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Plan for the lectures

1. Emphasis on quantum error correction. Split into three parts.

(i) Topological codes: toric code, decoding problem.

(ii) Limitations on topological codes: logical gates, code parameters.

(iii) LDPC codes: classical and quantum code constructions, single-shot QEC.

Useful references

1. “Topological quantum memory” by Dennis et al., J. Math. Phys. 43, 4452-4505 (2002), https://arxiv.org/
abs/quant-ph/0110143

2. “Topological codes” by Bomb́ın, in “Quantum Error Correction”, edited by Lidar and Brun, Cambridge Uni-
versity Press (2013), https://arxiv.org/abs/1311.0277

3. “Classification of topologically protected gates for local stabilizer codes” by Bravyi and König, Phys. Rev. Lett.
110, 170503 (2013), https://arxiv.org/abs/1206.1609

4. “A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes” by Bravyi
and Terhal, New J. Phys. 11, 043029 (2009), https://arxiv.org/abs/0810.1983

5. “Quantum Low-Density Parity-Check Codes” by Breuckmann and Eberhardt, PRX Quantum 2, 040101 (2021),
https://arxiv.org/abs/2103.06309

6. “Single-shot quantum error correction with the three-dimensional subsystem toric code” by Kubica and Vasmer,
Nat. Commun. 13, 6272 (2022), https://arxiv.org/abs/2106.02621

Stabilizer codes

1. Hilbert space H = (C2)⊗n associated with n qubits. Quantum code is a subspace of H.

2. Stabilizer code C is a subspace of H defined by the stabilizer group S, which is an Abelian subgroup of n-qubit
Pauli group P(n) which does not contain −I

C = {|ψ〉|∀S ∈ S : S|ψ〉 = |ψ〉} (1)

3. The number of logical qubits k is given by 2k = dim C = 2n−r, where r is the number of independent generators
of the stabilizer group S.

4. CSS stabilizer code S = 〈SX ,SZ〉. They can be constructed from classical codes specified by two parity check
matrices HX and HZ satisfying HXH

T
Z = 0. Note that a (binary linear) classical code C is defined as a subspace

spanned by (binary) vectors that are in the kernel of the (binary) parity check matrix H, i.e., C = kerH.

5. N (S) is defined as the group of all n-qubit Pauli operators that commute with all stabilizer operators

N (S) = {L ∈ P(n)|∀S ∈ S : LS = SL}. (2)

Pauli logical operators correspond to different cosets N (S)/S, representatives of a logical Pauli operator corre-
spond to different elements in the coset.
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6. Code distance d is the weight of the minimum-weight nontrivial logical operator

d = min
L∈N (S)\S

|L|. (3)

By definition, code with distance d allows to detect any Pauli error of weight at most d− 1 and to correct any
Pauli error of weight at most b(d− 1)/2c.

Toric code

1. Toric code on the L× L square lattice with periodic boundary conditions. Stabilizer operators associated with
faces F and vertices V of the lattice. Check that they commute.

2. Parameters of the square lattice V = L2, E = 2L2 and F = L2. The number of qubits n = E and the number
of independent stabilizer generators rX = V − 1, rZ = F − 1.

3. Number of logical qubits k = n − rX − rZ = E − V − F + 2 = 2g, where we use Euler’s characteristic
V − E + F = 2(1− g) for genus g manifold. Note that g = 0 for a sphere and g = 1 for a torus.

4. Note that k does not depend on L or the details of the tessellation, but depends on the topology of the manifold.

5. One can consider R2, RP2, hyperbolic spaces—the number of qubits may depend on the ambient space.

6. Pauli logical operators form non-contractible strings. They can be deformed. For every hole of the manifold,
there is a pair of logical qubits—in agreement with the formula k = 2g.

7. Consider the following state

|++〉 ∝
∑
S∈SZ

S|+〉⊗n, (4)

which is as a superposition of all contractible loops. Check that it is indeed a codeword of the toric code, as it
is an eigenvectors of all stabilizer generators.

8. Other logical states can be obtained by applying logical Pauli Z operators, e.g., |−+〉 = Z1|++〉. Interpretation:
a non-contractible loop is inserted.

