
Boulder	Theore+cal	Biophysics	
summer	school:	

Introduc+on	to	neuroscience	
and	informa+on	theory

Lecturer:	
Stephanie	E.	Palmer	
Associate	Professor	
Dep’t	of	OBA	
Dep’t	of	Physics	
University	of	Chicago	
sepalmer@uchicago.edu	



Lecture	3:		Maximum	entropy	and	efficient	coding	
in	single	neurons		



Efficient coding hypothesis

• Claude Shannon (1948) A Mathematical Theory of Communication

• Fred Attneave (1954) Some informational aspects of visual perception

• Horace Barlow (1961) Possible principles underlying the transformation of sensory

messages

Are sensory systems optimized for information transmission?

The	efficient	coding	hypothesis,	brief	history:



Reminder: information theory basics

• Stimulus s drawn from P (s);

• ) neural response y, P (y|s)

• Mutual information:
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• 1 bit of information reduces the uncertainty about the stimulus by a factor 2.

• n bits of information reduce the uncertainty about the stimulus by a factor 2n

• Linear Gaussian channel y = s + z where s is Gaussian with variance S2, z is a Gaussian
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Histogram	equalizaJon:

10 Information Theory

subject to the constraint
∫ rmax

0
dr p[r] = 1 . (4.21)

The result is that the probability density that maximizes the entropy sub-
ject to this constraint is a constant,

p[r] = 1
rmax

, (4.22)

independent of r. The entropy for this probability density is

H = log2 rmax − log2!r = log2
( rmax
!r

)

. (4.23)

Note that the factor!r, expressing the resolution for firing rates makes the
argument of the logarithm dimensionless.

Equation 4.22 is the basis of a signal processing technique called histogramhistogram
equalization equalization. Applied to neural responses, this is a procedure for tailoring

the neuronal selectivity so that p[r]= 1/rmax in response to a set of stimuli
over which the entropy is to be maximized. Suppose a neuron responds
to a stimulus characterized by the parameter s by firing at a rate r= f (s),
where f (s) is the response tuning curve. For small !s, the probability
that the continuous stimulus variable falls in the range between s and s+
!s is given in terms of the stimulus probability density by p[s]!s. This
produces a response that falls in the range between f (s+!s) and f (s).
If the response probability density takes its optimal value, p[r] = 1/rmax,
the probability that the response falls within this range is | f (s +!s) −
f (s)|/rmax. Setting these two probabilities equal to each other, we find that
| f (s +!s)− f (s)|/rmax = p[s]!s. Consider the case of a monotonically
increasing response so that f (s+!s) > f (s) for positive !s. Then, in the
limit!s→ 0, the condition becomes

df
ds

= rmaxp[s] (4.24)

which has the solution

f (s) = rmax
∫ s

smin
ds′ p[s′] (4.25)

where smin is the minimum value of s, which is assumed to generate no
response. Thus, entropy maximization requires that the tuning curve of
the responding neuron be proportional to the integral of the probability
density of the stimulus.

Laughlin (1981) has provided evidence that responses of the largemonopo-
lar cell (LMC) in the visual system of the fly satisfy the entropy maximiz-
ing condition. The LMC responds to contrast, and Laughlin measured the
probability distribution of contrasts of natural scenes in habitats where the
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Figure 4.2: Contrast response of the fly LMC (data points) compared to the in-
tegral of the natural contrast probability distribution (solid curve). The relative
response is the amplitude of the membrane potential fluctuation produced by the
onset of a light or dark image with a given level of contrast divided by the max-
imum response. Contrast is defined relative to the background level of illumina-
tion, Ib, as (I − Ib)/Ib. (Adapted from Laughlin, 1981.)

flies he studied live. The solid curve in figure 4.2 is the integral of this mea-
sured distribution. The data points in figure 4.2 are LMC responses as a
function of contrast. These responses are measured as membrane poten-
tial fluctuation amplitudes, not as firing rates, but the analysis presented
above applies equally to this case. As figure 4.2 indicates, the response
tuning curve as a function of contrast is very close to the integrated prob-
ability density, suggesting that the LMC is using a maximum entropy en-
coding.

