{2\nu_j}} \left(\hat{a}_j + \hat{a}_j^\dagger \right) \]

\[\hat{a}_j^\dagger = \frac{1}{\sqrt{2\hbar \nu_j}} \left(\nu_j \hat{q}_j - i \hat{p}_j \right) \]

\[\hat{p}_j = -i \sqrt{\frac{\hbar \nu_j}{2}} \left(\hat{a}_j - \hat{a}_j^\dagger \right) \]
• \hat{x} component of electric field operator

$$\hat{E}_x(z) = \sum_j A_j \sqrt{\frac{\hbar}{2\nu_j}} (\hat{a}_j + \hat{a}^\dagger_j) \sin k_j z$$

$$\sqrt{\frac{\hbar \nu_j}{\epsilon_0 V}} = \text{electric field per photon}$$

(makes sense: $\hbar \nu_j \sim \text{energy} \sim \epsilon_0 E^2 V$)

• for running waves, including all polarizations & directions

$$\hat{E}(r) = \hat{\mathcal{E}}(r) + \hat{\mathcal{E}}^\dagger(r)$$

$$\hat{\mathcal{E}}(r) = \sum_{k,\alpha} \epsilon_\alpha \sqrt{\frac{\hbar \nu_j}{2\epsilon_0 V}} \hat{a}_{k,\alpha} e^{ik \cdot r}$$

transverse polarization
Atom-field interactions

• starting point: dipole Hamiltonian for a 2-level atom

\[\hat{V}_{af} = -\hat{E} \cdot \hat{d} \]

\[= - (\hat{E} + \hat{E}^\dagger) \cdot (\langle 2 | \hat{d} | 1 \rangle | 2 \rangle \langle 1 | + \langle 1 | \hat{d} | 2 \rangle | 1 \rangle \langle 2 |) \]

• 4 types of terms:

\[\hat{a} | 2 \rangle \langle 1 | \quad \hat{a} | 1 \rangle \langle 2 | \quad \hat{a}^\dagger | 2 \rangle \langle 1 | \quad \hat{a}^\dagger | 1 \rangle \langle 2 | \]

(Heisenberg evolution under \(\hat{H} = \hbar \nu_j \hat{a}^\dagger_j \hat{a}_j \) : \(\hat{a}_j(t) = \hat{a}_j(0)e^{-i\nu_j t} \))

• RWA \approx \text{energy conservation}

• with RWA:

\[\hat{V}_{af} = - \sum_{k,\alpha} \hbar g_{k,\alpha} | 2 \rangle \langle 1 | \hat{a}_{j,\alpha} + \hbar g_{k,\alpha}^* | 1 \rangle \langle 2 | \hat{a}_{k,\alpha}^\dagger \]

• single-photon Rabi frequency:

\[g_{k,\alpha} = \frac{\mu_\alpha}{\hbar} \sqrt{\frac{\hbar \nu_j}{2\varepsilon_0 V}} e^{i\mathbf{k} \cdot \mathbf{r}} \]

(• if standing wave mode, \(|g| \propto \sin(kz) \))

\[\mu_\alpha = \langle 2 | d_\alpha | 1 \rangle \]
Remarks

• no sources ($\nabla \cdot \mathbf{E} = 0$), wave equation
 ⇒ didn’t need \mathbf{A}; used $\hat{V}_{af} = -\hat{\mathbf{E}} \cdot \hat{d}$
 ⇒ didn’t need to choose gauge

• with sources ($\nabla \cdot \mathbf{E} \neq 0$), no wave equation
 ⇒ need \mathbf{A}
 ⇒ choose Coulomb gauge $\nabla \cdot \mathbf{A} = 0$
 ⇒ quantized similarly to this lecture
 [see Cohen-Tannoudji et al., “Photons and Atoms”]
Medium where photons interact strongly