Toric code on a lattice with a boundary

1. Realization of the toric code on a torus may be difficult.

2. The L × L quare lattice with open boundary conditions: example for L = 3 has n = 13 qubits, six X-type
stabilizers and six Z-type stabilizers and k = 1 logical qubit. Logical operators connect opposite boundaries
(also referred to as rough and smooth boundaries).

3. Often, people refer to it as the surface code. A more qubit-efficient realization is referred to as the rotated
surface code. The naming is quite unfortunate.

Topological quantum codes

1. Defining features of topological/geometrically-local quantum codes

(i) qubits placed on a manifold (possibly with boundary),

(ii) finite density of qubits,

(iii) stabilizer generators are geometrically local, whereas logical operators non-local (growing distance).

2. Examples: toric code, color code, Haah’s cubic code.

3. (i) and (ii) are not really a restriction, but rather a visualization/realization.

4. If (iii) is replaced by (iii) stabilizer generators have weight upper bounded by some constant and every qubit is
in support of only a constant number of stabilizer generators, then we have quantum low-density parity-check
(LDPC) codes.
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Quantum error correction

1. Information encoded into a stabilizer code. Measure stabilizers to: (i) discretize errors, (ii) gain classical
information for recovery. Errors can be diagnosed by measuring stabilizers, e.g.,

SPi|ψ〉 = ±PiS|ψ〉 = ±Pi|ψ〉, (5)

where Pi is a Pauli P error acting on qubit i and the sign depends on whether S and P commute or anticommute.
Note that the corrupted state Pi|ψ〉 is still an eigenstate of S. The error syndrome comprises all the measurement
outcomes that return −1.

2. We assume that we know noise model. Typically, we focus on the iid noise, where each qubit independently
affected. Popular noise models:

• bit-flip and phase-flip noise: Pauli X error with probability pX , Pauli Z error with probability pZ .

• depolarizing noise: Pauli X, Y or Z error with probability p/3.

3. For CSS codes, we can split correction: Z-type stabilizers used for Pauli X errors.

4. Pauli noise is probabilistic and incoherent, but it can include correlations. It can be efficiently simulated (due
to the Gottesman-Knill theorem, as error correction with stabilizer codes uses Clifford circuits).

5. Coherent noise, e.g., a small unitary rotation on every qubit, is difficult to simulate (typically requires time and
memory exponential in the number of qubits). Also, there could be large differences between average-case and
worst-case fidelities.

Decoding problem for the toric code

1. Interpretation of errors in the toric code: string-like operators that create point-like excitations at their ends.
(Note that we can think of the toric code codespace as the ground space of the Hamiltonian that is the sum of
all stabilizer generators, i.e., HTC = −

∑
vXv −

∑
f Zf .)

2. Decoding problem: given the syndrome we want to find an error (and we do not need to find it exactly but
rather up to some stabilizer). We are pairing up excitations (there is always an even number of them).

3. Useful to introduce some terminology. A chain complex

C2
∂2−→ C1

∂1−→ C0 (6)

which is a sequence of F2-linear vector spaces Ci and linear maps ∂i between them. For Ci, the set of all i-cells
is a basis. Vectors in Ci can be interpreted as subsets of i-cells. The linear map ∂i is called a boundary operator.
A composition of two consecutive boundary operators is zero, i.e., ∂1 ◦ ∂2 = 0.

4. The toric code is defined by associating Z-type stabilizers with C2, qubits with C1 and the syndrome for Pauli
Z errors with C0. If boundary operators viewed as binary matrices, then ∂2 = HT

Z and ∂1 = HX , where HZ

and HX are parity check matrices that describe Z- and X-type stabilizer generators, respectively.

5. By definition, any stabilizer generator ω ∈ C2 has a trivial syndrome, i.e., ∂1(∂2ω) = 0.

6. ker ∂1 are cycles (Pauli Z logical operators) and im ∂2 are boundaries (Z-type stabilizers). Every boundary is a
cycle, i.e., im ∂2 ⊆ ker ∂1. First homology group H1 = ker ∂1/ im ∂2 is the equivalence classes of cycles (differing
by boundaries).

