Frustrated Magnets (2) Materials Survey

Leon Balents Boulder summer school, 2008

AB₂X₄ spinels

cubic $Fd\overline{3}m$

 One of the most common mineral structures

Common valence:

𝔹 A²⁺,B³⁺,X^{2−}

⌀ X=0,S,Se

Deconstructing the spinel

A atoms: diamond lattice

Bipartite: not
 geometrically
 frustrated

Deconstructing the spinel

B atoms: pyrochlore

decorate the plaquettes
 of the diamond lattice

ACr₂O₄ spinels

- ø pyrochlore lattice
- S=3/2 Isotropic
 moment
- X=O spinels: B-B distance close enough for direct overlap
 - dominant AF
 nearest-neighbor
 exchange

H=0 Susceptibility

Frustration:

1	Zn	Cd	Hg
Θ _{cw} (K)	-390	-70	-32
T _N (K)	12	7.8	5.8
f	33	9	6

Degeneracy

Heisenberg model

$$H = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j = \frac{1}{2} \sum_t \left(\sum_{i \in t} \vec{S}_i \right)^2 + \text{const.}$$

 Ground state constraint: total spin 0 per tetrahedron

Quantum mechanically: not possible

No LRO (Reimers)

No LRO (Reimers)Dipolar correlations

$$S_i^{\mu} = b_{ab}^{\mu}$$

No LRO (Reimers)Dipolar correlations

$$S_i^{\mu} = b_{ab}^{\mu}$$

Unusual "ring"
 correlations seen in
 CdCr₂O₄ related

Y₂Ru₂O₇: J. van Duijn
 et al, 2007

Ordering

- Many perturbations important for ordering:
 - Ordering:
 Spin-lattice coupling
 Further exchange
 Spin-orbit effects
 - Quantum corrections

ZnCr₂O₄

CdCr₂O₄

HgCr₂O₄

S.H. Lee + many others

Magnetization Plateaus

• Classically: $M = M_s H/H_s$

Plateau indicates 3:1
 structure

H. Ueda at al, 2005/6

Magnetization Plateaus

Ø Plateau mechanism:

 spin-lattice coupling favors collinearity

 Order on plateau may be selected by

spin-lattice

quantum effects

"R" state observed in neutrons

Matsuda et al

A-site spinels

V. Fritsch et al. PRL 92, 116401 (2004); N. Tristan et al. PRB 72, 174404 (2005); T. Suzuki et al. (2006)

Naively unfrustrated

Why frustration?

 Roth, 1964: 2nd and 3rd neighbor exchange not necessarily small
 Exchange paths: A-X-B-X-B comparable
 Minimal model
 J₁-J₂ exchange

Ground state evolution

q

Spiral surfaces:

Monte Carlo

 $MnSc_2S_4$

f = 11 at J₂/J₁ = 0.85

Phase Diagram

- Entropy and J₃
 compete to determine
 ordered state
- Spiral spin liquid regime has intensity over entire spiral surface

Comparison to Expt.

Diffuse scattering

Expt.

Ordered state
(qq0) spiral
Specific heat?

agrees with theory for FM J₁

CS₂CuCl₄

 Spatially anisotropic triangular lattice

$$H = \frac{1}{2} \sum_{ij} \left[J_{ij} \vec{S}_i \cdot \vec{S}_j - \vec{D}_{ij} \cdot \vec{S}_i \times \vec{S}_j \right]$$

 $\vec{D} = D\hat{a}$

couplings:
 J=0.37meV
 J'=0.3J
 D=0.05J

Neutron scattering

Coldea et al, 2001/03: a 2d spin liquid?

Very broad spectrum similar to 1d (in some directions of k space). Roughly fits power law. Fit of "peak" dispersion to spin wave theory requires adjustment of J,J' by 40% – in opposite directions!

Dimensional reduction?

 Frustration of interchain coupling makes it less "relevant"
 First order energy correction vanishes

The Leading effects are in fact $O[(J')^4/J^3]!$

Dimensional reduction?

Frustration of interchain coupling makes it less "relevant"
 First order energy correction vanishes.
 Numerics: J'/J < 0.7 is "weak"

Excitations

Build 2d excitations from 1d spinons
 Exchange: $\frac{J'}{2} \left(S_i^+ S_j^- + S_i^- S_j^+ \right)$

 Expect spinon binding to lower inter-chain kinetic energy

Schroedinger equation

Broad lineshape: "free spinons"

Power law" fits well to free spinon result
Fit determines normalization

Bound state Compare spectra at J'(k)<0 and J'(k)>0:

Curves 24spinorth RAY w/experimentatheresultition

Transverse dispersion

Bound state and resonance

Solid symbols: experiment Note peak (blue diamonds) coincides with bottom edge only for J'(k)<0

Spectral asymmetry

Vertical lines: J'(k)=0.