EIT = electromagnetically induced transparency
Outline

• motivation and basic idea
• E&M field quantization
• propagation of light through atomic ensembles; electromagnetically induced transparency (EIT)
• Rydberg atoms
• basic idea revisited
• photon interacting with stationary excitation
 - on resonance: single-photon switch, subtractor
 - off resonance: two-photon quantum gate
• dynamics of multiple photons
 - on resonance: source of single photons
 - off resonance: two-photon gate, bound states, many-body physics
• more applications
Three-level medium

\[|r\rangle \uparrow \quad \hat{E}_2 \quad \uparrow \quad |e\rangle \quad \Delta \quad \downarrow \quad \hat{E}_1 \quad \downarrow \quad |g\rangle \]

\[\omega_1 = \omega_{eg} + \Delta \quad \quad \omega_2 = \omega_{re} - \Delta \]

\[\hat{E}_1(z) = e_1 \left(\frac{\hbar \omega_1}{4\pi c \varepsilon_0 A} \right)^{1/2} \int d\omega \hat{a}_\omega e^{i\omega z/c} + h.c. \]

\[\left[\hat{a}_\omega, \hat{a}_{\omega'}^\dagger \right] = \delta(\omega - \omega') \]

\[E_2(t) = \epsilon_2 \mathcal{G}_2(t) \cos(\omega_2 t) \]

A = cross section of beam and of ensemble

Fleischhauer, Lukin, PRA 65, 022314 (2002)
AVG, Adre, Lukin, Sorensen, PRA 76, 033805 (2007)

Loudon, “Quantum Theory of Light”
Three-level medium

\[|r\rangle \quad |e\rangle \quad |g\rangle \]

\[\hat{E}_1(z) = \epsilon_1 \left(\frac{\hbar \omega_1}{4 \pi c \epsilon_0 A} \right)^{1/2} \int d\omega \hat{a}_\omega e^{i\omega z/c} + h.c. \]

\[\left[\hat{a}_\omega, \hat{a}^{\dagger}_{\omega'} \right] = \delta(\omega - \omega') \]

\[E_2(t) = \epsilon_2 \mathcal{G}_2(t) \cos(\omega_2 t) \]

\[A = \text{cross section of beam and of ensemble} \]

\[\omega_1 = \omega_{eg} + \Delta \quad \omega_2 = \omega_{re} - \Delta \]

Fleischhauer, Lukin, PRA 65, 022314 (2002)
AVG, Adre, Lukin, Sorensen, PRA 76, 033805 (2007)

Loudon, “Quantum Theory of Light”

\[\hbar \omega_1 \]

\[\epsilon_1 \]

\[\epsilon_2 \]
Three-level medium

$$\hat{H} = \hat{H}_0 + \hat{V}$$

$$\hat{H}_0 = \int d\omega \hbar \omega \hat{a}^\dagger_\omega \hat{a}_\omega + \sum_{i=1}^{N} \left(\hbar \omega_{rg} \hat{\sigma}_{rr}^i + \hbar \omega_{eg} \hat{\sigma}_{ee}^i \right)$$

$$\hat{V} = -\sum_{i=1}^{N} \hat{d}_i \cdot \left[E_2(t) + \hat{E}_1(z_i) \right]$$

$$\hat{V} = -\hbar \sum_{i=1}^{N} \left(\Omega(t) \hat{\sigma}_{re}^i e^{-i\omega_2 t} + g \sqrt{\frac{1}{2\pi c}} \int d\omega \hat{a}_\omega e^{i\omega z_i/c} \hat{\sigma}_{eg}^i + h.c. \right)$$

$$\hat{\sigma}_{\mu\nu} = |\mu\rangle_{ii} \langle \nu|$$

$$\Omega(t) = \langle r | (\hat{d} \cdot \epsilon_2) | e \rangle \mathcal{E}_2(t)/(2\hbar) = \text{Rabi frequency}$$

$$g = \langle e | (\hat{d} \cdot \epsilon_1) | g \rangle \sqrt{\frac{\omega_1}{2\hbar \epsilon_0 A}}$$

- π pulse takes time $\pi/(2\Omega)$
- I will often set $\hbar = 1$
Three-level medium

define slowly varying operators

\[|r\rangle \]

\[|e\rangle \]

\[|g\rangle \]

\[\Omega \]

\[\Delta \]

\[n \approx 1 \] atoms

\[n = \text{atom density} \]

\[\hat{P}^\dagger(z, t) = \sqrt{n} \frac{1}{N_z} \sum_{i=1}^{N_z} \hat{\sigma}_{eg}^i(t) e^{-i\omega_1(t-z_i/c)} \]

\[\left[\hat{P}(z, t), \hat{P}^\dagger(z', t) \right] = \delta(z-z') \]

creates \(|e\rangle \) excitation at \(z \)

\[\hat{S}^\dagger(z, t) = \sqrt{n} \frac{1}{N_z} \sum_{i=1}^{N_z} \hat{\sigma}_{rg}^i(t) e^{-i\omega_1(t-z_i/c)} - i\omega_2 t \]

