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We show that as the number of vortices in a three dimensional Bose-Einstein condensate increases,
the system reaches a “quantum Hall” regime where the density profile is a Gaussian in the xy plane
and an inverted parabolic profile along z. The angular momentum of the system increases as the vortex
lattice shrinks. However, Coriolis force prevents the unit cell of the vortex lattice from shrinking beyond
a minimum size. Although the recent MIT experiment is not exactly in the quantum Hall regime, it
is close enough for the present results to be used as a guide. The quantum Hall regime can be easily
reached by moderate changes of the current experimental parameters.
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In a recent experiment [1], the MIT group led by Ketterle
has generated as many as 160 vortices in a Bose-Einstein
condensate of Na atoms. While the vortices form a hexa-
gonal lattice as expected for equilibrium systems, many
observed properties appear to differ significantly from the
predicted ones [1]. It is thought that the system may not
be in equilibrium.

Equilibrium or not, it is clear from the recent Paris
[2] and MIT experiments [1] that one can deposit a large
amount of angular momentum to the condensate by driv-
ing it with an asymmetric potential at a rotation fre-
quency Vd close to the quadrupolar resonance. In view
of the recent rapid developments [1,2], it is conceiv-
able that higher, or even much higher angular momen-
tum states can be achieved in the near future. The high
angular momentum states are interesting because they
resemble some of the novel solid state systems such as
type-II superconductor and quantum Hall liquid. How-
ever, the unique features of Bose-Einstein condensates
also introduce important differences.

The purpose of this paper is to discuss the properties of
Bose-Einstein condensates with a large number of vortices.
We show that the physics in this regime is closely related
to two dimensional quantum Hall physics, even though
the system is three dimensional. The specific wave func-
tion in this regime allows one to calculate many properties
of the system, including the effective rotational frequency
V � ≠E�≠L. It is clear that V will not be the same as the
driving frequency Vd , since it depends only on the total
angular momentum L, which can be varied by varying the
duration of the drive, even though Vd is held fixed. The
fact that the vortex lattice in Ref. [1] has the equilibrium
form strongly suggests that the system is in quasiequilib-
rium, characterized by an L and V which change slowly
because of the residual asymmetry in the confining poten-
tial. It is conceivable that some of the discrepancy with
theory mentioned in Ref. [1] might disappear once the ef-
fective frequency V is identified.

We shall see that in the quantum Hall regime, Corio-
lis force prevents the unit cell �y� of the vortices lattice
from shrinking below y� � pa2

� where a� is the oscil-
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lator length in the xy plane. For a large condensate, the
density profile along z is an inverted parabola similar to
the stationary case. However, it is a Gaussian in the xy
plane, with a width s that scales as R23�2

z , where Rz is the
maximum extent of the condensate along z. The angular
momentum of the system is proportional to ps2, which
grows as the size of unit cell y shrinks.

The quantum Hall regime and the minimum vortex
separation.—The condensate wave function C is deter-
mined by the Gross-Pitaevskii functional

K �
Z

C��hz 1 h� 2 VLz 2 m�C 1
1
2
g

Z
jCj4,

(1)

where hz � 2
h̄2

2M=2
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1
2Mv2

z z
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h̄2

2M=
2
� 1
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2Mv

2
�r2 are the single particle Hamiltonians along z

and in the xy plane, vz and v� are the frequencies
of the harmonic potentials in z and in the xy plane;
r � �x, y�, Lz � 2ih̄z ? r 3 = is the angular momen-
tum; g � 4p h̄2asc�M, asc is the s-wave scattering
length, and (V, m) are Lagrange multipliers specifying the
angular momentum and particle number of the system. It
is useful to rewrite h� 2 VLz � HL 1 h̄�v� 2 V�Lz ,
where

HL � �2ih̄=� 2 Mv�ẑ 3 r�2��2M� . (2)

Equation (2) is precisely the Hamiltonian 1
2M �2ih̄= 2

eA�c�2 of a charge 2e particle moving in the xy plane
subjected to a magnetic field Bẑ with a vector potential
A �

1
2Bẑ 3 r, eB�Mc � 2v�. The eigenfunctions of

HL are

hn,m�r� �
ejuj

2��2a2
��≠m1≠n2e

2juj2�a2
�q

pa2
�n!m!

