
Lecture I : MBL

outline:

1
. MBL transition - RG framework

(A) Criterion MBL vs thermal regions

(B) Rare MBL regions in the thermal phase
→

"

Griffiths regime
" and sub - diffusive transport

(c) Rare thermal regions in the MBL phase
→ Avalanche instability

⇒ (D) 2- parameter scaling theory

2.* MBL meets open systems :
can we see sharp signatures of MBL in a

system that is weakly coupled to a bath and drive ?
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A. As a basic criterion for localization on a system of size L

we may ask a

quasi - continuum made from other eigenstates of Ho due to the coupling J .
Fermi Golden rule 1862)
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[ See Serbyn, Papic and Abanin, Phys. Rev. X 5, 041047 (2015) ]

Rough criterion for thepmadizoifion : *i.it- - - it >
•

1%5 e- 45
"
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> ,g- § > I equivalently eoe
5 I

1in MBZ phase)Implies a minimal localization length 7£ tnz

Éx¥ : Derive a more precise and nicer version of this criterion

using the
b-bit effective Hamiltonian from Huse's lectures :

③ He,g= E. hit?
+ EÉj[{ t%t¥, it:* , - . - jtj, ,%, , } ]
iej

☒ijllv go e-
Ii -5112}

To test for delocalization consider the stability to perturbation

by a local operator acting on one site
, say i=o

.

under what condition can the perturbation mix a macroscopic
number of localized eigenstates ?

Does the jump in }eo, imply a 1st ofder transition and no diverging scale ?
No ! We'll see that using this criterion in an AG scheme yields a orifcal

-

fixed point.



Bloctethcoschenne [Vosk,Huse ,Altman PR✗ 5,031032 12015) ]

The sample is assumed to be composed of
regions (labeled by i)

characterized by variable 1-henna libation rates Ti

Éi-_
A region is considered thermal or MBL depending ,

on the local ratio gi.si/Di where D
,
- w w 2- hi

;☐
In the paper we derived an - RG scheme to

gradually merge regions that thermal ize
'
-
- -

- -
-

-

f ta
at the scale of the owning cutoff , ⇒

Here instead I want to consider the

consequences of the following

Ii] dare MBL regions in the thermal phase
n

(E) Rare thermal regions in the MBL phase .



B. Rare MBL regions in the thermal phase
- Griffiths regime microscopical :

Ti-_- k1%~local↳upli?⃝
L-

- Density of MBL inclusions of size >l near the critical point
should depend only on a correlation length } >> lo

(4)
g (e) ~ 1- e-ÉA5= L.pl#~1

}
← .

- The largest MBL region creates a bottleneck

for the-malization ( in lol) and thus sets
the thermal.ization time 7th

- The typical size lab of the largest MBL block :

fllth) = § expf.ba/3J-- £

l n } but
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lai } but@DyÉgs ☒¥*'-_*-_
she relation

- ÉÉÑ) between the system's length and
thermal ization time defines the dynamical exponent

(G) 2- = } /do
.

.

⇒ 2-→ oo at the critical point together with 3. → *

→ Transport time: Imbalances in hydrodynamic conserved quantities

Leng
'

particle number
, energy ) across the bottleneck will take longer to relax

It
,

= E- - LL because we need to transfer 04) particles across

⑦
" * } /do

zt, = 2- + y⇒ Er
.

' L
-

=

r

vote that such bottleneck effects are special to d.=/

If there was a localization transition in d> 1 we would

expect diffusive transport in the thermal phase with D-so

at the transition
.



Exercise 2 : Experiments in I. Bloch 's group observed the decay
of a density wave (DW) imposed on the initial state [ see in particular
Luis chen et

.

al 722 119
,
26040112017) ] . Show that in the Griffiths

phase the density wave decays as t
- "Z at long times

Hint : in what fraction of the system the DW is still od) at time t ?
*⇒i : Naively , in a diffusive system a DW at wave- vector q

will

decay exponentially as exp [- t
' ¢0T) ] however because of interactions

even non conserved quantities like the density wave develop a power law
decay but it is

-

much faster than f-
"Z

o

h⇒. The experiments mentioned above were done with a quasi -periodic
lattice

,
so one would not expect to see such Griffiths phenomena as

in a random system .



(C) Rare thermal regions in the MBL phase

can lead to an avalanche instability of MBL
[ de -ko elk of Itnveneeos 2015 ; see also David 's lecture ]

Briefly: a thermal region serves as a mini - bath

that can thermalize its surrounding MBL l - bits
.