Even though neurons have maximum firing rates, the constraint r ≤ rmax
may not always be the factor that limits the entropy. For example, the aver-
age firing rate of the neuron may be constrained to values much less than
rmax, or the variance of the firing rate might be constrained. The reader is
invited to show that the entropy maximizing probability density if the av-
erage firing rate is constrained to a fixed value is an exponential. A related
calculation shows that the probability density that maximizes the entropy
subject to constraints on the firing rate and its variance is a Gaussian.

Populations of Neurons

When a population of neurons encodes a stimulus, optimizing their indi-
vidual response properties will not necessarily lead to an optimized popu-
lation response. Optimizing individual responses could result in a highly
redundant population representation in which different neurons encode
the same information. Entropy maximization for a population requires

Draft: December 17, 2000 Theoretical Neuroscience
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AdapJve	rescaling	in	the	fly	H1	neuron:

Adaptive rescaling in the H1 neuron

Brenner et al 2000 (H1 neuron, visual system of the blowfly)



Responses	to	sJmuli	with	2x	standard	deviaJon	change	
are	nearly	idenJcal:Adaptive rescaling in the H1 neuron



Signal	and	noise	in	the	two	sJm	condiJons:

Adaptation and Optimization
697

Figure 4. Interval Distributions with Slowly Varying Inputs
Cumulative distribution of intervals between successive spikes,
measured in dimensionless units, rav · t, where rav is the mean firing
rate, and t is the interval between spikes. Data are presented fromFigure 2. Rescaled Inputs Elicit the Same Responses
two experiments, where the stimulus distribution has standard devi-Time-dependent firing rates of H1 for two stimulus ensembles, with
ations of s 5 2.38/s (solid line) and s 5 4.68/s (dashed line).standard deviations of s1 5 2.38/s and s2 5 4.68/s. The short segment

of the normalized stimulus s(t), shown by a solid line, is identical in
shape in the two experiments but has different scales. Although this dynamic range of the input ensemble, then the statistical
scale was doubled, the response was almost identical, implying properties of the spike train—not just the time-depen-adaptation to the range of stimuli in the distribution from which they dent rates—should be invariant under changes of thisare drawn.

standard deviation. This is a prediction about the struc-
ture of spike trains, independent of any assumptions
about the nature of the code and its elementary symbols.normalized rate (rate relative to the average over the

experiment) also rescales among the two experiments. Figure 4 shows the interspike interval distributions mea-
sured in the two steady states, plotted together in di-The adaptive rescaling of the mean and variance of

the neural response suggests that the system encodes mensionless time units. While the average firing rate
changes from 69 to 75 spikes/s upon doubling the inputstimulus fluctuations in units of the stimulus ensemble

standard deviation. If the system is characterized by standarddeviation, the relative fluctuations are the same
to high accuracy over several decades of probability.a nonlinear response function, then adaptive rescaling

means it has an additional degree of freedom, a “stretch Next, we consider an ensemble of horizontal velocity
stimuli, s(t), with a time variation that is fast relative tofactor”: the response function can be stretched or com-

pressedbya constant factor to allow for incoming stimu- the typical neural integration times. In this case, one
cannot expect to find a simple relation between thelus distributionsof differentwidths. The rescaling breaks

down for very large variances, in which the velocities momentary stimulus and the firing rate, since the tempo-
ral width of neural filtering becomes noticeable. Theare too rapid for the cell to follow, and the response

drops dramatically. neural response is then determined by the local value
of the filtered signal, and in general there can be moreIf the neuron encodes its inputs in a normalized fash-

ion, effectively scaling away the standard deviation or than one such filter. Onewould like to be able to uncover

