
Boulder Theoretical Biophysics 2019
Neuroscience Mini-course: Exercise Set 4

Some problems for this lecture are adapted from Cover and Thomas,
Chapter 10.

Rate distortion theory: Consider a source, X, that is subject to encoding,
passage through a noisy channel, and decoding that results in a mapping,
X̂(X), that distorts the source. In this notation, the output of the decoder is

X̂. We seek a mapping from X to X̂ that keeps the average of the distortion,
d, of the source over all {x, x̂} less than or equal to a maximal distortion
that is set to some value, D, while minimizing the bit-rate of the channel,
R. Lowercase d denotes the distortion for particular values x and x̂, drawn
from the distribution, P (X, X̂). The rate-distortion theorem states that
this target minimal rate, subject to a constraint on the average distortion,
is equal to the minimal mutual information between X and X̂, subject to
the same constraint on the distortion,

(1) R(D) = min
p(x̂|x):

∑
x,x̂ p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂).

Squared-error distortion: Consider a continuous random variable, X,
with mean zero and variance σ2, passed through a noisy channel and de-
coded. The decoding performance is measured with squared-error distor-
tion. That means that the distortion function, d, is the mean squared-error
between X and X̂, 〈d(x, x̂)〉 = 〈(x− x̂)2〉p(x)p(x̂|x).

1. Show that

S(X)− 1

2
log(2πeD) ≤ R(D),

. . . and show that

R(D) ≤ 1

2
log

σ2

D
.

You will find it useful to remember the formula for the entropy of a Gauss-
ian distribution, and recall that a Gaussian distribution is the maximum
entropy distribution for constrained variance. You should also note that
a conditional entropy is always smaller than or equal to an unconditioned
entropy, i.e. S(X) ≥ S(X|Y ).

For this problem, consider the mapping (encoder: X, a noisy channel, de-

coder: X̂)

X̂ =
σ2 −D
σ2

(X + Z),

where Z is a Gaussian variable with zero mean and variance Dσ2

σ2−D . X and
Z are independent.

2. With this decoder, check that 〈d(x, x̂)〉 = 〈(x− x̂)2〉p(x)p(x̂|x) = D.

3. Are Gaussian random variables harder or easier to ‘describe’ than other
random variables with the same variance? Meaning, do you have to use a
higher R(D) to read out a Gaussian source with the same distortion, D,
than any other source? Hint: Consider the case in this problem where the
source is Gaussian, with the same mean and variance as stated here.



The Information bottleneck: A method for solving for the rate-distortion
function, R(D), is to rewrite the constraint in equation 1 using the method
of Lagrange multipliers,

(2) min
p(x̂|x)

L = I(X; X̂)− β〈d(x, x̂)〉p(x,x̂) −
∑
x

λ(x)

(∑
x̂

p(x̂|x)− 1

)
,

where the third term enforces the normalization of p(x̂|x). In the infor-
mation bottleneck approach, we derive a particularly interesting choice of
the distortion function, d = I(X;Y ), where Y is a variable that describes
what we define as the ‘relevant’ information in X. The parameter β sets the
tradeoff between compressing (minimizing I(X; X̂)), and retaining relevant

information,(maximizing I(X̂;Y )). Equation 2 then becomes

(3) min
p(x̂|x)

L = I(X; X̂)− βI(X̂;Y )−
∑
x

λ(x)

(∑
x̂

p(x̂|x)− 1

)
.

First note that
p(y|x̂) =

∑
x

p(y|x)p(x|x̂),

which follows from the fact that we infer X from X̂, and X carries informa-
tion about Y . You might also like to use the identities,

p(x̂) =
∑
x

p(x̂|x)p(x),

and
p(x̂|y) =

∑
x

p(x̂|x)p(x|y).

4. Use these equations to derive expressions for

δp(x̂)

δp(x̂|x)

and
δp(x̂|y)

δp(x̂|x)

5. Use the two expressions above (check with me if you are not sure of your
answers) to simplify an expression for

δL
δp(x̂|x)

.

Remember Bayes’ Rule, and use it to simplify and rearrange your terms.
Introduce the following change of variables for λ,

λ̃ =
λ(x)

p(x)
+ β

∑
y

p(y|x) log

[
p(y|x)

p(y)

]
,

in which you should note that the second term only depends on x, not on
x̂, which is why we can absorb it into the Lagrange multiplier, λ. Set the
derivative of L to zero and obtain an expression for p(x̂|x) in terms of the
DKL between p(y|x) and p(y|x̂). Hint: You should obtain

p(x̂|x) ∝ p(x̂) exp (−βDKL [p(y|x)||p(y|x̂)] ) .


