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AB2X4 spinels

One of the most 
common mineral 
structures

Common valence:

A2+,B3+,X2-

X=O,S,Se

A

X

B

cubic Fd3m



Deconstructing the 
spinel

A atoms: diamond lattice

Bipartite: not 
geometrically 
frustrated

A



Deconstructing the spinel

B atoms: pyrochlore

decorate the plaquettes 
of the diamond lattice

B



ACr2O4 spinels

pyrochlore lattice

S=3/2 Isotropic 
moment

X=O spinels: B-B 
distance close enough 
for direct overlap

dominant AF 
nearest-neighbor 
exchange



H=0 Susceptibility

Frustration:
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Degeneracy

Heisenberg model

Ground state constraint: total spin 0 per 
tetrahedron

Quantum mechanically: not possible
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Classical spin liquid

No LRO (Reimers)



Classical spin liquid

No LRO (Reimers)

Dipolar correlations

following. The pyrochlore lattice consists of corner shar-
ing tetrahedra, and the Hamiltonian can be rewritten, up
to a constant, as H ! "1=2#P!"

P

i!!Si#2, where the sum
in parentheses runs over all four spins at the corners of a
given tetrahedron, !, and the outer sum is over all
tetrahedra. Hence, the ground states (minimum energy
configurations) are such that for each tetrahedron and
each spin component ",

X

i2!

S"i ! 0: (1)

This can be turned into a manifest conservation law on
the dual—bipartite diamond—lattice, the sites of which
are given by the centers of the tetrahedra while the spins
sit at the midpoints of its bonds.

First, we orient each bond, #, by defining a unit vector
ê#, which points along the bond from one sublattice to the

other; see Fig. 2. Next we define N vector fields on each
bond, B"

# ! S"# ê#, where S"# denotes the spin on bond #.
The ground state constraint (1) implies that each B"

separately forms a set of solenoidal fields at T ! 0, r $
B" ! 0. (Here and in the following, we label spin com-
ponents by Greek superscripts, sublattices by Greek sub-
scripts, and the components of Cartesian 3-vectors by
Roman subscripts.)

For N ! 1, spin flips connecting two ground states
correspond to reversing the direction of a closed loop of
‘‘magnetic flux,’’ B; evidently, B averages to zero over
such a flippable cluster of spins. Upon coarse graining, a
high density of flippable clusters (and therefore a large
number of ground states) translates into a small (well-
averaged) coarse-grained ~B. We now posit that this fea-
ture carries through to N > 1, so that states with small
values of ~B" will in general be (entropically) favored.
This is captured most simply by introducing a weight
functional, $:

$%f~B""x#g& / exp
!

'K
2

Z

d3x
X

"
"~B"#2

"

(2)

provided the solenoidal constraint is implemented; K is
the stiffness constant and the integral runs over all of
space. (If we solve the constraint by introducing a vector
potential for each component, B" ! r(A", we are led
to the Maxwell action.)

From this we can deduce the long-distance correlators,

h ~B"
i "x# ~B%

j "0#i / &"%
3xixj ' r2&ij

r5
; (3)

which are dipolar as advertised [15]. Note that the 1=r3

algebraic long-distance behavior does not lead to a loga-
rithmic peak in the structure factor: its leading contribu-
tion is canceled by the oscillatory dipolar form of the
angular integral [11]. There is no divergence of fluctua-
tions at any given wave vector.

This argument does not take into account thermal
fluctuations out of the ground state manifold. These are
gapped, and thus unimportant for T ! 0, for N ! 1.
However, for continuous spins they endow each micro-

FIG. 2 (color online). The centers of the tetrahedra define
(the two sublattices of) the diamond lattice, denoted by black
and gray dots. Vectors ê# define orientation of the diamond
bonds, and the four sublattices of the pyrochlore lattice.
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FIG. 1 (color online). Top: %hhk& structure factor for N ! 1
[dark ! low intensity; the x (y) axis corresponds to h (k)
ranging from '2 to 2]. Middle: Ising correlations at T ! 0
(bottom: Heisenberg, at T=J ! 0:005) from Monte Carlo simu-
lations (symbols) compared to T ! 0 large-N correlations
(lines): G0

11"x# ! hS1"x#S1"0#i, for two inequivalent directions,
[101] and [211], multiplied by the cube of the distance, x3. Error
bars are around 5( 10'6x3 (5( 10'5x3). Different system
sizes L as indicated. There is no fitting parameter.
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Classical spin liquid

