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neurons behavior
...



Anatomy	of	a	neuron:
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Anatomy	of	a	spike:
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Action potentials in squid giant axon 

Hodgkin (1938), Proc. Roy. Soc. B 126:87-121. 
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How can we account for this behavior quantitatively? 

They exhibit unusual nonlinear behavior 

Resting neuron 
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ProperAes	of	spiking:



Voltage changes result from ion movements 
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Two questions:  
  (1) How to describe depolarization/repolarization quantitatively? 
 (2) Which ions are the most likely candidates? 

cation in or anion out 

cation out or anion in 

Cations flowing in depolarize the membrane 
Cations flowing out repolarize/hyperpolarize the membrane 

cation in or anion out 
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We	seek	a	quanAtaAve	descripAon	of	this	behavior:



Some	basics:



Some	basics:

chalkboard	interlude



Squid	giant	axon:



Brief historical note 

Hodgkin & Huxley (1939) Nature 144:710-711 

Action potential recorded at Marine Biological Association at Plymouth 

Hodgkin & Huxley left Plymouth:  August 30, 1939 
Hitler invaded Poland:  September 1, 1939 

“We published this result in a letter in Nature (1939) with no discussion 
or explanation.  In a full paper (1945) we gave four possible 

explanations, all wrong.” Huxley (2002) J. Physiol. 539:2 8 

The	1939	leLer	to	Nature:



Overall Hodgkin-Huxley model 

Hodgkin & Huxley (1952), J. Physiol. 117:400. 

Membrane represented as 
parallel conductances 

Four ODEs 

Voltage-dependent rate constants 
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The	final	model:
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chalkboard	interlude



Currents recorded under voltage clamp 

How can INa and IK be separated? 

INa IK 
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Make	recordings,	separate	currents:



Convert from currents to conductances 
INa IK 

INa = gNa*(V – ENa) IK = gK*(V – EK) 
therefore: 

gNa = INa/(V – ENa) gK = IK/(V – EK) 

gNa gK 
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…and	get	conductances:
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Potassium	channels	are	tetramers!



Potassium	channels	are	tetramers!
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Behavior of Hodgkin-Huxley model 
Important note:  equations and parameters were derived from voltage-clamp 

data, action potential simulations were an independent test 

Experiment 

Simulation 

In addition to producing realistic action potentials, the model:  
 1) exhibits sub-threshold and supra-threshold responses 
 2) correctly reproduces refractoriness 
 3) reproduces “anode break” excitation 
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…works	well:
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Behavior of Hodgkin-Huxley model 
Important note:  equations and parameters were derived from voltage-clamp 
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Experiment 

Simulation 

In addition to producing realistic action potentials, the model:  
 1) exhibits sub-threshold and supra-threshold responses 
 2) correctly reproduces refractoriness 
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…works	well:

experiment

simulaAon



The	Fitzhugh-Nagumo	model:

Phenomenology versus Mechanism 
An extreme case:  the Fitzhugh-Nagumo model 

Dr. Richard Fitzhugh 

dV/dt = V - V3 - W - I 
dW/dt = 0.08*(V + 0.7-0.8W) 

Fitzhugh (1961), Biophys. J. 1:445-466. time 

V 

V:  voltage-like variable 
W: recovery variable 
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The Fitzhugh-Nagumo model 
Why would anyone care about a two-variable phenomenological model 
when a “better” more mechanistic, four-variable model already exists? 

One reason:  In the pre-digital era, this model 
was much easier to implement 

Dr. Jin-Ichi Nagumo 

Nagumo et al., (1962) Proc. IRE. 50:2061–2070 7 

Electronic circuit built using tunnel diodes 

The Fitzhugh-Nagumo model 
Why would anyone care about a two-variable phenomenological model 
when a “better” more mechanistic, four-variable model already exists? 