(3)

with eigenvalues en,m � h̄v��2n 1 1� where n and m are
integers 0, 1, 2, . . . ,u � �x 1 iy��a�, a� �

p
h̄�Mv�,

≠6 � �a��2� �≠x 6 i≠y�. The integer n is referred to
as the Landau level index, and m labels the degenerate
states within a Landau level n. Since un,m are also
eigenstates of Lz � h̄�u≠u 2 u�≠u�� with eigenvalue
© 2001 The American Physical Society 060403-1
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h̄�m 2 n�. The eigenvalue of h� 2 VLz is h̄��v� 1

V�n 1 �v� 2 V�m 1 v��. The degeneracy of the
Landau level is lifted by the deviation v� 2 V [3].

Interaction effects will mix different �n,m� states. For
sufficiently small g and v� 2 V, the system primarily re-
sides in the lowest Landau level (LLL) �n � 0�, since other
levels are separated from it by an energy gap $ h̄v�. At
first sight, this might appear to be difficult to achieve for
it requires gn ø h̄v�, which implies either g is exceed-
ingly small or density n is very low [4]. While this is true
for low angular momentum states, it is not true in the high
angular momentum limit. As we shall see, as the number
of vortices increases (corresponding to V very close to
v�), the density is thinned out sufficiently in the xy plane
so that the LLL regime can be attained. We therefore pro-
ceed by assuming that the system is in the LLL. We shall
return later to show that mixing of higher Landau level is
indeed small in the fast rotating limit for large condensates
with typical interactions.

Before proceeding, we note that since the dynamics
along z is identical to the nonrotating case, we can apply
the usual Thomas-Fermi approximation along z to ignore
the kinetic energy j=zCj2 term and justify it at the end.
Our task is then to minimize K �

R
dzK�z�,

K�z� �
Z

dr C��h� 2 VLz 2 m�z��C

1
1
2
g

Z
jCj4 (4)

with the constraint N �
R
jCj2, where m�z� �

m 2
1
2Mv2

z z
2. Since u0,m�r� ~ ume2r2�2a� , a gen-

eral wave function in the lowest Landau level is
f�r� � f�u�e2r2�2a� , where f�u� is an analytic function
of u. Because of the Gaussian cutoff, it is sufficient
to take f as a polynomial of power Q, which can be
written in a factorized form

QQ
a�1�u 2 ba� accord-

ing to the fundamental theorem of algebra, where ba

are the zeros. Since f undergoes a 2p phase change
as u encircles ba, the factor �u 2 ba� describes a
vortex at ba, ba � �x̂ 1 iŷ� ? ba. If Q extends to
infinite, f will be an infinite product. The most gen-
eral form of C within the lowest Landau level is then
C�x,y, z� � C�z�

Q
a�u 2 ba�z��e2r2��2a2

��, or

C�x, y, z� � f�z�f�x,y; z�,
Z
drjfj2 � 1 , (5)

where f�x,y; z� � f�x, y; z��D�z�,

f�x,y; z� � e2r2��2a2
��

Y
a�1

�u 2 ba�z�� , (6)

and D2 �
R
drjfj2 is the normalization constant for f.

The number constraint now becomes
R
dzjfj2 � N . Not-

ing that within LLL,Z
C�LzC � h̄

Z
��r�a��2 2 1� jCj2, (7)

and Eq. (4) becomes
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(8)

where m̃�z� � m 2 h̄V 2
1
2Mv2

z z
2, �r2�f �

R
r2jfj2 dr,

and If �
R
drjfj4. The minimization is performed by

varying 	ba
. To evaluate �r2� and If, we note that

jfj2 � e2H , H � r2�a2 2 2
X
a

lnjr 2 baj .

