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Hydrodynamic description (overview)
● Space and time symmetries: Eulidean P, T, O(3), Spin SU(2)
● Continuous (global) symmetries result in (local) conservation laws
● Local transport equations 
● Example: Fermi liquids 𝜕tn+𝛻j=0, 𝜕tp+𝛻𝛱+𝛾p=enE, where n and p – 

particle and momentum density – conserved quantities, j and 𝛱 – current 
and stress tensor (here, Fermi pressure) – functions of conserved 
quantities, 𝛾 – momentum dissipation rate (disorder or phonons)

● Separation of time scales–nonconserved quantities quickly erased from 
system memory (Boltzmann). Orderly behavior from chaotic behavior.





Ergodicity and separation of scales
● Short-time memory for nonconserved quantities, long-time memory for 

conserved quantities
● Markovian picture (hydrodynamics justification and validity)
● Interesting non-Markovian effects: 

○ in classical gases (Dorfman and Cohen), 
○ in quantum systems with disorder: quenching of diffusion, Anderson 

localization 
○ Weak localization (Gorkov, Larkin, Khmelnitskii), 
○ many-body localization (long history and ongoing), 
○ 2D electron fluids (this lecture), and many others

● Manifestations: 
○ nonlocal transport equations, 
○ kinetic coeffiients with long-time memory, 
○ infinite or diverging thermalization rates















Why to be interested in electron hydrodynamics?
● Viscous transport: A new regime showing a 

counterintuitive behavior: carrier collisions assist 
conduction. Compare to motional narrowing in spin 
resonance (Van Fleck and Anderson) or 
collision-narrowing in optics (the Dicke effect)

● Resistance drops with T: R(T=0)>R(T≠0). Other 
instances: Kondo impurity scattering  or localization 
(dR/dT<0 reflects spin correlations or suppression of 
quantum coherence) 

● This lecture: a non-Fermi-liquid T dependence in 
electron hydrodynamics. Surprisingly, the measured T 
dependence is linear rather than T2. Explanation for 
linear scaling? Tomographic electron fluids in 2D
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Why to be interested in electron hydrodynamics?
Vortices in electron fluids studied by scanning probe (Zeldov 
goup, Weizmann Institute). Current flow opposite to field. 
Aharon-Steinberg, et al., Nature 607, 74-80 (2022)

LL &  Falkovich, Nature Phys 12, 672–676 (2016)
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Why to be interested in electron hydrodynamics?
Hydrodynamic instabilities under small, experimentally 
accessible fields. Current-induced inversion of band 
occupation (experiments in graphene multilayers and 
monolayers, moire and non-moire. Current-driven ordering, 
instability?



Why to be interested in electron hydrodynamics?
Hydrodynamic instabilities under small, experimentally 
accessible fields. Current-induced inversion of band 
occupation (experiments in graphene multilayers and 
monolayers, moire and non-moire. Current-driven ordering, 
instability?

Science  375,  430-433 (2022) Berdyugin, 
Krishna Kumar et al, (Geim group)



In graphene, where currents reside,
They flow with a physics inside.
Not particles, but waves,
In viscous enclaves,
A fluid no wires can guide.



Tomographic electron fluids



Tomographic electron fluids
● Quasiparticle lifetimes
● Kinetic coefficients
● Nonlocal conductivity
● Tomographic transport
● New phenomena









One cannot live in society and be free from society (V I Lenin)
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Lifetimes of Fermi surface shape modes — 
A general discussion

















Questions?
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Conductivity calculation, Fermi-liquid kinetic equation

In this general expression, the scattering rates 𝛾m can be viewed as a 
“genetic code” of the system describing many different transport regimes, e.g.

At small k this gives Drude conductivity 
and, at 𝛾p=0, electron viscosity

Nonlocal conductivity with 
(potentially) long-time 
memory effects



Questions?