One reason:  In the pre-digital era, this model 
was much easier to implement 

Dr. Jin-Ichi Nagumo 

Nagumo et al., (1962) Proc. IRE. 50:2061–2070 7 

Electronic circuit built using tunnel diodes 

The Fitzhugh-Nagumo model 
An abstract and clearly phenomenological model 
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Only 2 variables 
No explicit ionic currents included 
Recovery variable W not related to any specific biological process  

dV/dt = V - V3 - W - I 
dW/dt = 0.08*(V + 0.7-0.8W) 

This model was published 9 years after Hodgkin-Huxley.  
Can it have any value? 



The Fitzhugh-Nagumo model 
Benefits of a generic two-variable model 

V nullcline:  
 W = V - V3 - I 
W nullcline:  
 W = (V + 0.7)/0.8 
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The	Fitzhugh-Nagumo	model	is	a	useful	simplificaAon:



The Fitzhugh-Nagumo model 
Electrical stimulus:  an instantaneous increase in V 

A small increase in V 

V 

W 
V 

time 

A larger increase in V 

V 

W 

time 

V 

9 

The	Fitzhugh-Nagumo	model	is	a	useful	simplificaAon:

return	to	baseline
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The	Fitzhugh-Nagumo	model	is	a	useful	simplificaAon:

return	to	baseline

spike!



The Fitzhugh-Nagumo model 
Constant current injection (negative I) will shift V nullcline up 

I = -0.7 

This fixed point is now unstable! 

V nullcline: W = V - V3 - I 
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Repetitive action potentials with 
constant current = conversion 

from stable fixed point to stable 
limit cycle 

V 
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Even	explains	sustained	firing!



Extracellular	recording:
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Neuronal	response	is	‘noisy’:
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PopulaAon	recordings:
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The	basic	learning	problem:	what	about	the	sAmulus	do	
neurons	respond	to?

�24

show	Hubel-Wiesel	movie
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What	about	the	sAmulus	do	neurons	respond	to?



�26

What	about	the	sAmulus	do	neurons	respond	to?



Tools	we	use:
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•	sta.s.cs	
•	learning	/	inference	
•	op.miza.on	
•	dynamical	systems	
•	informa.on	theory



When	is	informaAon	theory	useful?		When	you...

•	want	to	go	beyond	
linear	correla.on	

•	have	enough	data	to	
sample	P(x,y)	

•	are	not	sure	what	your	
‘code’	is

A	brief	introduc+on	to	informa+on	theory:
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Zero	correlaAon,	no	informaAon:
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Zero	correlaAon,	but	obvious	informaAon:
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Entropy	as	a	measure	of	uncertainty:

uncertainty = log (n)
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Entropy	as	a	measure	of	uncertainty:

= log (1/p)

=� log (p)

uncertainty = log (n)

ui = � log (pi)

huii = �
X

i

pi log (pi)

S(X) = �
X

x

p(x) log2(p(x))



Informa+on	==	reduc+on	in	uncertainty

Mutual	informa+on:

I(A;B) = S(A)� S(A|B)

= S(B)� S(B|A)

=
X

a,b

P (a, b) log2

✓
P (a, b)

P (a)P (b)

◆

=
X

a,b

P (a)P (b|a) log2
✓
P (b|a)
P (b)

◆
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useful	formulae

Product	rule:
P (a, b) = P (a|b)P (b)
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useful	formulae
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P (a, b) = P (a|b)P (b)

Sum	rule: P (a) =
X
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Bayes’	rule:
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Efficient	coding	in	single	neurons		
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Efficient coding hypothesis

• Claude Shannon (1948) A Mathematical Theory of Communication

• Fred Attneave (1954) Some informational aspects of visual perception

• Horace Barlow (1961) Possible principles underlying the transformation of sensory

messages

Are sensory systems optimized for information transmission?

The	efficient	coding	hypothesis,	brief	history:



InformaAon	theory	example,	the	weighing	problem:
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