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1 Basic bifurcations

1.1 Fixed points and linear stability

A dynamical system is defined simply by:

ẋ = f(x), x, f vectors inRN (1)

wherex may be as simple as a scalar (N = 1) or as complicated as a velocity field (N = ∞) or its
numerical discretization (N from 10 to109). A fixed pointx̄ is a solution to:

0 = f(x̄) (2)

Thelinear stability of x̄ is determined by the behavior of an infinitesimal perturbationǫ(t). ForN = 1:

d

dt
(x̄+ ǫ) = f(x̄+ ǫ)

��̄̇x+ ǫ̇ = ���f(x̄) + f ′(x̄)ǫ+
1

2
f ′′(x̄)ǫ2 + · · · ≈ f ′(x̄)ǫ

ǫ(t) = etf
′(x̄)ǫ(0) (3)

A perturbationǫ will grow exponentially in time iff ′(x̄) > 0, i.e. if x̄ is unstable. In contrast, if
f ′(x̄) < 0, thenǫ decreases exponentially in time andx̄ is stable,

The functionf depends on a parameterµ, for example a Reynolds or Rayleigh number. Asteady
bifurcation is a change in the number of fixed points (roots off ); this is closely connected to stability.

1.2 Saddle-node bifurcations

The simplest function that can change the number of its roots asµ is varied is a quadratic polynomial,
like that shown in figure 1. Thenormal form of thesaddle-node bifurcation is

f(x, µ) = µ− x2 (4)

The fixed points of (4) are: x̄± = ±√
µ (5)

which exist only forµ > 0. Their stability is determined by

f ′(x̄±) = −2x̄± = −2(±√
µ) = ∓2

√
µ (6)

which shows that̄x+ =
√
µ is stable, whereas̄x− = −√

µ is unstable. Thebifurcation diagram of figure
2 shows the steady statesx̄± as a function ofµ, along with their stability.
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Figure 1: The functionf = µ− x2 has 0, 1, or 2 roots, ifµ < 0, µ = 0, orµ > 0.

a) saddle-node b) transcritical c) stabilized transcritical

Figure 2: Bifurcation diagrams for (a) a saddle node bifurcation, (b) a transcritical bifurcation, and
(c), a transcritical bifurcation with an additional stabilizing saddle-node bifurcation. Stable branches are
shown as solid curves, unstable branches as dashed curves.

1.3 Transcritical bifurcations

If the constraints on the problem are such as to forbid a constant term in theTaylor expansion off , then
the truncated Taylor expansion leads to the normal form of atranscritical bifurcation:

ẋ = µx− x2 (7)

The search for fixed points and their linear stability leads to:

0 = x̄(µ− x̄) =⇒
{

x̄ = 0
x̄ = µ

f ′(x̄) = µ− 2x̄ =

{

µ for x̄ = 0
−µ for x̄ = µ

(8)

Thusx̄ = 0 is stable forµ < 0, unstable pourµ > 0, whereas̄x = µ does the opposite: these fixed points
merely exchange their stability. Since trajectories of (7) go to infinity, a higher-order term is sometimes
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a) supercritical b) subcritical c) stabilized subcritical

Figure 3: Pitchfork bifurcation diagrams A pitchfork bifurcation is (a) supercritical if the new branches
are stable and (b) subcritical if they are unstable. (c) Additional saddle-node bifurcations prevent trajec-
tories from diverging to infinity.

added to the normal form as shown in figure 2 in order to stabilize the trajectories, e.g.

ẋ = µx− x2 − αx3 (9)

1.4 Pitchfork bifurcations

If symmetry requiresf(x) to be odd inx, the resulting cubic polynomial takes one of two forms:

f(x, µ) = µx− x3 (10)

f(x, µ) = µx+ x3 (11)

The corresponding bifurcation diagrams are given in figure 3. Equation(10) is the normal form of a
supercritical pitchfork bifurcation. The fixed points and stability are:

0 = x̄(µ− x̄2) =⇒
{

x̄ = 0 for all µ f ′(0) = µ
x̄ = ±√

µ for µ > 0 f ′(±√
µ) = −2µ < 0 for µ > 0

(12)

The fixed point̄x = 0 is stable forµ < 0 and becomes unstable atµ = 0, where new branches of stable
fixed pointsx̄ = ±√

µ are created. For the subcritical case, we have

0 = x̄(µ+ x̄2) =⇒
{

x̄ = 0 for all µ f ′(0) = µ
x̄ = ±√−µ for µ < 0 f ′(±√−µ) = −2µ > 0 for µ < 0

(13)