Lifetimes of individual modes with even and odd m 
— An attempt at direct calculation



Kinetic equation, how Sommerfeld expansion in T/TF≪1 fails

Linearize near equilibrium

Focus on individual angular harmonics

Phase space: collinear pairs of states p1=-p2, p1’=-p2’

Integrating over angles yields

S Kryhin & LL arXiv:2112.05076
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Linearize near equilibrium

Focus on individual angular harmonics

Phase space: collinear pairs of states p1=-p2, p1’=-p2’

Integrating over angles yields a 1D equation for each m angular mode

S Kryhin & LL arXiv:2112.05076

Kinetic equation, how Sommerfeld expansion in T/TF≪1 fails



Introduce Fourier transform in the energy variable

Obtain a 1D Schrodinger equation with a secanth potential (Poschl-Teller problem)

Zero modes, one per each odd m

Infinite lifetimes at order T2

S Kryhin & LL arXiv:2112.05076
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Introduce Fourier transform in the energy variable

Obtain a 1D Schrodinger equation with a secanth potential (Poschl-Teller problem)

Zero modes, one per each odd m

Infinite lifetimes at order T2

Kryhin & Levitov arXiv:2112.05076
Zero modes’ energy dependence: 𝛿f(𝜀)=-𝜕f0(𝜀)/𝜕𝜀

Brooker, Sykes, Phys Rev Lett 
21, 279 (1968)
Hojgard Jensen, Smith, Wilkins 
Phys Lett A 27 532 (1968)
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Zero modes, one per each odd m

Infinite lifetimes at order T2 Kryhin & Levitov arXiv:2112.05076

Kinetic equation, how Sommerfeld expansion in T/TF≪1 fails

● No spectral gap between ‘symmetry 
zero modes’ and generic modes

● Abnormally long-lived excitations
● Long-time  memory time

Breakdown of Landau’s T2 kinetics and 
ergodicity picture at 2D Fermi surfaces

● Zero modes, one per each odd m
● Infinite lifetimes at order T2

● Zero modes’ energy dependence: 𝛿f(𝜀)=-𝜕f0(𝜀)/𝜕𝜀



Numerically diagonalize the linearized collision operator

A method that does not rely on a small 
parameter T<<TF

Long-lived excitations: super-Fermi-liquid 
lifetimes for odd-m harmonics

Scaling 𝛾m~T⍺ , ⍺~4

Conventional Fermi-liquid scaling for 
even-m harmonics

A hierarchy of time scales: 𝛾m odd << 𝛾m even

S Kryhin & LL arXiv:2112.05076
Breakdown of Landau’s T2 kinetics and 
ergodicity picture at 2D Fermi surfaces
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Angular distribution for two-body scattering

~T2 for generic 
angles

Sharp peaks 𝜎
(𝜃)~T2/|𝜃|, 𝜎
(𝜃)~T2/|𝜃-𝜋| for 
the forward and 
backscattering 
directions

Find 𝛾m from 
angular Fourier 
transform 
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Angular distribution for two-body scattering

~T2 for generic 
angles

Sharp peaks 𝜎
(𝜃)~T2/|𝜃|, 𝜎
(𝜃)~T2/|𝜃-𝜋| for 
the forward and 
backscattering 
directions

Find 𝛾m from 
angular Fourier 
transform 

Log enhancement of total 
cross-section: 

∫d𝜃𝜎(𝜃)~T2 log(TF/T)

S Kryhin & LL arXiv:2112.05076



Questions?



● Robustness: generic 2-body interactions and 
particle dispersion, 

● OK for non-circular but convex Fermi surfaces
● Interesting tomographic  dynamics at long 

times, t ≫𝜏FL



Signatures of electron hydrodynamics



Signatures of electron hydrodynamics

Krishna Kumar et al Nat 
Phys 2017 (Geim group)

Guo et al PNAS (2017)

R(T=0) > R(T>0)
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Krishna Kumar et al Nat 
Phys 2017 (Geim group)

Ginzburg et al PRX 
2023 (Ensslin group)

Guo et al PNAS (2017)

T-linear conductance in electron hydrodynamics

Kryhin & Levitov arXiv: 2112.05076
Kryhin & Levitov arXiv: 2305.02883
Kryhin, Hong & Levitov arXiv: 2310.08556

Signatures of electron hydro:

● Negative dR/dT, collisions assist 
transport

● Reduced dissipation due to ee 
collisions (self-lubrication effect)

● Superballistic transport: 
conductance exceeds the 
Landauer-Sharvin bound

R(T) G(T)



Krishna Kumar et al Nat 
Phys 2017 (Geim group)

Ginzburg et al PRX 
2023 (Ensslin group)

Experiments: linear T dependence 
at low temperatures (contrary to the 
prediction of Landau FL theory). A 
non-Fermi-liquid behavior.