Figure 3. Signals and Noise
Average response functions and response
variability in the two stimulus ensembles, s1 5
2.38/s (closed circles) and s2 5 4.68/s (open
circles).
(a) Response in physical units, rate (spikes/s)
as a function of stimulus velocity (degrees/s).
(b) Response in dimensionless units. The rate
is normalized by the time-averaged firing rate
and the velocity stimulus by the ensemble
standard deviation.
(c) Variability in rate over trials as a function
of average rate. The standard deviation in the
firing rate was computed over the 180 trials
for each 10 ms time bin and plotted as a
function of the average rate in the bin.
(d) Variability in dimensionless units. The rate
is normalized by the time-averaged rate.



AdapJve	rescaling	to	fast	varying	inputs:

Neuron
698

Figure 5. Velocity and Acceleration Sensi-
tivity
The two dominant stimulus features that con-
trol the response of the H1 neuron (a and b)
and the corresponding nonlinear neural re-
sponse functions (c and d).
(a) The dominant filter is a smoothing filter,
implying that H1 is sensitive to a smoothed
version of the time-dependent velocity.
(b) The second filter is approximately the de-
rivative of the first, implying that H1 is also
sensitive to the smoothed acceleration. The
two filters are normalized to units appropriate
to their interpretation as velocity and acceler-
ation. The firing rate is a nonlinear function
of both stimulus dimensions, s1 and s2, and
the one-dimensional projections of this func-
tion are shown in (c) and (d).

the relevant filters from the data, rather than to postulate r(s1) and r(s2), shown in Figures 5c and 5d. Note that
although the filters defining s1 and s2 were found bythem a priori, and this can indeed be done (see Proce-

dures). By an extension of the reverse correlation linear analysis, the response functions are nonlinear.
Consistent with the interpretation of s1 as the smoothedmethod, we can show that the response of H1 is domi-

nated by the time-dependent signal, as seen through velocity, the function in Figure 5c is qualitatively similar
to that in the slowly varying limit (Figure 1b).two filters. Figures 5a and 5b depict the two filters, and

they correspond to our intuition: the first filter smoothes Weperformed experiments using rapidly varying stim-
uli with Gaussian statistics; the correlation time was 10the velocity signal over a window of about 50 ms, and

the second filter is approximately the derivative of the ms, and the standard deviation took four values, ranging
from s 5 188/s to s 5 1808/s. Since the two filters arefirst, corresponding to a smoothed acceleration.

Constructing the input/output relation (see Proce- derived from the data in each case, there are generally
some differences in the details of these filters for thedures), we describe the spike rate in H1 as a function

of the two dominant stimulus dimensions, s1 and s2, different stimulus ensembles; however, they always
have similar form and correspond to smoothed velocitycorresponding to velocity and acceleration. For simplic-

ity, we discuss here the two projections of this function and acceleration. Measuring the stimulus component s1
in units of velocity, that is, degrees/s, we find that theseparately; then, we have two input/output relations,

Figure 6. Rescaling of Responses to Dy-
namic Inputs
Adaptive rescaling of the input/output rela-
tions along the two leading dimensions.
(a and c) Response as a function of stimulus
velocity as seen through the first (a) and sec-
ond (c) filter (see Figure 5).
(b and d) Response as a function of stimulus
projections, each normalized by its standard
deviation.



Rescaling	maximizes	informaJon	transmission:
Adaptive rescaling maximizes information transmission



Optimal filter: whitening

• Optimize mutual information:

I =
1
2

Z
d!

2⇡
log2

 
1 +

|K̃(!)|2S(!)
N(!)

!

subject to constraint
Z

d!|K̃(!)|2S(!) = constant

• Solution

|K̃(!)|2S(!) = [A�N(!)]+

• Whitening (water-filling analogy)



Whitening in the LGN (Dan et al 1996)

• Natural stimuli

• White-noise stimuli



A	lightning	fast	introducJon	to	channel	coding:



A	lightning	fast	introducJon	to	channel	coding:

chalkboard	interlude