7. Decoding problem rephrased: unknown Pauli Z error ε ∈ C1, we know its syndrome σ = ∂1ε, we want to find
φ ∈ C1 such that ∂1φ = σ. We succeed if ε + φ ∈ im ∂2 (contractible loop) and fail if ε + φ ∈ ker ∂1 \ im ∂2
(non-contractible loop).

Solutions to the decoding problem

1. Minimum-Weight Perfect Matching (MWPM) algorithm finds the most likely error.
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2. For iid noise with error probability p we have

pr(ε) = p|ε|(1− p)n−|ε| = (1− p)n
(

p

1− p

)|ε|
. (7)

The most likely error

φ = arg max
ε:∂1ε=σ

pr(ε) = arg max log pr(ε) = arg min |ε| (8)

corresponds to finding the pairing with the shortest total length.

3. The error rate does not have to be the same. If pi is the error rate on qubit on the edge i of the square lattice,
then we need to properly weigh it, i.e., wi = log 1−pi

pi
.

4. Renormalization group algorithm tries to remove excitations by lumping them together. Two strategies: hard
decisions vs. soft decisions. The performance may differ.

5. Neural network decoder: we can phrase the decoding problem as a classification problem (where logical Pauli
operators are the labels). We use a naive decoder to get back to the code space, and then apply an appropriate
logical Pauli operator to finish the recovery.

Thresholds

1. We expect to get better performance if the error rate goes down. But how about scaling up the code?

2. Needed: a family of codes of growing distance d (e.g., the toric code), decoding algorithm (e.g., the MWPM
algorithm), noise model (e.g, iid noise with error rate p).

3. Threshold theorem: there exists p∗ > 0, such that for any p < p∗, the probability of successful correction goes
to one as d goes to infinity.

4. Having a nonzero threshold is a nontrivial property. For instance, with the toric code we can successfully correct,
on average, np ∝ d2p errors, but from the code distance d we are guaranteed to correct only at most b(d− 1)/2c
errors.

5. One can prove lower bounds on the threshold. For instance, for the toric code on the square lattice, the MWPM
algorithm and the phase-flip noise, we have pth > .0373.

6. Analytical bounds can be orders of magnitude smaller than the actual thresholds. Thus, we often resort to
numerical estimates of thresholds.

7. How to find the threshold numerically? Data collapse with a rescaled variable x = (p− pth)dα and fitting to a
quadratic approximation of the scaling function.

Erasure noise

1. Erasure noise: with some probability e the state is replaced by some fixed state | ⊥〉 that is orthogonal to the
qubit subspace. We know when this happens.

2. We can think about replacing the state with the maximally mixed state, i.e.,

ρ 7→ 1 =
1

4

∑
P

PρP †. (9)

Thus, we can treat an erasure as the bit-flip noise with error rate p = 0.5 and the phase-flip noise with error
rate p = 0.5 applied at the known location.

3. Decoding algorithm: (i) find connected components of erased qubits, (ii) for each connected component, choose
one vertex and move all excitations to that vertex.

4. For erasure noise, the QEC threshold for the toric code can be related to the bond percolation threshold. For
the square lattice we have pth = 0.5.
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5. We can consider noise comprising Pauli errors with probability p and erasures with probability e. We can use
the MWPM decoder to correct this noise if we choose the edge weights appropriately. We obtain the correctable
region in the (e, p) phase space.

6. This is the basic idea behind erasure qubits, which recently has gained a lot of interest (culminating in a few
experimental demonstrations).

Optimal decoding

1. Assume iid noise with error rate p. Given the syndrome σ, we are not interested in any particular error ε (not
even the most likely one) consistent with the syndrome, i.e., ∂1ε = σ, but rather the most likely equivalent class

pr(ε) =
∑
ω∈C2

pr(ε+ ∂2ω) = (1− p)n
(

p

1− p

)|ε+∂2ω|
. (10)

2. Maximum-likelihood decoding: given σ, find any ε satisfying ∂1ε = σ, pick the most likely equivalence class
among pr(ε), pr(ε+ λ01), pr(ε+ λ10) and pr(ε+ λ01 + λ10). Correction φ = ε+ arg maxλ∈H1

pr(ε+ λ).