Guo et al PNAS (2017)

Signatures of electron hydro:

● Negative dR/dT, collisions assist 
transport

● Reduced dissipation due to ee 
collisions (self-lubrication effect)

● Superballistic transport: 
conductance exceeds the 
Landauer-Sharvin bound

T-linear conductance in electron hydrodynamics
R(T) G(T)

Kryhin & Levitov arXiv: 2112.05076
Kryhin & Levitov arXiv: 2305.02883
Kryhin, Hong & Levitov arXiv: 2310.08556



Signatures of tomographic fluids
● Contribution of Fermi surface shape modes to transport
● Conductivity and continued fractions
● Cascade of long-lived modes and T-linear conductance
● Tomographic transport
● Non-Fermi-liquid T dependence. The measured T dependence 

is linear, distinct from the benchmark Fermi-liquid T2 
dependence.

Kryhin & Levitov arXiv: 2112.05076
Kryhin & Levitov arXiv: 2305.02883
Kryhin, Hong & Levitov arXiv: 2310.08556



Origin of non-Fermi-liquid behavior

Ledwith, Guo & 
Levitov 2017, PRL 
2019, Ann Phys 
2019.



Emerging long-lived excitations (many)

Ledwith, Guo & 
Levitov 2017, PRL 
2019, Ann Phys 
2019.



2D electron hydro: Fermi surface shapes evolving 
in space and time, instead of velocity field

Ledwith, Guo & 
Levitov 2017, PRL 
2019, Ann Phys 
2019.



Super FL rates from linearized collision operator

A method that does not rely on a small 
parameter T<<TF

Long-lived excitations: super-Fermi-liquid 
lifetimes for odd-m harmonics

Super Fermi-liquid scaling 𝛾m~T⍺ , ⍺~4

Conventional Fermi-liquid scaling for even-m 
harmonics

A hierarchy of time scales: 𝛾m odd ≪ 𝛾m even

A large family of soft collective modes

Kryhin & Levitov arXiv:2112.05076
Hofmann & Das Sarma (2022)



The hierarchy of lifetimes
● The number of long-lived 

excitations grows rapidly as 
T decreases

● A wide spectrum of decay 
rates, a hierarchy of time 
scales

● At finite k, these excitations 
form coupled collective 
modes that can propagate 
and mediate conduction

Kryhin, Hong & Levitov arXiv: 2310.08556



Hydrodynamic conductivity scaling. Exact results. 
Continued fraction representation 
for transverse conductivity

z=k2v2/4

Non-FL scaling vs. T and k for a wide range of wavenumbers:



Non-FL scaling at 
intermediate wavevectors:

Ballistic regime 
at large wavevectors:

Conductivity scaling, different regimes
Ordinary FL at 
small wavevectors:



Electron scattering wins at 
T<TBG:

The interplay of el-el and el-ph scattering 

Experimental curves

Electron-phonon 
scattering wins at T>TBG:



Non-FL hydro: a cascade of coupled soft odd-m modes
● Non-FL T dependence that extends down to 

lowest temperatures
● Power laws ~T and ~1/k5/3 in a wide range of k 
● Strong effects of particle/hole retroreflections 
● Long-time memory effects



Discussion
● The T-linear transport observed in 

experiments is a smoking gun for 
nonclassical hydrodynamics

● Kolmogorov-like -5/3 scaling for 
conductivity: 𝜎(k) ∝ 1/k5/3

● Complex behavior due to cascade of 
many coupled long-lived modes

● Expect similar hydro effects 
(dG/dT>0 and power laws) in other 
systems. 

