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1 Basc bifurcations

1.1 Fixed pointsand linear stability
A dynamical system is defined simply by:
i = f(x), z, f vectors inR™Y (1)

wherex may be as simple as a scald (= 1) or as complicated as a velocity fiel&/(= oo) or its
numerical discretization\{ from 10 to10). A fixed pointz is a solution to:

0= f(z) (2)

Thelinear stability of z is determined by the behavior of an infinitesimal perturbatieh For N = 1:

d , _ _
a(x—i—e) = f(z+e
t+é¢ = fay+ f’(a‘:)e—i—%f”(f)ez—i----%f,(:i")e
et) = /' @¢0) 3)

A perturbatione will grow exponentially in time if f/(z) > 0, i.e. if Z is unstable. In contrast, if
f(z) < 0, thene decreases exponentially in time ands stable,

The function f depends on a parametgr for example a Reynolds or Rayleigh number. stéady
bifurcation is a change in the number of fixed points (rootg §ifthis is closely connected to stability.

1.2 Saddle-node bifurcations

The simplest function that can change the number of its rootsiavaried is a quadratic polynomial,
like that shown in figur€l1l. Thieormal form of the saddle-node bifurcation is

flz,p) = p—2? 4

The fixed points of((4) are: Ty =+ (5)
which exist only foru > 0. Their stability is determined by

fl(@4) = —20 = —2(£/j) = T2/ (6)

which shows that | = ,/p is stable, whereas_ = —, /i is unstable. Théifurcation diagram of figure
[2 shows the steady states as a function of:, along with their stability.
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Figure 2: Bifurcation diagrams for (a) a saddle node bifurcation, (bamstritical bifurcation, and
(c), a transcritical bifurcation with an additional stabilizing saddle-nodertétion. Stable branches are
shown as solid curves, unstable branches as dashed curves.

1.3 Transcritical bifurcations

If the constraints on the problem are such as to forbid a constant term Tayter expansion of, then
the truncated Taylor expansion leads to the normal formtodirascritical bifurcation:

&= px — x? (7
The search for fixed points and their linear stability leads to:

z=0

P ®)

o om pw forz=0
F@=n-2={ T

0—£(u—£):>{

Thusz = 0 is stable fon: < 0, unstable pour. > 0, whereas = i does the opposite: these fixed points
merely exchange their stability. Since trajectoried of (7) go to infinity, a highader term is sometimes
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Figure 3: Pitchfork bifurcation diagrams A pitchfork bifurcation is (a) eugpitical if the new branches
are stable and (b) subcritical if they are unstable. (c) Additional sadliie-bifurcations prevent trajec-
tories from diverging to infinity.

added to the normal form as shown in figlire 2 in order to stabilize the tragsterg.

&= px — 2 — aax® (9)

1.4 Pitchfork bifurcations

If symmetry requires (=) to be odd inz, the resulting cubic polynomial takes one of two forms:
fla,p) = po—a® (10)
flz,p) = po+a2° (11)

The corresponding bifurcation diagrams are given in figure 3. Equfidhis the normal form of a

supercritical pitchfork bifurcation. The fixed points and stability are:

oy -2 z=0 for all 1 1(0)=p
0=2(n w):{x:i\/ﬁ forpu >0 f'(Eyv/m) = —2u < 0for >0
The fixed pointz = 0 is stable foru < 0 and becomes unstableat= 0, where new branches of stable
fixed pointsz = +, /1 are created. For the subcritical case, we have

(12)

z=0 for all u f10)=p

T=4y—p forpu<o0 fi(Ey/—n) = —2p > 0forpu <0
Contrary to the supercritical case, the fixed poiity;: exist in the égiony < 0 wherez = 0 is
stable and they are unstable. A fifth-order term is sometimes added to (I'Evenptrajectories from
diverging to infinity.