\[\left[\hat{S}(z, t), \hat{S}^\dagger(z', t) \right] = \delta(z-z') \]

creates \(|r\rangle \) excitation at \(z \)

\[\hat{\mathcal{E}}^\dagger(z, t) = \sqrt{\frac{1}{2\pi c}} e^{-i\omega_1(t-z/c)} \int d\omega \hat{\mathcal{E}}^\dagger_\omega(t) e^{-i\omega z/c} \]

\[\left[\hat{\mathcal{E}}(z, t), \hat{\mathcal{E}}^\dagger(z', t) \right] = \delta(z-z') \]

creates photon at \(z \)

\(\bullet \) thin enough that fields continuous

\(\bullet \) assume almost all atoms in ground state at all times

homework exercise

\[\hat{\mathcal{E}}(z, t), \hat{\mathcal{E}}^\dagger(z', t) \]

\[\delta(z-z') \]

\[e^{-i\omega_1(t-z_i/c)} \]

\[e^{-i\omega_1(t-z_i/c)} - i\omega_2 t \]

\[e^{-i\omega z/c} \]

\[\delta(z-z') \]
Three-level medium

\[
\frac{\hat{H}}{\hbar} = -ic \int dz \hat{\varepsilon}(z) \frac{\partial}{\partial z} \hat{\varepsilon}(z)
\]

collective enhancement

Heisenberg evolution:

\[
(\partial_t + c \partial_z) \hat{\varepsilon} = ig \sqrt{n} \hat{P}
\]

\[
\partial_t \hat{P} = i \Delta \hat{P} + ig \sqrt{n} \hat{\varepsilon} + i \Omega \hat{S} - \gamma \hat{P} + \sqrt{2 \gamma} \hat{F}_P
\]

\[
\partial_t \hat{S} = i \Omega^* \hat{P} - \gamma_s \hat{S} + \sqrt{2 \gamma_s} \hat{F}_S
\]

Langevin noise

only nonzero noise correlations are:

\[
\langle \hat{F}_P(z, t) \hat{F}^*_P(z', t') \rangle = \delta(z - z') \delta(t - t')
\]

\[
\langle \hat{F} \rangle = \langle \hat{F} \hat{F} \rangle = \langle \hat{F}^\dagger \hat{F} \rangle = 0
\]

\[
\langle \hat{F}_S(z, t) \hat{F}^*_S(z', t') \rangle = \delta(z - z') \delta(t - t')
\]
Three-level medium

\[
(\partial_t + c \partial_z) \hat{E} = ig \sqrt{n} \hat{P}
\]
\[
\partial_t \hat{P} = - (\gamma - i\Delta) \hat{P} + ig \sqrt{n} \hat{E} + i\Omega \hat{S} + \sqrt{2\gamma} \hat{F}_P
\]
\[
\partial_t \hat{S} = - \gamma_s \hat{S} + i\Omega^* \hat{P} + \sqrt{2\gamma_s} \hat{F}_S
\]

• assume all atoms initially in ground state, i.e. no P or S excitations

• assume 1 incoming photon

\[
|\psi(t)\rangle = \int dz E(z, t) \hat{E}^\dagger(z) |0\rangle + \int dz P(z, t) \hat{P}^\dagger(z) |0\rangle + \int dz S(z, t) \hat{S}^\dagger(z) |0\rangle
\]

\[
(\partial_t + c \partial_z)E = ig \sqrt{n}P
\]

\[
E(z, t = 0) = P(z, t = 0) = S(z, t = 0) = 0
\]

\[
\partial_t P = - (\gamma - i\Delta)P + ig \sqrt{n}E + i\Omega S
\]

\[
\partial_t S = - \gamma_s S + i\Omega^* P
\]