(9)

The quantity H in Eq. (9) is precisely the energy of a
charge q � 21 particle in two dimension interacting with
a uniform positive charge background rb � p�a2, and a
set of q � 21 negative charges located at 	ba
. From
Eq. (9), we have

=2
�H � 4p

µ
�pa2�21 2

X
a

d�r 2 ba�
∂

, (10)

which is the Gauss’s law for the 2D charged
system. If 	ba
 forms an infinite regular lat-
tice, bn1,n2 � n1c1 1 n2c2 (n1,n2 integers), thenP

a d�r 2 ba� � y21
P

K e
iK?r, where y � jc1 3 c2j is

the size of the unit cell, and K � �1K1 1 �2K2 ��1, �2
integers) are the reciprocal lattice vectors [K1 �
�2p�y�c2 3 ẑ, K2 � �2p�y�ẑ 3 c1]. Equations (10)
and (9) then become

=2
�H �

4
s2 2

4p

y

X
Kfi0

cosK ? r,
1

s2 �
1

a2
�

2
p

y
,

(11)

jfj2 � e2�r�s�2
Y
Kfi0

e2zKcosK?r , zK �
4p

yK2
.

(12)

The Gaussian in Eq. (12) corresponds to replacing the vor-
tex density

P
a d�r 2 ba� in Eq. (10) by its average 1�y

(Ref. [5]). In the 2D electrostatics analog, it corresponds
to reducing the uniform positive background by the average
density of the discrete negative charges. Since the renor-
malized background is less confining for the negative unit
charge at u, we have s . a�. Equation (11) also re-
quires y . y� � pa2

�, for otherwise f will not be nor-
malized. For hexagonal lattice, this means that the distance
c between neighboring vortices cannot be shorter than
�2p�

p
3�1�2a�.

The angular dependence of jfj2 is contained in the prod-
uct in Eq. (12). Since yK2 does not depend on the length
of the basis vector ca but only on the lattice type (i.e.,
square or hexagonal), the product in Eq. (12) determines
mainly the lattice structure, and is less important in de-
termining the overall density profile of the system. We
shall therefore proceed by replacing the vortex density in
Eq. (10) by its average (referred to as “averaged vortex ap-
proximation”), and come back later to consider the effect
of the product in Eq. (12). We shall see that the results
of the averaged vortex approximation are intact except for
changes of numerical factors (of order 1).
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Averaged vortex approximation.—Keeping only the
Gaussian in Eq. (12), the normalized function f in
Eq. (5) becomes f�r�2 �

1
ps2 e2r2�s2

. Equation (8) then
becomes

K�z� � 2

∑
m̃�z� 2

h̄�v� 2 V�
�a��s�2

∏
f2 1

h̄v�ascf4

�s�a��2
.

(13)

The optimal s and f are∑
s�z�
a�

∏2

�
m̃�z�

3h̄�v� 2 V�
,

ascf
2�z� �

�m̃�z��2

9h̄2v��v� 2 V�
. (14)

Since s # a�, the maximum extent of the cloud along
z satisfying this condition (denoted as Rz) is given by
3h̄�v� 2 V� � m̃�Rz�. Note that within the average vor-
tex approximation, f�z� must vanish for jzj . Rz in order
to keep C normalized. We then have

m̃�z� �
1
2
Mv2

z �R2
z 2 z2� 1 3h̄�v� 2 V� . (15)

The number condition N �
R
f2 dz then gives

Rz
az

�

∑
135N

4

µ
asc
az

∂ µ
v�

vz

∂2µ
1 2

V

v�

∂∏1�5

�1 1 . . .� ,

(16)

where �1 1 . . .� � �1 2 3x 1 O�x2� 1 . . .�, and x �
�� v�

vz
�1�5�1 2

V

v�
�3�5��� 135N

4
asc
az �2�5. As we shall see,

x ø 1 for typical experimental parameters and can be
ignored. From Eqs. (11) and (14), the size of the unit cell
is given by

y�z� � pa2
�

µ
1 1

6�v� 2 V�
vz

a2
z

R2
z 2 z2

∂
. (17)

In the fast rotating limit, V ! v�, Eq. (17) is essen-
tially the usual relation ny � 2V��h�M� for estimating
the vortex density but in a more detailed form. (The
connection is easily seen since ny � 1�y, and pa2

� �
pMv��h̄ � 2MV�h.) Note also that even though s2

shrinks quadratically as z increases [Eq. (14)], y�z� (and
hence the spacing between vortices) changes very little ex-
cept near the tips of the condensate at z � 6Rz .
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A useful quantity is �ps2�y�o � �ps2�y�z�0, the
number of vortices inside an area ps2 at the center cross
section (i.e., z � 0). From Eqs. (14) and (17), we haveµ

ps2

y

∂
o

�

µ
pa2

�

y 2 pa2
�

∂
o

�
vz

6�v� 2 V�

µ
R2
z

a2
z

∂
.