0= #(u+ ) :>{ (13)



2 Systemswith two or more dimensions

2.1 Linear stability analysisin two or more dimensions

We now consider: = f(z), with z, f € RY, N > 1. To study the linear stability of a fixed poimt
satisfyingd = f(z), we perturb it by an infinitesimal(t) ¢ R,

d

£(§:+e) = f(i’—i—e)
F+é¢ = )+ Df(T)e+eD*f(T)e+... (14)
¢=Df(z) e (15)

In (I5), D f(z) is theJacobian of f, i.e. the matrix of partial derivatives, evaluated at the fixed point
To clarify its meaning we rewrite these equations explicitly for each component:

. 0fi

€ =
a.%'j

(Z) € (16)
whose solution is
e(t) = ePT@ie(0) (17)

The behavior of[(17) depends on its spectrum, i.e. its set of eigenvdtuem be shown that (in most
cases) the eigenvalues of the exponential of a matriare the exponential of the eigenvalues. Let
A=VAV~! Then

12 3
At — I+tA+§A2+EA3+...

12 t3
= VV 4 tVAV L 4+ §VAV‘1 VAV 4+ EVAV—1 VAV L VAV 4 ..
2 3
=V I+tA+§A2+EA3+... vl
= VeMy! (18)

The same reasoning can be applied to any analytic fungtioha matrix, using the Taylor series of
f(A). Thus, we only need to know how to take exponentials of the matrix of eijers/a

For a2 x 2 matrix with real eigenvalues, we have:

A0 e 0
A = < 01 )\2 > :> etA = < O et)\Q > (19)
For a2 x 2 matrix with complex eigenvalugs+ iw, we have:
(o —w i [ e'cos(wt) —etsin(wt)
A= < woou > — ¢ = ( eltsin(wt) et cos(wt) (20)
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For a mixture of real and complex eigenvalues, as in the example depictedrieldigwe have:

MO0 0 Mt 0 0 0
10 p —w _ 0 ettcos(wt) —ettsin(wt) 0
A= 0 w pu 0 — exp(th) = 0 eMsin(wt) et cos(wt) 0 (1)
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Figure 4: Eigenvalues of a Jacobian having two real eigenvalues aaid af pomplex conjugate eigen-
values, with0 > Re(\1) > Re(A2) = Re(A3) > Re(\s).

The question “stable or unstable?” becomes “stable or unsitakiiich directions?” The fixed pointz
is considered to be linearly stable if the real partglbfof the eigenvalues ob f(z) are negative, and
unstable if everone of the eigenvalues has a postive real part. The reasoning behind thi isittal
random perturbations will contain components in all directions. If there talaigy in one direction,
then this component will grow and we will diverge away frammnitially in the unstable direction.

2.2 Circlepitchfork bifurcation

We consider the evolution equation

% (u—aleP) 22
The steady states df (22) ate= 0 and|z| = \/u/a, which exists only foru/a > 0, as illustrated
in figure[3. We consider to be the bifurcation parameter, such as a relative Reynolds nuiilaer
Re.)/Re. or Rayleigh numbefRa — Ra.)/Ra.. The transition occurring gt = 0 is called a circle
pitchfork, because a “circle” of steady states: /u/a e, is created ag crosses zero. We may write
(22) in Cartesian coordinates= x + iy:

B o p— ol ) (232)
% = (n—a@®+y*)y (23b)
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Figure 5: Circle pitchfork bifurcation. The upper diagrams correspotige supercritical case, the lower
diagrams to the subcritical case. Leftmost are the bifurcation diagrams (i thg plane, middle and
rightmost are phase portraits in the, y) plane. Stable steady states are designated by solid dots or the
solid curve. Unstable steady states are shown as hollow dots or the dasted

or in polar coordinates = re®:

d(re®)  [dr AN e o ip
pramb (dt+mdt>e =(pu—ar‘)re (24)
% = (p—ar®)r (25a)
do
= = 25b
i 0 (25b)

