Boulder Theoretical Biophysics summer school: Introduction to neuroscience and information theory

Lecturer:
Stephanie E. Palmer
Associate Professor
Dep’t of OBA
Dep’t of Physics
University of Chicago
sepalmer@uchicago.edu
RECAP: Lecture 1, intro to info theory

SHANNON-WEAVER’S MODEL OF COMMUNICATION
RECALL: Entropy as a measure of uncertainty:

\[\text{uncertainty} = \log(n) \]
RECALL: Entropy as a measure of uncertainty:

\[
\text{uncertainty} = \log (n) \\
= \log \left(\frac{1}{p} \right) \\
= - \log (p)
\]
RECALL: Entropy as a measure of uncertainty:

\[\text{uncertainty} = \log (n) = \log \left(\frac{1}{p} \right) = - \log (p) \]

\[u_i = - \log (p_i) \]

\[\langle u_i \rangle = - \sum_i p_i \log (p_i) \]
RECALL: Entropy as a measure of uncertainty:

uncertainty = log (n)

= log (1/p)

= − log (p)

\[u_i = - \log (p_i) \]

\[\langle u_i \rangle = - \sum_i p_i \log (p_i) \]

\[S(X) = - \sum_x p(x) \log_2 (p(x)) \]
Recall: basics of probability theory

Product rule:

\[P(a, b) = P(a|b)P(b) \]
Recall: basics of probability theory

Product rule:

\[P(a, b) = P(a|b)P(b) \]

Sum rule:

\[P(a) = \sum_b P(a, b) \]
\[= \sum_b P(a|b)P(b) \]
Recall: basics of probability theory

Product rule:

\[P(a, b) = P(a|b)P(b) \]

Sum rule:

\[P(a) = \sum_b P(a, b) = \sum_b P(a|b)P(b) \]

Bayes’ rule:

\[P(a|b) = \frac{P(b|a)P(a)}{P(b)} = \frac{P(b|a)P(a)}{\sum_{a'} P(b|a')P(a')} \]
Recall: basics of information theory
Recall: basics of information theory

Additivity:

\[S(A, B) = S(A) + S(B) \]

\[S(A, B) = S(A) + S(B) \iff P(a, b) = P(a)P(b) \]
Recall: basics of information theory

Additivity:

\[S(A, B) = S(A) + S(B) \]

\[S(A, B) = S(A) + S(B) \iff P(a, b) = P(a)P(b) \]

Chain rule:

\[S(A, B) = S(A) + S(B|A) = S(B) + S(A|B) \]
Recall: basics of information theory

Mutual information:

\[
I(A; B) = S(A) - S(A|B) \\
= S(B) - S(B|A) \\
= \sum_{a,b} P(a, b) \log_2 \left(\frac{P(a, b)}{P(a)P(b)} \right) \\
= \sum_{a,b} P(a)P(b|a) \log_2 \left(\frac{P(b|a)}{P(b)} \right)
\]
Recall: basics of information theory

\[I(X; Y) = S(X) - \langle S(X|Y) \rangle_y \]
Recall: basics of information theory

\[
I(X; Y) = S(X) - \langle S(X|Y) \rangle_y
\]

\[
I(X; Y) = S(Y) - \langle S(Y|X) \rangle_x
\]
Recall: basics of information theory

\[
I(X; Y) = S(X) - \langle S(X|Y) \rangle_y
\]

\[
I(X; Y) = S(Y) - \langle S(Y|X) \rangle_x
\]

\[
I(X; Y) = \sum_{x,y} P(X, Y) \log_2 \left(\frac{P(X,Y)}{P(X)P(Y)} \right)
\]
Recall: basics of information theory

\[
I(X; Y) = S(X) - \langle S(X|Y) \rangle_y
\]

\[
I(X; Y) = S(Y) - \langle S(Y|X) \rangle_x
\]

\[
I(X; Y) = \sum_{x,y} P(X, Y) \log_2 \left(\frac{P(X, Y)}{P(X)P(Y)} \right)
\]

\[
P(X, Y) = P(X|Y)P(Y)
\]

\[
P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}
\]
Recall: basics of information theory

Kullback-Liebler divergence (D_{KL}):

\[D_{KL}(P, Q) = \sum_a P(a) \log_2 \frac{P(a)}{Q(a)} \]
Recall: basics of information theory

Mutual information ≥ 0:

\[I(A; B) = S(A) - S(A|B) \]
Information in single spikes:

\[
I(1 \text{ spike}; s) = \frac{1}{T} \int_0^T dt \left(\frac{r(t)}{\bar{r}} \right) \log_2 \left(\frac{r(t)}{\bar{r}} \right)
\]
Information in single spikes:

\[I(1 \; \text{spike}; s) = \frac{T}{T} \int_0^T dt \left(\frac{r(t)}{\bar{r}} \right) \log_2 \left(\frac{r(t)}{\bar{r}} \right) \]

see Brenner et al., 2000
Searching for the symbols in the neural code:
Searching for the symbols in the neural code:

![Graphs showing neural activity and timing](image)

- **Pattern info**
 - Directed song
 - Undirected song

- **Information (bits/sec)**
 - Spike count
 - Rate (1/s)
 - Time in song (ms)
Searching for the symbols in the neural code:

![Graph showing neural activity over time](b)

- All spikes
- Time in song (ms)
- Rate (1/s)

Symbols highlighted:
- 10110
- 00111