Unusual “ring” 
correlations seen in 
CdCr2O4 related

Y2Ru2O7: J. van Duijn 
et al, 2007

Although direct structural probes are unavailable for quantum
Hall samples, we can monitor the correlated spin state in a
frustrated magnet by scattering neutrons from it9. Neutrons carry
a magnetic dipole moment, and are subject to forces from atomic-
scale field gradients. The resulting pattern of quasi-elastic scattering
versus wavevector transfer, Q¼ k i 2 k f ; is the sample-averaged
Fourier transform of spin configurations within a coherence volume
of order (100 Å)3 given by the instrumental resolution. Here ki and
kf are the de Broglie wavevectors associated with the incident and
scattered neutrons, respectively. Magnetic peaks generally sharpen
with decreasing temperature as the correlation length, y, increases.
For un-frustrated La2CuO4 (ref. 10), the half-width at half-maxi-
mum (HWHM), kðTÞ ¼ yðTÞ21; becomes indistinguishable from
zero below amicroscopic energy scale, the Curie–Weiss temperature
jQCWj. In contrast, for frustrated ZnCr2O4 (Fig. 2), k remains finite
evenbelow jQCWj, and extrapolates to a finite value asT=jQCWj! 0:

The finite low-temperature correlation length in ZnCr2O4 signals
the emergence of confined nanometre-scale spin clusters. Rather
than being associated with temperature-dependent short-range
order above a phase transition, the wavevector dependence of the
low-temperature intensity (Fig. 3a, b) can be interpreted as a spin
cluster form factor. As opposed to the form factor for an atomic
spin, the cluster form factor vanishes for Q ! 0, which is evidence
that clusters carry no net spin11. Further analysis is complicated by
the anisotropy of spin clusters, which can occur in four different
orientations for a cubic crystal. Rather than Fourier-inverting the
data, we therefore compare them to the orientationally averaged
Fourier transform of potential spin clusters. Individual tetrahedra
would be prime candidates, as they constitute the basic motif of the
pyrochlore lattice. However, a tetrahedron is too small to account
for the features observed (Fig. 3a, b). The next-smallest symmetric
structural unit is the hexagonal loop formed by a cluster of six
tetrahedra (Fig. 4a). Two spins from each tetrahedron occupy the
vertices of a hexagon, while the other two spins from each tetra-
hedron belong to different hexagons. Averaging over the four
different hexagon orientations in the pyrochlore lattice, the square
of the antiferromagnetic hexagon spin-loop form factor can be

written as
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The magnetic neutron scattering intensity would follow I0ðQÞ ¼
jF6ðQÞj2jFðQÞj2; where F(Q) is the magnetic form factor for Cr3þ.
The excellent qualitative agreement between model and data in Fig. 3
provides compelling evidence that neutrons scatter from antiferro-
magnetic hexagonal spin clusters rather than individual spins. In
effect, ZnCr2O4 at low temperatures is not a system of strongly
interacting spins, but a ‘protectorate’ of weakly interacting spin-
loop directors. (The term ‘protectorate’ was introduced8 to describe
stable states of matter in strongly correlated many-body systems. As
antiferromagnetic hexagonal spin loops appear to be stable composite
degrees of freedom for the pyrochlore lattice, we call the correspond-
ing low-temperature state of the frustrated magnet a protectorate.)
Thermal and quantum fluctuations that violate collinearity

within the hexagons should induce residual interactions between
directors. Such interactions may account for the inelasticity of the
scattering, the director correlations reflected in the greater sharp-
ness of the experimental features in Figs 2 and 3, and the increase of
k with T, which indicates gradual disintegration of the directors.
What is the basis for the emergence of spin-loop directors as the

effective degrees of freedom in this frustrated magnet? Fig. 4 shows
the spins surrounding a hexagon in the pyrochlore lattice. Spin
configurations that satisfy all interactions are characterized by the
connected vectors of Fig. 4b. Although the spin configuration

Figure 2 Temperature dependence of the inverse correlation length, kðT Þ ¼ yðT Þ21:

(Temperature is given in units of the Curie–Weiss temperature, Q CW.) The data were

derived from antiferromagnetic neutron scattering peaks by fitting to resolution-

convoluted lorentzians. The triangles and circles are the lorentzian HWHMs along the

(h 5/4 5/4) direction for \q¼ 1meV; obtained with seven and eleven analyser blades,

respectively. k does not vanish as T=jQCWj! 0; but extrapolates to a value that is close
to the HWHM associated with the squared form factor for antiferromagnetic hexagon spin

loops (dashed line). Inset, raw data for ZnCr2O4 at T ¼ 15 K. The bar shows the

experimental resolution. The solid line is a resolution convoluted two-dimensional

lorentzian; the dashed line is the squared hexagon spin-loop form factor convoluted with

resolution.

