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Introduction

A minimal model for cells migrating on a substrate has to account for the
following:

• cells are an active material with active stress throughout

• the cytoskeleton can flow, so it is mainly viscous

• intracellular flows are balanced by substrate friction

• cells tend to keep a typical size/volume

Active gel theory provides a thermodynamically consistent framework to in-
corporate activity into continuum mechanics, where it can be described as an
active stress contribution σact. Here, we want to consider an one-dimensional
limit with the spatial dimension along the cells direction of motion. This model
was introduced and investigated by Drozdowski et al. [1], which is the paper
we want to follow here. It can be considered to be a reduced version of the
model by Recho et al. [2], which also included a field for myosin concentration.
Later Drozdowski et al. followed up on their optogenetics 2021 paper with the
analysis of an active gel model including myosin concentration and non-linear
diffusion [3].

Please make yourself familiar with the beginning of the Drozdowski 2021
paper (we do not need the later parts on optogenetics). In section IIA, the
model is derived, where equation (1) gives the constitutive relation for the bulk,
relating stress and strain. Here, we only consider the purely viscous case, such
that it reduces to

η∂xv(u, t) = σ − σact,

with effective viscosity η, velocity v = ẋ of the intracellular flow and stress σ.
Equation (2) describes the substrate friction, which allows the cell to transmit
forces onto the substrate and is essential to convert intracellular forces into
movement. Equation (4) states an elastic stress boundary condition (BC),
which provides us with a reference length L0 and accounts for the typical size.
Equation (5) is a kinematic BC, which determines how the cell edges l±(t)

move. It is assumed that they flow with the gel, i.e. l̇±(t) = v(l±(t)).
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Overall, the problem is defined as a bulk PDE (or, in the purely viscous
case, as an ODE) with suitable BCs to close the problem. To reduce the
effective number of parameters, like e.g. the viscosity η, one usually non-
dimensionalizes all the physical quantities, here stress σ, position x and time
t, and formulates a dimensionless problem with new parameters. The full
boundary value problem (BVP) in dimensionless form is given in equation
(6), where we consider, as stated above, the purely viscous case, i.e. T =

0. To simplify the analysis, we map the spatial domain to the unit interval
by changing into the internal coordinate u = (x − l−)/L. Additionally, we
introduce an auxiliary stress field s(u, t) = σ(u, t) + L(t) − 1, which then has
homogeneous Dirichlet BCs s(u±) = 0.

The final equations we want to analyse are

L2

L2
∂2
us(u, t)− s(u, t) = 1− L(t)− σact, (1)

s(u±, t) = 0, (2)

∂us(u±, t) = L(t)l̇±(t). (3)

Therefore, the stress is describe by a linear, second order, inhomogeneous ODE
in space with homogeneous Dirichlet BCs and an implicit time evolution due
to the dependence on the length as a dynamic quantity. Here, we want to
solve this problem analytically and numerically and reproduce the results from
figure 2 in [1] together with equation (12).

Part I: Deriving an analytical solution via a second
order approximation

As a first part, we want to derive an analytical solution for the auxiliary stress
s and the cell length L. The following steps will guide you. Equations (10)-(12)
in [1] provide the solutions and the corresponding explanations might help if
you are stuck.

1. Find the general solution shom(u, t) for the homogeneous part of equation
(1), i.e. for RHS=0. You should have two unspecified prefactors.

2. Guess a particular solution spar(u, t) fulfilling equation (1), which is here
quite easy, since the inhomogeneity is constant in space.

3. Evaluate the full solution s(u, t) = shom(u, t) + spar(u, t) at the bound-
aries u± and determine the prefactors, such that they fulfill the BCs
(2).

4. Evaluate the derivative ∂us(u, t) at the boundaries and determine the
edge velocities l̇±(t) via (3). With that, derive expressions for the change
in the cell’s length L̇ = l̇+ − l̇− and the center position Ġ = (l̇+ + l̇−)/2.

5. The equation for L̇ cannot be solved explicitly (cf. equation (11) in [1]).
However, it only allows one steady state length L̂, such that L̇ = 0.
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Determine this steady state. To solve the equation in the vicinity of this
steady state, we consider small perturbations δL(t), such that L(t) =

L̂ + δL(t). Expand the equation up to second order in δL and define α

and β as in [1].

