Trapped Ion Architectures

QCCD

(C)

QCCD

Photonic Interconnects

Quantum Computer Scaling >1000 qubits

Plan: Multicore quantum processing

Technology: Integrated photonics and switches, SNSPD detector array

Systems at Duke

¹⁷¹Yb⁺

Atomic Ion Qubit

Atomic Ion Qubit

$$S_{1/2} = 12.642812118 \text{ GHz}$$

Single Long Chain

Sandia National Laboratories HOA

Laser cooling and detection

Laser qubit operations

Coupled through motion

- High connectivity
- Engineered motional modes
- Optimized gate pulses

Native Ion Trap Operation: "Ising" gate

$$XX[\varphi] = e^{-i\sigma_x^{(1)}\sigma_x^{(2)}\varphi}$$

Blue System Snapshot

Metric	Typical Performance
# qubits	13
Connectivity	All-to-all
2-qubit gate fidelity	98.5-99.3% (Parity fringe)
1-qubit gate fidelity	>99.96% (RB)
SPAM	<0.5%

Blue System

Chris Monroe

Marko Cetina

*circa 2021

¹⁷²Yb Sympathetic Cooling

Duke Quantum Center

Cetina et al. PRX Quantum 2022

Mid-circuit measurement via shuttling

arXiv:2112.05156

New Gold System

- Individual Addressing
- Fully-connected long chain
- Up to 32 qubits
- Improved stability and control

Alexander Kozhanov Chris Monroe

Crystal Noel

Quantum Center

¹⁷¹Yb Shelving

- Hide information during readout
- Reduce shuttling needed
- Possible F-state qubit operation

Raman system

Global Raman Beam

Systems level control

An MIPT in Magic

Niroula et al. arXiv: 2304.10481

This work: Q-Lab at UMD

Magic Team: Pradeep Niroula (UMD) Christopher David White (UMD) Qingfeng Wang (UMD) Sonika Johri (IonQ) Daiwei Zhu (IonQ) Christopher Monroe (Duke/UMD/IonQ) Michael Gullans (NIST/UMD)

The power of quantum computing?

Superposition (coherence)

 Parallel computing!
 Measurement problem

 Entanglement

 GHZ states
 Easily simulated

What is missing? Magic (nonstabilizerness)

- 1. Resource: V. Veitch, S. A. H. Mousavian, D. Gottesman, J. Emerson, New Journal of Physics 16, 013009 (2014). ArXiv: 1307.7171.
- 2. Complexity: K. Bu, R. J. Garcia, A. Jaffe, D. E. Koh, L. Li, arXiv:2204.12051 [math-ph, physics:quant-ph] (2022).
- 3. AdS-CFT: C. D. White, C. Cao, B. Swingle, Physical Review B 103, 075145 (2021).
- 4. Chaos: L. Leone, S. F. Oliviero, Y. Zhou, A. Hamma, Quantum 5, 453 (2021).

Measurement induced phase transition

Measurement Rate

Gullans and Huse PRX 2020 Many more...

Understanding quantum advantage

Measurement Rate

Understanding quantum advantage

Measurement Rate

Understanding quantum advantage

Measurement Rate

Stabilizer states have no magic

- Generated from a stabilizer circuit starting from 00000...
- Stabilizer circuits are made of stabilizer gates (Clifford)
- Cliffords: CNOT, H, P(S)

Aaronson Notes; https://earltcampbell.com/research/magic-states/

Stabilizer states have no magic

- Generated from a stabilizer circuit starting from 00000...
- Stabilizer circuits are made of stabilizer gates (Clifford)
- Cliffords: CNOT, H, P(S)

Aaronson Notes, https://earltcampbell.com/research/magic-states/

Stabilizer circuits

- <u>Gottesman-Knill Theorem</u>: stabilizer circuits are efficiently simulatable classically^{1,2}
- Quantum advantage related to nonstabilizerness (magic)?

1. D. Gottesman, arXiv preprint quant-ph/9807006 (1998).

2. S. Aaronson, D. Gottesman, Physical Review A 70, 052328 (2004)

From stabilizer to magical...