Figure 3 Wavevector dependence of the inelastic neutron scattering cross-section for
ZnCr2O4. a,b, Colour images of inelastic neutron scattering intensities from single crystals

of ZnCr2O4 in the (hk0) and (hkk) symmetry planes obtained at T ¼ 15 K for \q¼ 1meV:
The data are a measure of the dynamic form factor for self-organized nanometre-scale

spin clusters in the material. c,d, Colour images of the form factor squared calculated for

antiferromagnetic hexagon spin loops averaged over the four hexagon orientations in the

spinel lattice. The excellent agreement between model and data identifies the spin

clusters as hexagonal spin loops.
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Ordering

Many perturbations 
important for 
ordering:

Spin-lattice 
coupling
Further exchange
Spin-orbit effects
Quantum 
corrections

ZnCr2O4

CdCr2O4

HgCr2O4

S.H. Lee + many others



Magnetization Plateaus

Classically: M = Ms H/Hs

Plateau indicates 3:1 
structure

H. Ueda at al, 2005/6



Magnetization Plateaus

Plateau mechanism:

spin-lattice coupling 
favors collinearity

Order on plateau may 
be selected by

spin-lattice

quantum effects

“R” state observed 
in neutrons

Matsuda et al



A-site spinels
Spectrum of materials

1 900

FeSc2S4

10 205

CoAl2O4

MnSc2S4

MnAl2O4

CoRh2O4 Co3O4

V. Fritsch et al. PRL 92, 116401 (2004); N. Tristan et al. PRB 72, 174404 (2005); T. Suzuki et al. (2006)

s = 5/2

s = 3/2

Orbital 
degeneracy

s = 2

Naively unfrustrated

f =
|ΘCW |

TN



Why frustration?

Roth, 1964: 2nd and 
3rd neighbor 
exchange not 
necessarily small

Exchange paths:  
A-X-B-X-B 
comparable

Minimal model
J1-J2 exchange

J1
J2



Ground state evolution
Coplanar spirals 

q
0 1/8

Neel

J2/J1

J2/J1 = 0.2 J2/J1 = 0.4 J2/J1 = 0.85 J2/J1 = 20

Spiral surfaces:



Monte Carlo

f = 11 at 
J2/J1 = 0.85

MnSc2S4



Phase Diagram

0

Spiral spin 
liquid paramagnet

MnSc2S4

J3

ΘCWTN

ObD

ObJ3

Entropy and J3 
compete to determine 
ordered state

Spiral spin liquid 
regime has intensity 
over entire spiral 
surface



Diffuse scattering

Ordered state

(qq0) spiral

Specific heat?

Comparison to Expt.
Expt. Theory

agrees with 
theory for FM J1



Cs2CuCl4
Spatially anisotropic 
triangular lattice

Cu2+ spin-1/2 spins

couplings:

H =
1
2

∑

ij

[
Jij

!Si · !Sj − !Dij · !Si × !Sj

]

J=0.37meV
J’=0.3J D=0.05J

!D = Dâ



Neutron scattering
Coldea et al, 2001/03: a 2d spin liquid?

Very broad spectrum 
similar to 1d (in some 
directions of k space).  
Roughly fits power law.

Fit of “peak” dispersion to 
spin wave theory requires 
adjustment of J,J’ by 40% 
- in opposite directions! 



Dimensional reduction?

Frustration of interchain coupling makes it 
less “relevant”

First order energy correction vanishes

Leading effects are in fact O[(J’)4/J3]!



Dimensional reduction?

Frustration of interchain coupling makes it 
less “relevant”

First order energy correction vanishes.
Numerics: J’/J < 0.7 is “weak”

Weng et al, 
2006

Very different from 
spin wave theory

Very weak inter-chain 
correlations



Build 2d excitations from 1d spinons

Exchange:

Expect spinon binding to lower inter-chain 
kinetic energy

Use 2-spinon Schroedinger equation

Excitations

J ′

2
(
S+

i S−
j + S−

i S+
j

)



Broad lineshape: “free spinons”
“Power law” fits well to free spinon result

Fit determines normalization

J’(k)=0 here



Bound state
Compare spectra at J’(k)<0 and J’(k)>0:

  Curves: 2-spinon theory w/ experimental resolution  Curves: 4-spinon RPA w/ experimental resolution



Transverse dispersion

Bound state and 
resonance

Solid symbols: experiment
Note peak (blue diamonds) coincides 

with bottom edge only for J’(k)<0



Spectral asymmetry

Comparison:

 Vertical lines: J’(k)=0.


