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Abstract. These notes are intended as a brief introduction to flow networks, with

motivation and emphasis in biological applications. In this third part we explore some

of the things flow networks can teach us about mechanical networks and random walks

on lattices.

1. Introduction

Flow networks are just a beautiful example of a general class of linear network systems.

As such, there is a direct analogy with many other linear systems, such as mechanical

networks, random walks on graphs etc. The following notes partially follow and adapt

[1], where the interested reader is referred for a more complete discussion and citation

list.

2. Mechanical networks

In Table 2 we list the one to one correspondence between flow, electrical and mechanical

networks. The correspondence between the first two (flow and electrical) is rather

obvious for steady state flows, but still listed for completeness.
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Flow Electrical Mechanical

pressure pi voltage Vi displacement xi

pressure different ∆pij voltage drop ∆Vij elongation (strain) ∆xij = xi − xj

fluid current Qij electrical current spring force Fij

conductance Cij conductance spring constant k

net current qi net current Qij

pressure flow relationship Ohm’s law F = k∆x

current conservation current conservation force conservation
∑

i Fij = fj
energy dissipation Q2

ijCij electrical dissipation at resistors mechanical energy k∆x2

fluid storage capacitance

fluid inertia inductance

Figure 1: Flow network and its 1D mechanical analogue.

The direct analogue of the flow system Laplacian for mechanical networks is the

stiffness matrix.

3. Random walks on graphs

3.1. Escape probability

Consider a random walked that when released, moves randomly along the edges of a

graph. Let pi be the probability that the random walked is present at node i. At

each iteration of the random walk, the walker will transition to a neighbor vertex with

probability Pij ≡ aij∑
j aij

. If k is the time step, then

~p[k] = D̂−1Âp[k] (1)

where D̂ = diag{
∑

j aij} and Â is the graphs adjacency matrix with elements aij. What

is the probability pi that a random walker (drunken sailor) starting at i reaches node

1 before it reaches N? (perhaps 1 is the drunken sailor’s home and N is a bar). It is

easy to see that p1 = 1, as the sailor starts the random walk already home, and pN = 0,

as the walker is already at the bar and has no chance to get home. Neighbor nodes to

node 1 will have high p, close to N low p.
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If we know the probability that the neighbors of node vi send the walker to 1 before

N , then we know that pi is the sum of those probabilities weighted by the transition

probability between the nodes.

pi =
∑
j

Pijpj ⇒ ~p = D̂−1Â~p⇒ (D̂ − Â)~p = 0⇒ L̂~p = 0 (2)

Remember the nodes 0 and 1 are boundary conditions so the Laplacian L̂ needs to be

modified accordingly.

3.2. Travel time

How long (what is the expected number of steps) t(vi, 1) = ti to go from node i to node

1? The time ti is equal to the sum of the neighbors time weighted by the transition

probability Pij plus 1, for the extra time step.

~t = D̂−1Â~t +~1⇒ (D̂ − Â)~t = D̂~1⇒ L̂~t = −~q (3)

where qi =
∑

j aij. Note that the dimension of L̂ is N − 1 × N − 1 as node 1 is not

included in ~t. The problem maps directly to that of a flow system with distributed net

currents and a pressure boundary condition on node 1.

3.3. Beyond steady flow

So far we have considered exclusively steady, laminar flow. However the flow in most

animals animals is pulsatile, produced either by a pump (the heart) or peristalsis of

the vessels. The elastic arterial wall responds to the pulsating pressure waveform by

expanding, and eventually changing the volume of the vessel. Modeling the complex

interplay of fluid dynamics of the transported fluid and elasticity of the wall, as well as

other non-linear effects is way beyond the scope of these notes. Instead, we abstractly

discuss how one can incorporate delay and capacitance into the equations discussed in

the previous paragraphs.

A capacitor in an electrical circuit models a circuit element that can store charge,

and translates stored charge into a pressure gradient.

∆pij =

∫
Qijdt

ZCij

(4)

where ZCij is the capacitance of the vessel {i, j}. Similarly, parts of the circulatory

system have the ability to store blood, by changing the vessel diameters (in animals),

or directly storing water in the tissue (in plants).

An inductor element in a circuit introduces a “resistance” of the system to the

change of current.

∆pij = ZLij

dQij

dt
(5)
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where ZLij is the inductance of the vessel {i, j}. This is qualitatively similar to an

inertial term in a circulatory system, where work is required to accelerate or decellerate

the flow.

A simple pulsatile current source can be represented by a real boundary source

vector ~q multiplied by a complex exponential eiωt where ω is the angular frequency of

the oscillation. The observable quantities, pressure difference across the vessels and

current, are now going to be the real parts of ∆pije
iωt and Qije

iωt. Note that in general

this is not as simple as ∆pij cos iωt as ∆pij can be complex.

Equations 4 and 7 now translate to

∆pij =
Qij

iωZCij

(6)

∆pij = iωZLijQij (7)

The inductor and capacitor introduce changes in the phase of the flow. With these

equations we can generalize Ohm’s law ∆pij = ZijQij to include complex resistances (or

impedances) Zij, and the derivations in the preceding paragraphs generalize with the

introduction of a complex Laplacian.
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