Contrary to the supercritical case, the fixed points±√
µ exist in the ŕegionµ < 0 where x̄ = 0 is

stable and they are unstable. A fifth-order term is sometimes added to (11) to prevent trajectories from
diverging to infinity.
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2 Systems with two or more dimensions

2.1 Linear stability analysis in two or more dimensions

We now consideṙx = f(x), with x, f ∈ RN , N > 1. To study the linear stability of a fixed point̄x
satisfying0 = f(x̄), we perturb it by an infinitesimalǫ(t) ∈ RN .

d

dt
(x̄+ ǫ) = f(x̄+ ǫ)

��̄̇x+ ǫ̇ = ���f(x̄) +Df(x̄) ǫ+ ǫ D2f(x̄) ǫ+ . . . (14)

ǫ̇ = Df(x̄) ǫ (15)

In (15),Df(x̄) is theJacobian of f , i.e. the matrix of partial derivatives, evaluated at the fixed pointx̄.
To clarify its meaning we rewrite these equations explicitly for each component:

ǫ̇i =
∂fi
∂xj

(x̄) ǫj (16)

whose solution is
ǫ(t) = eDf(x̄)tǫ(0) (17)

The behavior of (17) depends on its spectrum, i.e. its set of eigenvalues.It can be shown that (in most
cases) the eigenvalues of the exponential of a matrixA are the exponential of the eigenvalues. Let
A = V ΛV −1. Then

eAt = I + tA+
t2

2
A2 +

t3

6
A3 + . . .

= V V −1 + tV ΛV −1 +
t2

2
V ΛV −1 V ΛV −1 +

t3

6
V ΛV −1 V ΛV −1 V ΛV −1 + . . .

= V

[

I + tΛ +
t2

2
Λ2 +

t3

6
Λ3 + . . .

]

V −1

= V eΛtV −1 (18)

The same reasoning can be applied to any analytic functionf of a matrix, using the Taylor series of
f(A). Thus, we only need to know how to take exponentials of the matrix of eigenvalues.

For a2× 2 matrix with real eigenvalues, we have:

Λ =

(

λ1 0
0 λ2

)

=⇒ etΛ =

(

etλ1 0
0 etλ2

)

(19)

For a2× 2 matrix with complex eigenvaluesµ± iω, we have:

Λ =

(

µ −ω
ω µ

)

=⇒ etΛ =

(

eµt cos(ωt) −eµt sin(ωt)
eµt sin(ωt) eµt cos(ωt)

)

(20)
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For a mixture of real and complex eigenvalues, as in the example depicted in figure 4, we have:

Λ =









λ1 0 0 0
0 µ −ω 0
0 ω µ 0
0 0 0 λ4









=⇒ exp(tΛ) =









eλ1t 0 0 0
0 eµt cos(ωt) −eµt sin(ωt) 0
0 eµt sin(ωt) eµt cos(ωt) 0
0 0 0 eλ4t









(21)

Figure 4: Eigenvalues of a Jacobian having two real eigenvalues and a pair of complex conjugate eigen-
values, with0 > Re(λ1) > Re(λ2) = Re(λ3) > Re(λ4).

The question “stable or unstable?” becomes “stable or unstablein which directions?” The fixed point̄x
is considered to be linearly stable if the real parts ofall of the eigenvalues ofDf(x̄) are negative, and
unstable if evenone of the eigenvalues has a postive real part. The reasoning behind this is that initial
random perturbations will contain components in all directions. If there is instability in one direction,
then this component will grow and we will diverge away from̄x, initially in the unstable direction.

2.2 Circle pitchfork bifurcation

We consider the evolution equation
dz

dt
= (µ− α|z|2)z (22)

The steady states of (22) arez = 0 and |z| =
√

µ/α, which exists only forµ/α > 0, as illustrated
in figure 5. We considerµ to be the bifurcation parameter, such as a relative Reynolds number(Re −
Rec)/Rec or Rayleigh number(Ra − Rac)/Rac. The transition occurring atµ = 0 is called a circle
pitchfork, because a “circle” of steady states,z =

√

µ/α eiθ, is created asµ crosses zero. We may write
(22) in Cartesian coordinatesz = x+ iy:

dx

dt
= (µ− α(x2 + y2))x (23a)

dy

dt
= (µ− α(x2 + y2))y (23b)
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Figure 5: Circle pitchfork bifurcation. The upper diagrams correspondto the supercritical case, the lower
diagrams to the subcritical case. Leftmost are the bifurcation diagrams in the(µ, r) plane, middle and
rightmost are phase portraits in the(x, y) plane. Stable steady states are designated by solid dots or the
solid curve. Unstable steady states are shown as hollow dots or the dashedcurve.