• same as equations for coherent input
\[(\partial_t + c\partial_z)E = ig\sqrt{n}P\]

\[\partial_t P = - (\gamma - i\Delta)P + ig\sqrt{n}E + i\Omega S\]

\[\partial_t S = i\Omega^* P\]

sanity check: no atoms

\[g\sqrt{n} = 0\]

\[(\partial_t + c\partial_z)E = 0\]

\[E(z, t) = E(0, t - z/c)\]

undistorted propagation at \(C\)
Two-level medium

| r \rangle \quad \Omega \quad \Delta \quad | e \rangle \quad \gamma \quad | g \rangle \\

\begin{align*}
(\partial_t + c\partial_z)E &= ig\sqrt{n}P \\
\partial_t P &= -(\gamma - i\Delta)P + ig\sqrt{n}E + i\Omega S \\
\partial_t S &= i\Omega^*P
\end{align*}

assume: resonant incoming photon, no control

$\Delta = 0 \quad \Omega = 0$
Two-level medium

\[(\partial_t + c\partial_z)E = ig\sqrt{n}P\]

\[\partial_t P = - (\gamma - i\Delta)P + ig\sqrt{n}E + i\Omega S\]

\[\partial_t S = i\Omega^* P\]

\[\Delta = 0\quad \Omega = 0\]

assume: resonant incoming photon, no control

\[E(z, t) = \int d\omega \tilde{E}(\omega, t)e^{-i\omega t}\]

\[P(z, t) = \int d\omega \tilde{P}(\omega, t)e^{-i\omega t}\]
Two-level medium

\[(\partial_t + c\partial_z)E = ig\sqrt{n}P\]
\[\partial_t P = - (\gamma - i\Delta)P + ig\sqrt{n}E + i\Omega S\]
\[\partial_t S = i\Omega^* P\]

assume: resonant incoming photon, no control
\[\Delta = 0\]
\[\Omega = 0\]

\[(\partial_t + c\partial_z)E = ig\sqrt{n}P\]
\[\partial_t P = - \gamma P + ig\sqrt{n}\tilde{E}\]

\[E(z, t) = \int d\omega \tilde{E}(\omega, t)e^{-i\omega t}\]
\[P(z, t) = \int d\omega \tilde{P}(\omega, t)e^{-i\omega t}\]

\[(-i\omega + c\partial_z)\tilde{E} = ig\sqrt{n}\tilde{P}\]
\[-i\omega \tilde{P} = - \gamma \tilde{P} + ig\sqrt{n}\tilde{E}\]
Two-level medium

\[\begin{align*}
(-i\omega + c\partial_z)\tilde{E} &= ig\sqrt{n}\tilde{P} \\
-i\omega\tilde{P} &= -\gamma\tilde{P} + ig\sqrt{n}\tilde{E} \\
\tilde{P} &= \frac{ig\sqrt{n}}{\gamma - i\omega}
\end{align*}\]

\[c\partial_z\tilde{E} = \left(i\omega - \frac{g^2n}{\gamma - i\omega}\right)\tilde{E}\]

\[\tilde{E}(L, \omega) = \tilde{E}(0,\omega) \exp\left[i\omega\frac{L}{c} - \frac{g^2nL/c}{\gamma - i\omega}\right]\]

\[\tilde{E}(L, \omega) = \tilde{E}(0,\omega) \exp\left[i\omega\frac{L}{c} - \frac{d\gamma}{\gamma - i\omega}\right]\]

\[d = \frac{g^2nL}{\gamma c}\]

\[|\tilde{E}(L, \omega)|^2 = |\tilde{E}(0,\omega)|^2 \exp\left[-\frac{2d}{1 - (\omega/\gamma)^2}\right]\]
Two-level medium

\[|\tilde{E}(L, \omega)|^2 = |\tilde{E}(0, \omega)|^2 \exp \left[-\frac{2d}{1 - (\omega/\gamma)^2} \right] \]

- on resonance: \(I_{out} = I_{in} e^{-2d} \)
- \(2d = \) optical depth
- assume \(d \gg 1 \)

absorption line

\begin{align*}
\text{transmission} & \quad 1.0 \quad 0.8 \quad 0.6 \quad 0.4 \quad 0.2 \quad 0.0 \\
\omega & \quad -10 \quad -5 \quad 0 \quad 5 \quad 10
\end{align*}

\[\sim \gamma \sqrt{d} \]
Electromagnetically induced transparency (EIT)

\[(\partial_t + c \partial_z)E = ig\sqrt{n}P \]
\[\partial_t P = -\gamma P + ig\sqrt{n}E + i\Omega S \]
\[\partial_t S = i\Omega^*P \]

- assume \(\Omega \) real

\[(-i\omega + c \partial_z)\tilde{E} = ig\sqrt{n}\tilde{P} \]
\[-i\omega \tilde{P} = -\gamma \tilde{P} + ig\sqrt{n}\tilde{E} + i\Omega \tilde{S} \]
\[-i\omega \tilde{S} = i\Omega \tilde{P} \]