- Add T gate for magic
- Magic state distillation¹⁻⁴
 - Required for stabilizer code FTQC
 - Resource intensive
- Magic can be used to measure noise⁵

Hadamard (H)	- H -	$rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$
Phase (S, P)	$-\mathbf{S}$	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~({ m T})$	- T -	$egin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

- 1. S. Bravyi, A. Kitaev, Physical Review A 71, 022316 (2005). ArXiv: quantph/0403025.
- 2. A. G. Fowler, M. Mariantoni, J. M. Martinis, A. N. Cleland, Physical Review A 86, 032324 (2012).
- 3. J. O'Gorman, E. T. Campbell, Physical Review A 95, 032338 (2017).
- 4. E. T. Campbell, B. M. Terhal, C. Vuillot, Nature 549, 172 (2017).
- 5. S.F.E. Oliviero, L. Leone, A. Hamma, S. Lloyd NPJ Quantum Information 8, 148 (2022).

Random circuit model

encode

: Rz(a)

What makes a good measure of magic?

- Zero for a stabilizer state
- Non-increasing under stabilizer circuits (Clifford gates)
- Sub-additive for product states $\,f(\sigma\otimes
 ho)\leq f(\sigma)+f(
 ho)$

Expansion into Pauli basis

$$ho = |0
angle \langle 0| = {f 1} + {f Z}$$
 ho is stabilized by 1 and Z

 $\rho = |00\rangle \langle 00|$

is stabilized by II, IZ, ZI, ZZ

Expansion into Pauli basis

Second Stabilizer Renyi Entropy

• Spread of ρ when expanded in basis of Pauli operators¹

$$M_2(\rho) = -\log \frac{1}{2^N} \sum_{P \in \mathcal{P}} \operatorname{Tr}(\rho P)^4$$

• Requires full (or partial²) knowledge of ρ

1. L. Leone, S. FE Oliviero, and A. Hamma. *Physical Review Letters* 128.5 (2022): 050402.

2. S.F.E. Oliviero, L. Leone, A. Hamma, S. Lloyd NPJ Quantum Information 8, 148 (2022).

decode

encode

arXiv: 2304.10481

Phase transition in magic

Vanishing Rate Code

 Magic of the logical state when K=1 (code rate r=1/N)

arXiv: 2304.10481

Error mitigation strategies

- <u>Post-selection</u>: Syndromes grouped into classes with equivalent logical qubit actions using classical simulations
- <u>Decoherence</u>: Project to nearest pure state in post processing

Experiment

Finite rate code

• K = rN for fixed r

Finite rate code

- K = rN for fixed $r = \frac{1}{2}$
- SSRE takes full tomography

Basis minimized measurement entropy

 The entropy of the Born probability distribution of measurement outcomes, minimized over the finite set of possible stabilizer measurement bases

Example:

Measure $|00\rangle$ in the x-basis, four equally probable measurement outcomes $|\pm\pm\rangle$ with S=2

Measure $|00\rangle$ in the z-basis, only one outcome $|00\rangle$ with S=0 BMME = 0

decode

Experimental magic measure

- Avoid full state tomography
- Conditional entropy : $S_{X(B)|Y} = S_{X(B)Y} S_Y$
 - Uncertainty about logical space, given syndrome.
- Basis minimized conditional entropy $\min_{B} S_{X(B)|Y}$
- Error mitigation using classical simulation

$$S_X = -\sum_x p(x) \log \tilde{p}(x)$$

Finite Rate Code: Conditional Entropy

• The conditional entropy is a good measure for the phase where magic is suppressed.

Finite Rate Code: Conditional Entropy

Finite rate code: Renyi approximation of conditional entropy

Outlook

- Efficient magic measures
- Expansion of MIPT beyond entanglement
 - Resource generation
 - Correlation generation
 - Resource destruction
- Magic state distillation from noise?

L. Leone, S. F. Oliviero, G. Esposito, A. Hamma, *arXiv preprint arXiv:2302.07895* (2023). M. Ippoliti, M. J. Gullans, S. Gopalakrishnan, D. A. Huse, V. Khemani, *Physical Review X* 11, 011030 (2021).

Thank you!

Magic Team: Pradeep Niroula (UMD) Christopher David White (UMD) Qingfeng Wang (UMD) Sonika Johri (IonQ) Daiwei Zhu (IonQ) Christopher Monroe (Duke/UMD/IonQ) Michael Gullans (NIST/UMD)

Several quantum computers and simulators at Duke!

- 23-27 qubit Blue system
- 25 qubit Gold System
- upcoming Green system
- and more!

arXiv: 2304.10481

quantum.duke.edu noellab.pratt.duke.edu