or in polar coordinatesz = reiθ:

d (reiθ)

dt
=

(

dr

dt
+ ri

dθ

dt

)

eiθ = (µ− αr2) r eiθ (24)

dr

dt
= (µ− αr2) r (25a)

dθ

dt
= 0 (25b)

Equation (25a) shows that the amplituder undergoes an ordinary pitchfork bifurcation and (25b) shows
that the phaseθ shows no tendency to move. The stability of the trivial state and the bifurcatingcircle of
states can be calculated from either (23) or (25) via the Jacobian matrix:

J(x, y) =

(

µ− α(3x2 + y2) −2αxy
−2αxy µ− α(x2 + 3y2)

)

(26)

J(r, θ) =

(

µ− α3r2 0
0 0

)

(27)
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To calculate the stability of the trivial state, we use

J(x = 0, y = 0) =

(

µ 0
0 µ

)

(28)

which hasµ as a double eigenvalue. The trivial state (0,0) is stable forµ < 0 and has two unstable
directions (corresponding to the two directions of the plane) forµ > 0. Note that the polar formJ(r, θ)
of equation (27) would seem to indicate that the two eigenvalues of (0,0) areµ and 0. This contradictory
result arises from the fact thatθ is not well defined atr = 0, so thatJ(r, θ) is also not well defined at
r = 0.

For the bifurcating circle of states, we may write

J(r =
√

µ/α, θ) =

(

µ− 3µ 0
0 0

)

=

(

−2µ 0
0 0

)

(29)

whose eigenvalues are−2µ and 0. The circle pitchfork can be supercritical or subcritical, according to
the sign ofα. If α > 0, then the circle of bifurcating states exists forµ > 0 and the eigenvalue−2µ
corresponds to contraction onto the circle

√

µ/α, i.e. stability. Ifα < 0, then the circle of bifurcating
states exists forµ < 0 and the eigenvalue−2µ corresponds to expansion away from the circle, i.e.
instability. The eigenvalue 0 corresponds to the phase invariance, i.e. the fact that the system shows no
tendency to move in the directionθ. The eigenvalues can be confirmed by evaluatingJ(x, y) of equation
(26) forx2 + y2 = r2 = µα:

J(x, y) =

(

−2αx2 −2αxy
−2αxy −2αy2

)

(30)

whose eigenvalues are:

− α(x2 + y2)±
√

(α(x2 − y2))2 + 4αx2y2 = α(x2 + y2)±
√

α(x2 + y2))2 = −µ± µ (31)

The eigenvector corresponding to eigenvalueµ = 0 resulting from phase invariance, called themarginal
direction, points in theθ direction, i.e. it is(0, 1) in the polar representation and(−y, x) in the Cartesian
representation.

2.3 Hopf Bifurcation

If λ1, λ2 are a complex conjugate pair whose real partµ changes sign, then aHopf bifurcation takes
place. Its normal form, i.e. the simplest nonlinear equation displaying this behavior, can be written:

ż = (µ+ iω)z − |z|2z (32)

Writing z = x+ iy, (32) becomes

ẋ+ iẏ = (µ+ iω)(x+ iy)− (x2 + y2)(x+ iy) (33)

ẋ = µx− ωy − (x2 + y2)x (34)

ẏ = ωx+ µy − (x2 + y2)y (35)
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Figure 6: Hopf bifurcations. Top: supercritical case,ż = µz − |z|2z. Bottom: subcritical case,̇z =
µz+|z|2z. Left and middle: behavior of trajectories forµ < 0 and forµ > 0. The solid points and circles
correspond to stable fixed points and limit cycles. The hollow points and dashed circles correspond to
unstable fixed points and limit cycles. Right: bifurcation diagrams showing the solutions as a function
of µ. The solid curves correspond to stable solution branches, the dashed curves to unstable solution
branches. The ellipses represent one member of the branch of limit cycles.

We can also use a polar representationz = reiθ. The normal form (32) then becomes:

(ṙ + irθ̇)eiθ = (µ+ iω)reiθ − r2reiθ (36)

ṙ = µr − r3 (37)

θ̇ = ω (38)

Equation (37) describes a pitchfork in the radial direction, and (38) describes rotation. The fixed points
of (37) arer = 0 andr =

√
µ (where we retain onlyr > 0). For the normal form, we can calculate

the limit cycle, that is, the periodic solution of (32) approached by all trajectories, regardless of initial
condition.

z(t) =
√
µeiω(t−t0) (39)

As for the pitchfork, there also exists asubcritical version of the Hopf bifurcation, with normal form:

ż = (µ+ iω)z + |z|2z (40)

The behavior of systems (32) and (40) in the neighborhood of a Hopf bifurcation is shown in figure 6.
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