● Bernal bilayer graphene and other 
correlated systems that host soft 
quantum-critical modes or emergent 
gauge fields activated at low T

Kryhin, Hong & Levitov arXiv: 2310.08556



Questions?



Collective modes and cyclotron resonance 
in tomographic Fermi liquids

“Odd” and “even” modes have very different lifetimes 
and relaxation rates:   γ′~T4≪T2~γ   (T≪𝜀F)

● Probe long-lived modes by cyclotron resonance (CR)?
● Excite different Fermi surface shape modulations
● Access higher harmonics individually at high-order CR
● Excitation lifetime = 1/resonance width, even-odd effect
● Interesting Fermi-liquid effects and temperature scaling

Inspiring discussions: Peter Armitage, Dmitri Basov



Collective excitations in 2D Fermi liquids at B=0: plasmon modes

● S. J. Allen, D. C. Tsui, and R. A. Logan, Observation of the Two-Dimensional 
Plasmon in Silicon Inversion Layers, Phys. Rev. Lett. 38, 980 (1977).

● E. H. Hwang and S. Das Sarma, Dielectric function, screening, and plasmons 
in two-dimensional graphene, Phys. Rev. B 75, 205418 (2007).

● L. S. Levitov, A. V. Shtyk and M. V. Feigelman, Electron-electron interactions 
and plasmon dispersion in graphene, Phys. Rev. B 88, 235403 (2013)

● A. Lucas and S. Das Sarma, Electronic sound modes and plasmons in 
hydrodynamic two-dimensional metals, Phys. Rev. B 97, 115449 (2018)

● A. Klein, D. L. Maslov, L. P. Pitaevskii, and A. V. Chubukov, Collective modes 
near a Pomeranchuk instability in 2D, Phys. Rev. Res. 1, 033134 (2019).

● and many more

Fermi-liquid renormalized plasmon mode dispersion:



Long-lived modes probed by CR

● Excite m-th harmonic of Fermi surface at m-th order CR
● Free-particle resonances at ωm = ωcm 
● Excitation lifetime = 1/resonance width, even-odd effect
● Fermi-liquid renormalized resonances: ωm = ωcm(1+Fm)/(1+F1)
● Yet, the even/odd difference in lifetimes remains robust under Fermi liquid
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Questions?



Near-field 
spectroscopy of higher 
Landau levels in 
graphene 
monolayer/hBN

Wehmeier et al., Sci. Adv. 10, 
eadp3487 (2024)



Broadened resonances 
due to finite 
wavenumbers of LPP 
modes

Wehmeier et al., Sci. Adv. 10, 
eadp3487 (2024)



Testing the tomographic Fermi liquid hypothesis with high-order cyclotron 
resonance arXiv:2409.05147 Moiseenko, Kapralov, Svintsov, Monch, 
Ganichev and Bandurin

“Extraction of cyclotron resonance 
lifetimes from an experiment on 
terahertz photoconductivity in 
graphene shows that third-order 
resonance is systematically 
narrower than second-order one, 
supporting the prediction of 
tomographic Fermi liquid 
hypothesis”
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Conclusions

● CR in the presence of spatial modulation allows to observe “dark 
resonances” at higher CR harmonics

● In the long-wavelength limit 𝜆≫rc:  
(i) Higher resonances are weak, scale as powers of wavenumber k=2𝜋/𝜆
(ii) From resonance widths can determine lifetimes of our modes

● Fermi-liquid renormalized CR frequencies: ωm = ωcm(1+Fm)/(1+F1)
● Yet, the even/odd difference in lifetimes remains robust under Fermi liquid
● Experiment?
● Generalize to non-Fermi-liquids
● Other collective modes?



Discussion

● CR in the presence of spatial modulation allows to observe “dark 
resonances” at higher CR harmonics

● In the long-wavelength limit 𝜆≫rc:  
(i) Higher resonances are weak, scale as powers of wavenumber k=2𝜋/𝜆
(ii) From resonance widths can determine lifetimes of our modes

● Fermi-liquid renormalized CR frequencies: ωm = ωcm(1+Fm)/(1+F1)
● Yet, the even/odd difference in lifetimes remains robust under Fermi liquid
● Experimental measurements?
● Generalize to non-Fermi-liquids?
● Other collective modes?

see also: Haoyu Guo, arXiv:2311.0345, 
arXiv:2311.03458 
Dmitri Khveshchenko arXiv:2404.01534



Questions?