(18)

Combining Eqs. (18) and (16), we can express the equi-
librium frequency V and Rz in terms of the number of
vortices in the center cross section,µ

1 2
V

v�

∂
�

µ
y

6ps2

∂5�3

o

µ
vz

v�

∂1�3∑
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4

µ
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,

(19)

Rz
az

�
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4

µ
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∂ µ
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vz

∂ µ
y

6ps2

∂
o

∏1�3

1 . . . .

(20)

From Eqs. (14) and (16), we find that

s2
o�a2

� � �45N�8� �asc�az� �v��vz� �az�Rz�3. (21)

The quantities V and Rz for systems with different par-
ticle number and vortex numbers are shown in Table I.
Finally, we note that the total angular momentum Eq. (7)
of the system is �Lz� � h̄

6N
7 � ps2

y �. The total energy is
E � K 1 V�Lz � 1 mN . To the leading term in N ,
we have E �

v�

243 � vz

v�
�3�1 2

V

v�
�22� azasc � �Rz�az�7; hence

E ~ N7�5.
Mixing of higher Landau levels and the validity of

Thomas-Fermi approximation (TFA).—The validity of
TFA requires �h̄2�2M� j=zCj2 ø m�z� jCj2, which
is h̄2��2MR2

z � ø m or �Rz�az�4 ¿ 1. This is easily
satisfied for the range of parameters listed in Table I.
Mixing of higher Landau level will be unimportant if
the interaction energy density h̄v��a��s�2ascf4 is
much less than that of higher Landau level h̄v�f2,
or G � �a��s�2ascf2 ø 1. From Eq. (14), we have
G � m̃�z � 0���3h̄v��, or G �

vz

6v�
�Rz�az�2. The

values of G for a variety of external parameters are shown
in Table I. Although the recent MIT experiment [1] is
not yet in the LLL regime, it is not too far away. It is
clear from Table I that the LLL regime can be reached
within the capability of current technology. Note also that
as V ! v� the system is driven more toward the LLL
TABLE I. Row �a� corresponds to the parameters of the recent MIT experiment [1]. We have counted the vortices as follows. The
Gaussian density profile jfj2 in Eq. (12) drops by a factor of 100 from the center to a radius r � 2s. If there are 160 vortices
within a radius of 2s, then ps2�y � 40. To remain in the lowest Landau level (LLL), one needs G ø 1. The parameters of
the recent MIT experiment [1] are not yet in the LLL regime. However, the latter can be reached by changing the parameters as
indicated in cases �b� to � f�. For all cases, the quantity x defined after Eq. (16) is �1023.

N�106� v��2p vz�2p ps2�y 1 2 V�v� Rz�az G

a 50 84 20 40 0.64 6.8 1.85
b 50 1000 10 40 0.179 10.9 0.198
c 50 1000 10 100 0.038 9.3 0.146
d 5 84 20 40 0.13 4.6 0.86
e 5 1000 10 40 0.039 7.4 0.092
f 5 1000 10 100 0.008 6.38 0.06
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regime. However, Rz�az also decreases. As Rz becomes
very close to az , Thomas-Fermi approximation will not
be valid and a more accurate treatment along z is needed.
The present treatment is valid for the frequencies V such
that Rz�az . 1, which is satisfied for the cases listed.

Beyond averaged vortex approximation.—A full calcu-
lation of the quantities �r2�f and If in Eq. (4) requires
considering the “structural” product in Eq. (12). We shall
show that in the limit V ! v�, the major effect of the
structural product is to stabilize the hexagonal lattice over
the square lattice. It does not alter the result �r2�f of
the averaged vortex approximation, but changes If from
1��2ps2� to a��2ps2� with a � 1. Thus, all results of
the simple average vortex approximation remain.