- at \(\omega = 0 \):
 \[\tilde{P} = 0 \]
 \[\tilde{S} = -\frac{g\sqrt{n}}{\Omega} \tilde{E} \]
 \[\partial_z \tilde{E} = 0 \quad \text{perfect transmission, i.e. no scattering} \]

\[
E(z, t) = \int d\omega \tilde{E}(\omega, t)e^{-i\omega t}
\]
\[
P(z, t) = \int d\omega \tilde{P}(\omega, t)e^{-i\omega t}
\]
\[
S(z, t) = \int d\omega \tilde{S}(\omega, t)e^{-i\omega t}
\]

- Dark-state polariton: coupled atom-photon excitation
 [Fleishhauer & Lukin, 2000, 2002]
 - destructive interference
Electromagnetically induced transparency (EIT)

\[(-i\omega + c\partial_z)\tilde{E} = ig\sqrt{n}\tilde{P} \]
\[-i\omega\tilde{P} = -\gamma\tilde{P} + ig\sqrt{n}\tilde{E} + i\Omega\tilde{S} \]
\[-i\omega\tilde{S} = i\Omega\tilde{P} \]

- near \(\omega = 0 \)

\[|\tilde{E}(L, \omega)|^2 \approx |\tilde{E}(0, \omega)|^2 \exp \left[-\frac{2d\gamma^2\omega^2}{\Omega^4} \right] \]

- EIT transparency window of bandwidth \(\omega_{\text{EIT}} \sim \frac{\Omega^2}{\gamma\sqrt{d}} \)

homework exercise
Electromagnetically induced transparency (EIT)

\[(-i \omega + c \partial_z) \tilde{E} = ig \sqrt{n} \tilde{P} \]
\[-i \omega \tilde{P} = -\gamma \tilde{P} + ig \sqrt{n} \tilde{E} + i \Omega \tilde{S} \]
\[-i \omega \tilde{S} = i \Omega \tilde{P} \]

- near \(\omega = 0 \)

\[\partial_z \tilde{E} \approx i \frac{\omega}{v_g} \tilde{E} \]
\[v_g \approx \frac{\Omega^2}{g^2 n} c \ll c \]

\[(\partial_t + v_g \partial_z) E = 0 \]

reduced group velocity

“slow light”

- pulse compression

homework exercise
Electromagnetically induced transparency (EIT)

$$\begin{align*}
\partial_z \tilde{E} & \approx i \frac{\omega}{v_g} \tilde{E} \\
v_g & \approx \frac{\Omega^2}{g^2n} c \ll c
\end{align*}$$

$$\begin{align*}
(\partial_t + v_g \partial_z)E & = 0 \\
\text{reduced group velocity} \\
\text{“slow light”}
\end{align*}$$

- pulse compression
Photon storage and retrieval

- dark state polariton

\[|ψ⟩ \sim \int dz f(z - v_g t) \left(\Omega \hat{ℰ}(z) - g\sqrt{n}\hat{S}^+(z) \right) |0⟩ \]

- while pulse is inside medium, turn \(\Omega \) off

\[|ψ⟩ \sim \int dz f(z)\hat{S}^+(z) |0⟩ \quad \text{photon stored in “spinwave”} \]

- when turn \(\Omega \) back on, photon is retrieved

\[v_g \approx \frac{\Omega^2}{g^2n} c \quad \text{reduced group velocity} \]

- pulse compression
Off-resonant two-level medium

\[(\partial_t + c \partial_z)E = ig\sqrt{n}P\]
\[\partial_t P = -(\gamma - i\Delta)P + ig\sqrt{n}\hat{E}\]

\[
\text{large } \Delta
\]

- Fourier transform in time & drop \(\gamma\):
\[
(-i\omega + c \partial_z)\tilde{E} = ig\sqrt{n}\tilde{P}
\]
\[-i\omega\tilde{P} \approx i\Delta\tilde{P} + ig\sqrt{n}\tilde{E}\]
Off-resonant two-level medium

\[(\partial_t + c \partial_z)E = ig\sqrt{n}P\]
\[\partial_t P = - (\gamma - i\Delta)P + ig\sqrt{n}\hat{E}\]

