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InformaFon	in	single	spikes:

Synergy in a Neural Code 1539

repeatedly. It enables the evaluation of the information for arbitrarily com-
plex events, independent of assumptions about the encoding algorithm.
The information is an average over the joint distribution of stimuli and re-
sponses. But rather than constructing this joint distribution explicitly and
then averaging, equation 2.5 expresses the information as a direct empirical
average: by estimating the function rE(t) as a histogram, we are sampling the
distribution of the responses given a stimulus, whereas by integrating over
time, we are sampling the distribution of stimuli. This formula is general
and can be applied for different systems under different experimental con-
ditions. The numerical result (measured in bits) will, of course, depend on
the neural system as well as on the properties of the stimulus distribution.
The error bars on the measurement of the information are affected by the
éniteness of the data; for example, sampling must be sufécient to construct
the rates rE(t) reliably. These and other practical issues in using equation 2.5
are illustrated in detail in Figure 2.

2.3 The Special Case of Single Spikes. Let us consider in more detail
the simple case where events are single spikes. The average information
conveyed by a single spike becomes an integral over the time-dependent
spike rate r(t),

I(1 spikeI s) D 1
T

Z T

0
dt

¡r(t)
Nr
¢

log2

¡r(t)
Nr
¢

. (2.9)

It makes sense that the information carried by single spikes should be re-
lated to the spike rate, since this rate as a function of time gives a complete

Figure 2: Facing page. Finite size effects in the estimation of the information
conveyed by single spikes. (a) Information as a function of the bin size D t used
for computing the time-dependent rate r(t) from all 360 repetitions (circles) and
from 100 of the repetitions (crosses). A linear extrapolation to the limit D t ! 0 is
shown for the case where all repetitions were used (solid line). (b) Information
as a function of the inverse number of repetitions N, for a éxed bin size D t D
2 ms. (c) Systematic errors due to énite duration of the repeated stimulus s(t).
The full 10-second length of the stimulus was subdivided into segments of
duration T. Using equation 2.9 the information was calculated for each segment
and plotted as a function of 1 /T (circles). If the stimulus is suféciently long that
an ensemble average is well approximated by a time average, the convergence
of the information to a stable value as T ! 1 should be observable. Further,
the standard deviation of the information measured from different segments of
length T (error bars) should decrease as a square root law s / 1 /

p
T (dashed

line). These data provide an empirical veriécation that for the distribution used
in this experiment, the repeated stimulus time is long enough to approximate
ergodic sampling.

see	Brenner	et	al.,	2000
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Searching	for	the	symbols	in	the	neural	code:
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