If
'

r - n closest d- bits
'

are thermal ized what is

the fate of the r.tn l :b it ? e.
-

-
-

-

☒
-
-

ng
É,

É l- bit
\

Coupling matrix - element : v4]=§µ, e-
"Yea

level spacing
of bath : D. d) = w/ 2¢

""

187 ⇒ II. ~ (E)
' al e- (Etna) -ga] = -

War #

⇒ MBL phase with }e
.? In,

is unstable in D= I

⇒ Generalization to d> i predicts no stable MPL phase for d> I



contrast with the original perturbative criterion LBAA)

[Bosko , Abeiner & Altshuler Ann
. Phys . 2006 ]

BAA criterion for id fermions with weak interaction U ( and 1-→ a)
Matrix element for decay to particle - hole excitations :{UC:c;%

✗pod
✓ ~ 1¥

}
) - = ¥90 ' Wntrva / do = bandwidth of p

-h excitations

9 A
}
- trial } = level spacing in a localization volume
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> s ⇒

uY,*%
Resonance condition : towels

⇒ Anderson localization in id is stable to weak interaction

contrast with ;

dkltcriter.ir#fdeRoek&Huveneers 2015 ]

delocalized
Anderson localization in let is unstable •

to weak interaction if the non-interacting
e. .ae,,, ,, ,engµ , , , yen,

" ÷¥¥¥÷÷÷:¥¥¥÷*É¥
A. = - E# Cia , + H -e) + Eihijctici

i G.=ln2 ) Disorder
Hint : §. Vig - cticictjej Disorder strength



Dumitrescu et. al Phys. Rev. B 99, 094205 (2019)

(D) 2- Parameter scaling theory of the MBL transition

→

If the MBL transition is driven by the avalanche instability
Then a. minimal model for the transition should include at least

the following two variables

→ I
'
l average) inverse

'

localization lengthRoc

→ g density of thermal inclusions (assumed to be small )

Initially g.
and j

'
are determined by the microscopic parameters .

Now we coarse grain we expect them to flow

④ According to the avalanche criterion
,
if [ < }? = lnz (bug )→ loc

then S becomes relevant lrenonmalized upward)

• Having a finite g renonmalizes
,
downward

"
s }
"

At the fixed points we expect MBZ : f* =
, }eo* a

Thermal p*= 1
, 3
"

= 0
logit



taken from Dumitresco et. al. arXiv:1811.03103

sealingeq.ua/-ionslnb=ln9a
.

The simplest scaling equations (lowest order in g)
that capture thee physics of 43 and (2) above :

dog
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Equivalent to koskeelitz -Thanks s flow eqns •
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through a change of variables y
- J
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,
Refuel

,
Polkovnikov

and Karai 2004 how 9 critical phase → MBL phase

Vortex fugacity → Density of thermal inclusions

stiffness (KH) →
-1

3.eoe



consequences ⇒ - --

i. Average size of thermal inclusions

According to (8) the effective coupling to a seed thermal

region decays as e- 15
'
- E) r thus we can relate ;102

④ → =
←

.
.

- ii. Distribution of lengths of thermal inclusions :
concrete 20 schemes predict a power

- law distribution
at the critical point pll,) we

- ✗

- ✗ 22
⇒ se, > =/ Iet

'- ✗ 1-
(A) =

✗ -2

comparing the divergence in 407 and (H) we conclude

that at criticality 2oz =] Pell,) - l?

⇒ 21,2 w be :L

( typical l, is finite )



Signatures of MBL criticality in a driven open system

Lenarcic, EA, Rosch, PRL 267603 (2018)
Lenarcic, Alberton, Rosch, EA, PRL 116601 (2020) 

.



The essence of Many Body localization (closed system)

Huse and Oganesyan 2013, 
Serbyn and Abanin 2013
Vosk and EA 2013

2

It = I s→i•É + h
, i

+ hj.SI hi c- [ - h , h]
it ,
is ✗

i

✗ 1

he
→
h

Thermal
.

MBL

(Griffith phase) -

↳
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Local integrals of motion

c- ~ l
?

It = I Ñit ? + E.Vijt ? +
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MBL in an open system ?

s.u.qgsgpqgm@omhR.rmmmmH = ? Ñit ? + §Vijt ? +
. .

coupling E

to bath §
.

} §
.

§
✗

Thermal the
.