- Fourier transform in time & drop \(\gamma\):

\[(-i\omega + c \partial_z)\tilde{E} = ig\sqrt{n}\tilde{P}\]
\[-i\omega\tilde{P} \approx i\Delta\tilde{P} + ig\sqrt{n}\tilde{E}\]

- near \(\omega = 0\):

\[c\partial_z\tilde{E} \approx ig\sqrt{n}\tilde{P}\]
\[0 \approx i\Delta\tilde{P} + ig\sqrt{n}\tilde{E}\]
\[\tilde{P} \approx -\frac{g\sqrt{n}}{\Delta}\tilde{E}\]
\[\partial_z\tilde{E} \approx -i\frac{g^2n}{c\Delta}\tilde{E}\]

\[\tilde{E}(z = L, \omega \approx 0) \approx \tilde{E}(z = 0, \omega \approx 0) \exp\left[-i\frac{d\gamma}{\Delta}\right]\]

- atoms imprint a phase on photon
EIT with large single-photon detuning

\[(-i\omega + c\partial_z)\tilde{E} = ig\sqrt{n}\tilde{P} \]
\[-i\omega\tilde{P} = -(\gamma - i\Delta)\tilde{P} + ig\sqrt{n}\tilde{E} + i\Omega\tilde{S} \]
\[-i\omega\tilde{S} = i\Omega\tilde{P} \]

• at \(\omega = 0 \):

same as for \(\Delta = 0 \)

\[\tilde{P} = 0 \quad \tilde{S} = -\frac{g\sqrt{n}}{\Omega}\tilde{E} \]

\[\partial_z\tilde{E} = 0 \quad \text{perfect transmission due to EIT} \]

Dark-state polariton: coupled atom-photon excitation
[Fleishhauer & Lukin, 2000, 2002]

\[(\partial_t + v_g\partial_z)E = 0 \quad \text{reduced group velocity} \]

“slow light”
Medium where photons interact strongly

EIT = electromagnetically induced transparency

Summer school lectures by Browaeys, Hazzard, and possibly Kaufman, Bakr, etc…
Outline

• motivation and basic idea
• E&M field quantization
• propagation of light through atomic ensembles; electromagnetically induced transparency (EIT)
• Rydberg atoms
• basic idea revisited
• photon interacting with stationary excitation
 - on resonance: single-photon switch, subtractor
 - off resonance: two-photon quantum gate
• dynamics of multiple photons
 - on resonance: source of single photons
 - off resonance: two-photon gate, bound states, many-body physics
• more applications
electronic levels in atom:

$n = 1$
electronic levels in atom:

\[n = 2 \]
\[n = 1 \]
electronic levels in atom:

\[n = 1 \]
\[n = 2 \]
\[n = 3 \]
electronic levels in atom:

n = 4
n = 2
n = 1
• large size: $r \sim n^2$

electronic levels in atom:

Rydberg states e.g. $n = 100$

$r \sim 1\mu m$

$n = 5$

$n = 2$

$n = 1$

$r \sim 0.1\ nm$
\[n = 1 \]
Rydberg states

- huge size: $r \sim n^2$
- huge electric dipole moment
- strong, distant interactions

map on strong, distant photon-photon interactions
Outline

• motivation and basic idea
• E&M field quantization
• propagation of light through atomic ensembles; electromagnetically induced transparency (EIT)
• Rydberg atoms

• basic idea revisited
• photon interacting with stationary excitation
 - on resonance: single-photon switch, subtractor
 - off resonance: two-photon quantum gate
• dynamics of multiple photons
 - on resonance: source of single photons
 - off resonance: two-photon gate, bound states, many-body physics
• more applications
Medium where photons interact strongly

Map strong atom-atom interactions onto strong photon-photon interactions

EIT = electromagnetically induced transparency
Basic idea

- one photon (polariton) drags along a Rydberg excitation
Basic idea

- one photon (polariton) drags along a Rydberg excitation
- another photon drags along a Rydberg excitation
- Rydberg excitations feel strong, distant interactions

⇒ strong, distant photon-photon interactions
Outline

• motivation and basic idea
• E&M field quantization
• propagation of light through atomic ensembles; electromagnetically induced transparency (EIT)
• Rydberg atoms
• basic idea revisited
• photon interacting with stationary excitation
 - on resonance: single-photon switch, subtractor
 - off resonance: two-photon quantum gate
• dynamics of multiple photons
 - on resonance: source of single photons
 - off resonance: two-photon gate, bound states, many-body physics
• more applications