3. Intuition: pr(success)→ 1 if with high probability pr(ε) > pr(ε+ λ) for any 0 6= λ ∈ H1.

4. There is a challenge in evaluating pr(ε), as the number of terms is |C2| = 2L
2

. However, it can be efficiently
evaluated, either exactly (the bit-flip noise) or approximately (the depolarizing noise), by contracting a two-
dimensional tensor network.

Statistical-mechanical connection

1. Classical spin model on the square lattice with spins on faces and (anti)ferromagnetic interactions between
neighboring spins

Hε({si}) = −
∑
〈i,j〉

κi,jsisj , (11)

where ε ∈ C1 and κi,j = −1 iff the edge between si and sj is in ε, otherwise κi,j = 1. Two parameters:
temperature T and disorder rate p.

2. Consider some configuration of spins {si} and let ω ∈ C2 correspond to −1 spins. Then we have

Hε({si}) = Hε+∂2ω({si = +1}) = −|E|+ 2|ε+ ∂2ω|. (12)

and the partition function

Zε =
∑
{si}

e−βHε({si}) =
∑
ω∈C2

eβ(|E|−2|ε+∂2ω|) = eβ|E|
∑
ω∈C2

(e−2β)|ε+∂2ω|. (13)

3. Note that pr(ε) ∝ Zε if e−2β = p/(1− p) (which is known as the Nishimori condition).

4. Rather than considering individual systems described by Hε, the random-bond Ising model is a statistical-
mechanical model obtained by making the parameter ε a quenched random variable (which is not subject to
thermal fluctuations). The (p, T ) plane of the random-bond Ising model consists of an ordered region for low p
and T , and a disordered one.

5. An order parameter: free energy cost of inserting a domain wall λ ∈ H1 defined as

∆λ(ε) = −β logZε+λ + β logZε = β log
Zε
Zε+λ

(14)

In the ordered phase ∆λ(ε) diverges with high probability, whereas in the ordered phase ∆λ(ε) is finite with
high probability.
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6. A connection with maximum-likelihood decoding can be made rigorous. For other noise models, e.g., the
depolarizing noise, we get different disordered models. This gives a useful tool to numerically benchmark the
fundamental limitation on the performance (measured in terms of a QEC threshold) of QEC codes by using
stat-mech methods.

Gates and Clifford hierarchy

1. So far we discussed QEC but we would like to implement gates. Useful for later discussion to introduce the
notion of a group commutator K(A,B) = ABA†B†. Examples: K(Z,X) = −I, K(S,X) = −iZ, K(R(φ), X) =
eiφR(2φ), where R(φ) = diag(1, exp(iφ)).

2. Clifford hierarchy defined recursively

C1 = n-qubit Pauli group P(n) (15)

Cl+1 = {n-qubit unitary operators U |∀P ∈ P(n) : K(U,P ) ∈ Cl} (16)

The second level corresponds to the Clifford group that is generated by the Hadamard gate H, the CX gate
(the CNOT gate), and the S = R(π/2) gate. The third level is a set (not a group) and includes the T = R(π/4)
gate. The l-level includes the R(π/2l−1) gate and the l-qubit controlled-Z gate Cl−1Z.

3. Universal gate set, e.g., {H,T,CX}. The Solovay-Kitaev theorem guarantees that any unitary U can be ap-
proximated up to operator norm error δ using a number of gates from the universal gate set that scales as
O(logc(1/δ)) for some constant c.

4. We want to implement logical gates on the encoded information while maintaining the protection given by the
QEC code. A particularly appealing way of realizing logical gates is via transversal gates (or, more generally,
constant-depth circuits), as they do not spread errors in an uncontrollable way.

Limitations on logical gates and code parameters of topological codes

1. The Eastin-Knill theorem rules out the existence of a QEC code with a universal set of transversal gates. There
are analogous theorems for approximate QEC codes.

2. For any topological stabilizer code on a lattice in D ≥ 2 dimensions, the Bravyi-König theorem limits logical
gates implemented with constant-depth quantum circuits to the Dth level of the (logical) Clifford hierarchy. In
particular, it is not possible to have any transversal non-Clifford gate in 2D.