Equation[[25a) shows that the amplitudendergoes an ordinary pitchfork bifurcation ahd (25b) shows
that the phasé shows no tendency to move. The stability of the trivial state and the bifurceiticlg of
states can be calculated from eitHer| (23)_of (25) via the Jacobian matrix:

_ p— a(3z? + y?) —2axy
Sa) = (PTG ) (26)
— T2
sy = (P70 (27)



To calculate the stability of the trivial state, we use

J(sz,yzO):(g 2) (28)

which hasu as a double eigenvalue. The trivial state (0,0) is stableufer 0 and has two unstable
directions (corresponding to the two directions of the plane)for 0. Note that the polar fornd (r, 6)
of equation[(2l7) would seem to indicate that the two eigenvalues of (0,@)amd 0. This contradictory
result arises from the fact thatis not well defined at = 0, so thatJ(r, #) is also not well defined at
r=0.

For the bifurcating circle of states, we may write
—3u 0 —2u 0
J(rzx/u/aﬁ):(*‘o“ 0)=( o 0) (29)

whose eigenvalues are2, and 0. The circle pitchfork can be supercritical or subcritical, accgrttin
the sign ofa. If a > 0, then the circle of bifurcating states exists for> 0 and the eigenvalue-2u
corresponds to contraction onto the cirQ}%, i.e. stability. Ifa < 0, then the circle of bifurcating
states exists fop < 0 and the eigenvalue-2; corresponds to expansion away from the circle, i.e.
instability. The eigenvalue O corresponds to the phase invariance, i.eacthhdt the system shows no
tendency to move in the directigh The eigenvalues can be confirmed by evaluatifg, y) of equation
@28) forz? + 4% = 12 = pa:

J(z,y) = < (30)

—2az? —2axy
—2azy —2ay?
whose eigenvalues are:

—a(@® + ) £ V(a(z? - y?))? +dax?y? = a(z® + y*) £ Va@® +¢?)2 = —ptp (31)

The eigenvector corresponding to eigenvalue 0 resulting from phase invariance, called tharginal
direction, points in thé direction, i.e. itis(0, 1) in the polar representation aféy, =) in the Cartesian
representation.

2.3 Hopf Bifurcation

If A1, Ao are a complex conjugate pair whose real pathanges sign, then ldopf bifurcation takes
place. Its normal form, i.e. the simplest nonlinear equation displaying thisvizehean be written:

= (p+iw)z — 2%z (32)
Writing z = x + 1y, (32) becomes
i4iy = (u+iw)(z+iy) — (22 +y?)(z +iy) (33)
i o= pr—wy— (22 +9%)z (34)
§ o= wetpy— (@ +y°)y (35)
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Figure 6: Hopf bifurcations. Top: supercritical case= pz — |z|?2. Bottom: subcritical case; =
pz+|z|%2. Leftand middle: behavior of trajectories for< 0 and fory > 0. The solid points and circles
correspond to stable fixed points and limit cycles. The hollow points andedasitles correspond to
unstable fixed points and limit cycles. Right: bifurcation diagrams showingdlwians as a function
of 4. The solid curves correspond to stable solution branches, the daghes ¢o unstable solution
branches. The ellipses represent one member of the branch of limit.cycles

We can also use a polar representationa r¢*?. The normal form[(32) then becomes:

(r+ iré)ew = (u+ iw)reie — r2pet? (36)
7:“ = ur—r3 (37)
0 = w (38)

Equation [(3F) describes a pitchfork in the radial direction, (38)ribe=s rotation. The fixed points
of (317) arer = 0 andr = /u (where we retain only > 0). For the normal form, we can calculate
the limit cycle, that is, the periodic solution of (B2) approached by all trajectoriesrdégss of initial
condition.

2(t) = et (39)

As for the pitchfork, there also existssabcritical version of the Hopf bifurcation, with normal form:
2= (p4iw)z+ |22 (40)
The behavior of systemb (32) aiid(40) in the neighborhood of a Hapfdaifion is shown in figurlgl 6.
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