→
Bath Tb

Fit2haeg . M?\

-

The system thermalizes with the bath

so? > ~ e-
Et
→ o



MBL in an open system ?
s

-

'

couple the system also to

a hot bath or drive coupling ; ⇒

re 113.
- weak coupling limit ; s -soqdgf@fDo8TsMtBheo.s

const '

{ § { £
=

,

- Infinite time : et-soo Bath Tb
.

Distinct steady states ? x i s

"

thermal
"

he
"
MBL

"



Thermalizing system

MBL system

Conserved total energy :

2,1A >
-

= OE - ELT - Tb )

steady
⇒

g= e- PH

state
T = Tg -1 I

- unique temperature determined his
§ § I

↳
Tbby it alone . Non-linear response .

conserved local energies :

↳ SHI> = 0cg, ;
- Egzili-Ts)

⇒ g= e-
? Pitti . Ties -1010 Ahhhhh

' ai ÷j%qBBAR%
- Many local temperatures ! Bath To



Digression: Quantum formulation [ hrenareic
, Lange , Rosch arXiv : 1706.05700 ]

§ = Lg =
- i[ Hoof] -1 E If I could be Lindblad form
- in

= Log Lif
we want the steady state :

lim flt) = f,
= f. + dg L§* = 0 ,

Lo Jo __ 0

1-→ so

f.
= him

Soo = ?
E.→ o

suppose N commuting IOM : [Hi , Hj ]= 0 I,J=o, - -M

e- F- titi

G-GE ansatz To =

,,⇐q×,
satisfies Lof, for all Hi}

⇒ { ti} determined by L
,

Exercise 3 : show that the steady state conditions ( Iti ) = 0
to lowest order in E are given by Tr( Hi f.) = 0
These give N equations for the d Xi



Numerical results

Exact diagonalization
strict limit so-so et -soo

1) observe singular onset of the

temperature variance at the

MBL transition .

÷

:pby a finite { in a realistic system ?
How is the singularities """"^

universality ? finite E scaling ?

h



Hydrodynamic description

☒ - ☐ [Kcr]PTlr ) ] = Eog .CM
- Eg 4) (TN - Tb )

2

1- = -1--1 STg ,}
= 1 -13µW)

- ☐ [KHOST ] = Eod -13,9 ) - E(It }drD(F- Tb -10T )

Expand in powers of : } ,,
(r ) ( 89 ~ } , , 32)

Zeroth order : 9- = Tb + &

Linear order :

gs , -52

C- E o
'

1- E) IT = EO 31M sins @ D > = war - r
')

Let's solve this in the two phases
i.



MDL phase : Ew XE ⇒ C- ✗ 02 + 1) d-1--056)

89 = Of dr ' G- 1 ? ' - r) g. (d)
.

< it
'
> = its dad .

"
G- c.young ,}cñÑÉ

=wñf¥f×g¥j = "E- it

⇒ spatial temperature fluctuations are finite ( on ]
at zeroth order in

Thermal phase : E (g) ~ 8 of
-2 Élq ) = ( o q

'
+ E)

- 1

1

85 = ME u OWE 5-2

Exe•cie4:_ Derive the last retention



Numerical approach

This limit of an open system of taking 1-→ * first (steady state)
and { small

,
motivates a numerical scheme ;

use TEBD to compute the steady state Joo of the Lindblad evolution :

§ = i [ H
, f ] + E(Deo,d[f) + 9.Dh☐+[f])

pros :

• E limits the growth of the bond dimension

⇒ can handle much larger systems than ED .

• The level broadening 2 possibly regulates small size transients
related to level eomnensurabilities

.

Cons :

• Larger physical dimension than ED of It



Our calculation: Model

i

'

r

§ = i [ It
, g) t E (Deo,d[f) + 0%+83) L - 60 sites

its g Ei .si?..t his:
+ his ! Da

.

Is Ellis: Sst - g )

ht c. Eh , h] %,
I - {alias Iia

- { { Livia , f }

9-
non unital

-

Ki , = Sti Pain , Liz
-

- Pai Sita,

Kis ' SI Pg it, Liu Ppi SI,
operational definition of 1

local temperatures

Ftii) = min
tr ((gli - it" - g!

"" It ) )
'

]

→ Ti



Numerical results (TEBD)

:-p- signature of critical dynamics
En E dependece of 87 ~ E "27 ,

h

'

. -
. ) -

- obtain divergence of 2-