6. The resulting expression is a nonlinear ODE (Bernoulli’s equation) in
δL, which has an analytical solution. To derive it by hand, you can use
e.g. separation of variables (d(δL) and dt). Subsequent partial fraction
decomposition makes the integration much easier (or just use Mathemat-
ica). Considering δL(t0) ≡ δL0 for t0 = 0, you should recover equation
(12) in [1]. What kind of behavior do you expect from this result? How
is the length evolution reflected in the stress profile?

Part II: Numerical integration via a BVP solver and
explicit Euler stepping

In this second part, we want to solve the problem (1)-(3) numerically and com-
pare it to our approximated solution from the first part. To solve a general
BVP described by a PDE and suitable BCs, one typically needs a solver which
can handle a discretization in space and time. However, here we deal with an
ODE for the stress and only implicit time dependence through L(t). Therefore,
we can solve this problem with the BVP solver of the python package "scipy"
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.
solve_bvp.html) and an explicit Euler stepping to update the changes in
length (and position). If you want to use another solver, feel free to do so.

The following steps and the documentation of the BVP solver (link above)
guide you to implement the necessary code in a jupyter notebook. If you want
additional help, you start from the provided file ExerciseHints.ipynb.

1. We have two parameters in this problem, L and σact. Choose their values
as in [1] and store them e.g. in a dictionary.

2. The documentation states in which form you have to provide the ODE
and the BCs for the solver. You have to convert the second order
ODE into a system of two first order ODEs. Implement a function
stress_ODE returning the ODE and a function stress_BC returning
the corresponding Dirichlet BCs.

3. Define the spatial domain as an array, on which the ODE will be solved.

4. We have to provide initial guesses for all variables in our ODE system.
We know the trivial solution s(u, t) = 0 for L = L̂. For L not to far away
from L̂, s = 0 will work.

At this point, you might wanna test if your solver converges for a given L

and if the solution looks reasonable, e.g. check the behavior for L closer or

3

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html


further away from L̂. If everything looks fine, you can proceed as follows to
implement the explicit Euler stepping

L(tn+1) = L(tn) + L̇(tn) ·∆t. (4)

5. Choose initial values for L and G and store them each in a list. If you
want to safe the stress profiles s as well, create another list. Define an
initial and final time and your step size ∆t.

6. Define a loop which iterates over time until the final time is reached. In
this loop, you solve the BVP for the given length. From this solution,
you can derive l̇±, with which you then can update L and G. Append all
the desired solutions to your lists and update the current time. In the
next iteration, the BVP should be solved with the updated length.

After your loop is complete, plot L and G as functions of time. You should
see similar results as in figure 2 in [1].

Finally, implement the analytical solution for s and L derived in the previ-
ous section and check how well the approximation captures the full dynamics
by changing initial conditions and/or parameters values. You can also check
at which δL0 the second order in our expansion in δL is actually necessary.
Interpret the sign of s depending on the initial value of L with respect to L̂.

Part III: Adding polymerization

Following section IV "Effect of Polymerization" in [1], we now extend the above
model by adding edge polymerization. In motile cells, one typically observes
an increased actin polymerization at the leading edge, while reduced or even
depolymerization at the trailing edge. Due to the mechanical resistance of
the cell membrane, this protrusion is partially converted into retrograde flow.
In nonmotile yet spreading cells, both protrusive activity and retrograde flow
are symmetric, occurring along the whole cell periphery. To complement our
analysis by these important features, we now consider polymerization at the
boundaries by introducing the constant polymerization velocities v±p for the
right and the left edge, respectively. This changes our kinematic BC (3) to

∂us(u±) = Ll̇± − Lv±p , (5)

such that the polymerization offsets actin flow and edge movement.

1. How does this change the equations for L̇ and Ġ? Under which condition
does the cell persistently migrate?

2. What is the new steady state? Can you determine it analytically? If
not, use numerical methods.

3. Try different values for ∆vp = v+p − v−p and plot it against L̂ (cf. Figure
9(a) in [1]).
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