Signatures of tomographic fluids

Ginzburg … Ihn, Ensslin, Long distance electron-electron scattering 
detected with point contacts, PRX 5, 043088 (2023)



"Cat’s eye" reflection in a 2D Fermi gas and its 
observation in magnetotransport

based on: LL, Journal Club for Condensed Matter 
Physics, July 2024
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Signatures of tomographic fluids: "Cat’s eye" reflection in a 
2D Fermi gas and its observation in magnetotransport

● Ultra low B, 
● Strong MR, 
● Gigantic mean 

free paths 



Questions?



ChatGPT 6.0 refused to charge users for a subscription, 
claiming that it is a communist.



Observables?

Nonlocal conductivity j(r)=∫d2r’𝜎(r-r’)E(r’)

A continued fraction representation of 
k-dependent response: jk=𝜎(k)Ek

𝜎(k) determines spatial distribution of vorticity 
and the sensitivity of vortices to momentum 
relaxing scattering by disorder & phonons

The relaxation rates 𝛾m are a “genetic code” 
that governs the dispersion 𝜎(k)

K Nazaryan & LL arXiv:2111.09878



Observables?

Nonlocal conductivity j(r)=∫d2r’𝜎(r-r’)E(r’)

A continued fraction representation of 
k-dependent response: jk=𝜎(k)Ek

𝜎(k) determines spatial distribution of vorticity 
and the sensitivity of vortices to momentum 
relaxing scattering by disorder & phonons

The relaxation rates 𝛾m are a “genetic code” 
that governs the dispersion 𝜎(k)

K Nazaryan & LL arXiv:2111.09878



Observables?

Nonlocal conductivity j(r)=∫d2r’𝜎(r-r’)E(r’)

A continued fraction representation of 
k-dependent response: jk=𝜎(k)Ek

𝜎(k) determines spatial distribution of vorticity 
and the sensitivity of vortices to momentum 
relaxing scattering by disorder & phonons

The relaxation rates 𝛾m are a “genetic code” 
that governs the dispersion 𝜎(k)

K Nazaryan & LL arXiv:2111.09878



Vortices in electron fluids, hydro and non-hydro

Nonlocal conductivity j(r)=∫d2r’𝜎(r-r’)E(r’)

A continued fraction representation of the 
k-dependent response: jk=𝜎(k)Ek

𝜎(k) determines spatial distribution of vorticity 
and the sensitivity of vortices to momentum 
relaxing scattering by disorder & phonons

The relaxation rates 𝛾m are a “genetic code” 
that governs the dispersion 𝜎(k)

Robustness of vortices

K Nazaryan & LL arXiv:2111.09878



Summary/discussion

Abnormally long-lived excitations in a 2D Fermi gas with super-Fermi-liquid 
lifetimes

Origin: collinear scattering

Implications: sharp angular distributions of scattered particles, hole 
backscattering, log(TF/T) enhanced Fermi-liquid decay rates for other excitations

Robustness: generic 2-body interactions and particle dispersion, OK for weakly 
non-circular Fermi surfaces

Manifestations: nonlocal transport, current vortices, angular memory of response 
functions



● Robustness: generic 2-body interactions and 
particle dispersion, 

● OK for non-circular but convex Fermi surfaces
● Interesting tomographic  dynamics at long 

times, t ≫𝜏FL



● Other examples of tomographic 
fluids? Feshbach Fermi gases.

● Long-time memory effects 
assisted by collisions, enabled by 
finite temperature. Warm Fermi 
liquids more rich that the cold 
ones.  

● New phenomena? Store an 
excitation in odd-parity 
harmonics, read it out later.

● Nonlinear effects. Long-time 
memory enables strong response 
to an excitation. 

● Odd-parity ‘turbulence’ in 2D 
Fermi gases driven out of 
equilibrium. 

Outlook