To prove the above statements, we recall that e2acosu �P
n�0,1,2,...�21�nIn�a�einu, where In�a� are the modified

Bessel functions. Equation (12) then becomes jfj2 �
e2r2�s2 Q

Kfi0 �
P
nK

�21�nKInK �zK�einKK?r�, or

jfj2 � e2r2�s2
0X

�nK�
L�nK, zK�eiP�nK�?r, (22)

L�nK, zK� �
Y
Kfi0

�21�nKInK �zK� ,

P�nK� �
X
K

KnK , (23)

where
P0 in Eq. (22) means the K � 0 term is excluded,

and �nK, zK� denotes the entire sets 	nK
 and 	zK
. The
normalized function jfj2 is then

jfj2 �
e2r2�s2

ps2

Q
Kfi0 e

2zKcosK?r

Zs2�zK�
, (24)

Zs2�zK� �
X
�nK�

L�nK, zK�e2s2P�nK�2�4. (25)

We then have �r2�f � s2g,
R
jfj4 � a��2ps2�,

where g � Zs2�zK�21
P

�nK� L�nK,zK�e2�sP�nK��2�2 �1 2
s2P�nK�2

4 �, and a � Zs2�2�2zK� Zs2 �zK�22. As V ! v�,
s2P�nK�2 ¿ 1 for all P�nK� fi 0. Only terms in Eq. (25)
with

P
K KnK � 0 are important. This implies g � 1,

�r2�f � s2, and

a � Z̃�2zK���Z̃�zK��2, (26)

Z̃�zK� �
00X
nK

Y
Kfi0

�21�nKInK �zK� , (27)

where
P00 means summing over 	nK
 with such thatP

K KnK � 0.
To evaluate a, we rewrite Z̃ as Z̃�zK� �

W�zK�
P00

�nK�
Q

Kfi0�21�nK ĨnK �zK�, where W �zK� �Q
Kfi0 I0�zK�, and Ĩn�z � � In�z ��I0�z �. Let us de-

fine zo � zKo , where Ko is the shortest recipro-
cal lattice vector. Since zo �

p
3��2p� and 1�p

for hexagonal and square lattices, respectively, and
since In�z � �

P`
k�0

�z�2�n12k

k! �n1k�! , the sums in Eq. (26)
are fast convergent. Regarding Z̃ formally as a
power series of zo , we have for the hexagonal lat-
tice, W �zK� � 1 1 �3z2

o�2�b1 1 . . . , and
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Z̃�zK� � W�zK�
µ
1 1

3z 2
o

4
b1 2

z 3
o

4
b2 1 . . .

∂
, (28)

where bn �
P`

�1�1

P`
�2�0��2

1 1 �2
2 1

p
3 �1�2�22n. The

z2
o term inW comes from expanding Io�zK� in zo to second

order in zo . The z2
o term in Eq. (28) comes from pairs of

Ĩ1 terms in Z̃. The factor b1 is the result of summing
over all such pairs. The z3

o term in Eq. (28) comes from
triplets of vectors of the same length in Eq. (27). These
triplets give rise to a negative sign which lowers the energy
of the system. The factor b2 is the result of summing
all these isosceles triplets. Using Eqs. (28) and (26), we
have a � 1 1

9
2z 2

ob1 2
1
4z 3

ob2 1 . . . to orders less than
z4
o . The result is a � 1.38 (b1 � 1.218, b2 � 1.001,

zo � 0.276).
Repeating the same calculation for the square lat-

tice, we have, to the lowest order in zo , W �zk� �
1 1 z2

og1 1 . . . , Z̃�zK� � W�zk� �1 1
1
2z 2

og1 1 . . .�,
where g1 �

P`
�1�1

P`
�2�0��2

1 1 �2
2�22 � 1.506, which

gives a � 1 1 3z 2
og1 1 . . . to orders less than z4

o . The
result is a � 1.45, since zo � 0.318. The square lattice
has energy higher than the hexagonal one because it has
no negative triplet terms.

Final remarks.—We have shown that as the number
of vortices increases, a Bose-Einstein condensate will
become quantum Hall-like. A natural question is what
happens if the angular momentum of the system keeps
increasing. We have seen that Rz decreases as angular
momentum increases. Eventually, it will reduce to the
point where only one harmonic state in the z direction will
be occupied. In such “ultrafast” rotating limit, fluctuation
effects in the xy plane will be important, and one has to
go beyond mean field treatment. The discussion of the
ultrafast limit will be presented elsewhere.
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