Quantum Computing with Trapped Ions

Boulder Summer School

July 2023

Crystal Noel

Plan for lectures this week

1. Ion trapping 101

- 1. How to trap an ion
- 2. Ion qubit examples
- 3. Light-single ion interaction
- 2. Trapped ion 2 qubit gates
 - 1. Many ions in one trap
 - 2. Molmer-Sorensen gate (XX gate)
- 3. Architecture and Magic

References for this lecture

- Roos thesis (https://www.quantumoptics.at/en/publications/ph-dtheses.html)
- Monroe slides (<u>http://iontrap.umd.edu/publications/presentations/</u>)
- Lots of great ion resources here: <u>https://iontrap.duke.edu/resources/useful-references/</u>

Why talk about hardware?

- Error mechanisms matter
- Co-design is faster
- We are far from fault tolerance
- Knowledge —> Power —> FUN

How to trap an ion

Penning and Paul

How to trap an ion

Ion Trap Tricks to "get around" $\nabla \cdot \mathbf{E} = 0$:

- (1) Apply magnetic field along z; ev×B Lorentz force confines in xy plane <u>PENNING TRAP</u>
 - large capacity (1-10⁸)
 - ions rotate around z
 - confinement frequency limited by $\omega_c = \frac{eB}{mc}$

m = 9 amuB = 1 T $\omega_c = 2\pi (1 \text{ MHz})$

~few 1000 Be⁺ ions in a Penning Trap

> J. Bollinger, NIST A. M. Rey, JILA

Paul Trap

Paul Trap

Paul Trap

V

Paul Trap – simple 4 rod

Mathieu Equation

$$\Phi = \frac{\Phi_0}{r_0^2} \left(\alpha x^2 + \beta y^2 + \gamma z^2 \right).$$

$$\Phi_0(t) = V_{\rm DC} + V_{\rm RF} \cos(\Omega_{\rm RF} t)$$

$$\frac{d^2x}{d\tau^2} + (a - 2q\cos(2\tau))x = 0$$

 $a_x = -8\alpha Q V_{\rm DC}/mr_0^2 \Omega_{\rm RF}^2 \qquad q_x = 4\alpha Q V_{\rm RF}/mr_0^2 \Omega_{\rm RF}^2$

Stability Parameters

 $a_x = -8\alpha QV_{\rm DC}/mr_0^2\Omega_{\rm RF}^2 \qquad q_x = 4\alpha QV_{\rm RF}/mr_0^2\Omega_{\rm RF}^2$

Solution: Harmonic Oscillator

$$x(t) = x_0 \cos(\omega_x t + \phi_x) \left(1 + \frac{q_x}{2} \cos(\Omega_{\rm RF} t)\right)$$

$$\omega_x = \frac{\Omega_{\rm RF}}{2} \sqrt{a_x + q_x^2/2}$$

$$H_0 = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

Mathieu parameters for ⁴⁰Ca⁺

• m = 40 amu = 6.66 x 10⁻²⁶ kg

•
$$Q = e = 1.602 \times 10^{-19} C$$

- r₀ ~ 100 um
- V ~ 100-300 V
- $\Omega_{\rm RF}$ ~ 30-50 MHz

$$\omega_{radial} \sim 2 - 6 \text{ MHz}$$

$$a_x = -8\alpha Q V_{\rm DC}/mr_0^2 \Omega_{\rm RF}^2$$

$$q_x = 4\alpha Q V_{\rm RF} / m r_0^2 \Omega_{\rm RF}^2$$

Axial Confinement

Also HO – static voltages

$$U_2 = \frac{2z^2 - x^2 - y^2}{2}$$

Surface traps

Scalability!

Mapping onto the plane

Mapping onto the plane

Surface Trap

Chiaverini et al 2005

Surface Trap

Trapping long chains

Sandia National Laboratories

Surface Traps

Lincoln Lab, MIT

Sandia National Laboratories

UC Berkeley

Two lon qubit examples

⁴⁰Ca⁺ and ¹⁷¹Yb⁺

Trapped ion qubits

Calcium ion energy diagram

Detailed atomic structure

Zeeman levels

Initialization – optical pumping

Reading out the qubit

- Electron Shelving
- P-state lifetime ~ 7 ns
- Fluorescence when ion is in S

Doppler cooling and detection

- 0.6% of fluorescence detected
- 99.3% qubit detection fidelity

Atomic clock qubit (¹⁷¹Yb⁺)

T₂ > 1 hour (P. Wang, K. Kim et al. arXiv:2008.00251)

¹⁷¹Yb⁺ Qubit Manipulation

D. Hayes et al., PRL 104, 140501 (2010)

Single ion laser-ion interaction

(break and go to notes)

Carrier Rabi Flopping

Carrier Rabi Flopping

Single ion sideband spectrum

D

S

n=0

Measuring motional state

43

Apply red and blue sidebands simultaneously

$$\Delta n = -1 \qquad \Omega_{n-1,n} = \eta \sqrt{n} \Omega$$
$$H_I = \frac{1}{2} i\hbar \Omega_{n-1,n} (\hat{a}\sigma^+ - \hat{a}^\dagger \sigma^-)$$
$$\Delta n = +1 \qquad \Omega_{n+1,n} = \eta \sqrt{n+1} \Omega$$
$$H_I = \frac{1}{2} i\hbar \Omega_{n+1,n} (\hat{a}^\dagger \sigma^+ - \hat{a}\sigma^-)$$

$$H = \eta \Omega (\sigma_{+}a + \sigma_{-}a^{\dagger})$$
$$+ \eta \Omega (\sigma_{-}a + \sigma_{+}a^{\dagger})$$
$$= \eta \Omega \sigma_{x} (a + a^{\dagger})$$
$$= \Omega \sigma_{x} (k \cdot \hat{x})$$

Spin-dependent force! Δk For Raman qubits

End Lecture 1