3. Proof for the 2D toric code is intuitive and can be generalized to quantum circuits comprising geometrically
non-local gates—the resulting bound relies on the code quantity called disjointness.

4. For a QEC code that corresponds to the common eigenspace of geometrically-local commuting projectors on
a lattice in D ≥ 2 dimensions, the Bravyi-Poulin-Terhal theorem restricts the QEC code parameters [[n, k, d]],
namely

kd2/(D−1) ≤ O(n). (17)

In particular, in 2D imposing the rate k/n to be constant implies that code distance d = O(1).

5. The aforementioned limitations motivate the study of topological codes in D ≥ 3 dimensions and quantum
low-density parity-check (LDPC) codes. In particular, with 3D topological codes we can have transversal non-
Clifford gates and there exist quantum LDPC codes with good parameters (for which both the number of logical
qubits k and code distance d scale linearly in the number of physical qubits n).

Classical and quantum codes

1. Classical (F2-linear) code C is defined as the linear subspace spanned by binary vectors that are in the kernel
of a binary matrix H, commonly referred to as a parity-check matrix, i.e., C = kerH. We can visualize C via
a Tanner graph.

2. Parameters of a classical code.
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3. Given a classical code C, we can consider the following chain complex

C1
H−→ C0, (18)

where C1 and C0 correspond to, respectively, bits and parity checks. If e is the subset of bits affected by bit-flip
errors, then the corresponding error syndrome is s = He.

4. CSS construction combines two classical codes with parity check matrices H and H ′ satisfying H(H ′)T = 0 in
order to obtain a quantum code with the following chain complex

C2
(H′)T−−−−→ C1

H−→ C0, (19)

where C2, C1 and C0 correspond to, respectively, Z parity checks, qubits and X parity checks. H and H ′ denote
the support of X and Z parity checks, and the condition H(H ′)T = 0 guarantees that parity checks commute.

5. Parameters of a quantum code.

6. Good QEC codes exist, i.e, k and d scale linearly in n, however no guarantee on small weight of parity checks
(which is equivalent to H and H ′ being sparse matrices).

Quantum LDPC codes

1. We are interested in quantum LDPC codes, which, by definition, have parity checks of constant weight. The
requirement on parity checks is motivated from the perspective of fault tolerance.

2. Hypergraph/tensor/homological product codes are at the heart of recent progress in quantum LDPC codes. By

taking a tensor product of a chain complex A
H−→ B (associated with a classical code) with itself, i.e.,

A⊗A A⊗B

B ⊗A B ⊗B

I⊗H

H⊗I H⊗I
I⊗H

, (20)

we can construct a quantum code associated with the following chain complex

A⊗A
∂2=

(
I ⊗H
H ⊗ I

)
−−−−−−−−→ A⊗B ⊕B ⊗A ∂1=(H⊗I,I⊗H)−−−−−−−−−−→ B ⊗B. (21)

If we use a good classical LDPC code, then this construction results in a quantum LDPC code with parameters
k ∼ n and d ∼

√
n.

3. Example how the toric code can be obtained from two classical repetition codes.

4. Recent constructions of quantum LDPC codes include: (i) quantum expander codes, (ii) fiber bundle codes, (iii)
lifted product codes, (iv) balanced product codes, and (v) quantum Tanner codes. Importantly, constructions
(iii)-(v) give rise to good quantum LDPC codes.

5. Connection with quantum many-body physics: the NLTS conjecture about the complexity of low-energy states
of local commuting Hamiltonians.

Single-shot QEC

1. QEC itself is a noisy process. Typically, we need to repeat measurements in order to gain sufficient confidence
in their outcomes to perform QEC.

2. In the presence of measurement errors, in order to implement reliable QEC with the toric code in 2D we either
suffer from time overhead (which typically scales as code distance) or sacrifice geometric locality and constant
weight of parity checks that we have to measure.

3. Alternative solution in the form of single-shot QEC. Reliable QEC possible in constant time.

4. The 3D subsystem toric code is the quintessential model illustrating single-shot QEC.

5. Good quantum LDPC codes, such as quantum Tanner codes, can also facilitate single-shot QEC.
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