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How do you turn a blob of material into 
something that’s the shape of a fish?

Karlstrom et al, Development (1996)

zfin.org
zfin.org

blob

development

fish



Smithsonian Magazine
coursehorse.com

glass blob

complex, stable, reproducible 
morphology

How do you turn a blob of material into 
something that’s the shape of a fish?

glass blower



Smithsonian Magazine

How do you turn a blob of material into 
something that’s the shape of a fish?

mandrel rod

applies localized forces:
pressures

shear stresses

heat

alters the local material properties:
elastic modulus
fluidity/viscosity

goes through a “glass transition”
solid → fluid → solid



are the local 
material 

properties 
changing?

Gopi Shah, Max Planck Institute, Royal Microscopical Society Imaging Competition 2015

https://www.youtube.com/watch?v=V8xvGgcsqAQ



Mongera et al, Nature, 2018 Petridou et al, Cell 2021

Recent biology experiments: tissues do 
change their fluidity during development

Rigid FluidRigid

Fluid



Biology experiments: not just cells… tissues also composed of 
extracellular matrix (ECM), which often exists in disordered 

networks that also transition from floppy to stiff

Lindström et al., PRE (2010).

Sharma et al., Nature Physics (2016).
Jansen et al., Biophysical Journal (2018).
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Rigidity transitions occur in other 
systems and at different scales, too:

• Possible rigidification of condensates in liquid-liquid phase 
separation, implications for plaques and disease

• cytoskeleton inside a cell can tune its rigidity

• active gel (c.f. Ulrich Schwarz’s awesome lectures)



Also biology 
experiments: all 

the control 
systems are 
encoded and 
evolve at the 

scale of 
molecules
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materials scientists: 
we’d like to do that, too!

biologists, biophysicists: 
how does it do that?

why it is difficult: 
challenge 1) emergent rigidity is difficult
challenge 2) there are many tunable parameters, 
tuning parameters are at a much smaller scale 
than emergent behavior. how to control? (cf talks 
by Andrea Liu next week)



challenge 1) emergent rigidity is difficult

P.  W.  Anderson
. . . that we don’t accept its almost miraculous 
nature, that it is an ‘emergent property’ not 
contained in the simple law of physics, although it 
is a consequence of them.”

“The deepest and most interesting unsolved 
problem in solid state theory is probably the 
theory of the nature of glass and the glass 
transition.” (1995)

“We are so accustomed to the rigidity of solid 
bodies – the idea for instance that when we 
move one end of ruler the other end moves the 
same distance …  

?



Moumita Das gave a fantastic 
introduction to this topic in 
the first week, focused on:

• semi-flexible networks
• effective medium theory

• composite networks

here, we will be extending some 
of those ideas in different ways



Answer to challenge 1: there are multiple physical 
mechanisms that can drive rigidity/fluidity in tissues:

Lawson-Keister++, Current Opinions in Cell Biology (2021)
adapted from Kim++ Nature Physics (2021) and Bi++ PRX 2016



Today’s lecture: 1/density axis

• theory: revisit the Dynamical Matrix, shear 
modulus

• canonical example for 1/density axis: jamming 
transition for spheres

• theory: First-order rigidity
• a few examples in biology



Tomorrow’s lecture: geometric 
incompatibility axis

• theory: Second-order rigidity
• canonical examples for geometric incompatibility

• underconstrained spring networks
• vertex models

• how does this show up in biology experiments?
• (if time) a tiny bit of finite temperature + dense active 

matter



Wednesday’s lecture: critical manifolds 
and programming/control

• universality 
• shear modulus
• shape parameter/incompatible length scales
• finite frequency response

• how to pick the right degrees of freedom for a model – does 
it matter?

• Can we think of how to design or evolve specific emergent 
mechanics?

• theory for second-order rigid systems: parameterization 
of the critical manifold



Mongera et al, Nature, 2018 Petridou et al, Cell 2021

Beautiful data and modeling: in these cases, fluidization caused by changes to 
density and number of contacts

Cells as squishy spheres is a good model for such systems!



Lecture 2

Rigidity manifold for the 3-bar linkage



in vitro
(reconstituted collagen 

network)

in vivo
(bovine knee cartilage)

closer to surface deeper from surface

25°C 37°C

Licup, A.J., et al PNAS (2015). 

Brown et al Clinical 
Biomechanics (2020)

Fiber networks in biology



Fiber networks in biology are often under-constrained

Sharma et al. Nature Phys. 2016.
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Sharma et al., Nature Physics (2016).
Jansen et al., Biophysical Journal (2018).

can be approximated as a network of springs
.

rest length
actual
length

in biological tissues networks like collagen are almost 
always under-constrained:

network coordination 
z < zc = 2dzk=3



Sharma et al., Nature Physics (2016).



Fiber networks can rigidify via changing box size or spring rest length
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Sharma et al., Nature Physics (2016).
Jansen et al., Biophysical Journal (2018).applied deformation to box
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rigid

rigid

reducing rest length



Lecture 3



Outline for Lecture 3
• more about vertex models
• universality of vertex models

• shear modulus/shape parameter/incompatible length 
scales

• finite frequency response
• how to pick the right degrees of freedom for a model – does 

it matter?
• Can we think of how to design or evolve specific emergent 

mechanics?
• theory for second-order rigid systems: parameterization 

of the critical manifold
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Wang++ PNAS (2020)

Target cell shape

Bi++(2016)

Model for confluent tissue

Body axis elongation in fruit flyexperiments: confluent tissues 
rigidify by tuning cell shape

solid

fluid

shape index:   perimeter / √area

p0=3.72 increasing shape parameter



Pawlizak et al,  New J. Phys (2015)

Also in breast cancer cell lines
model for normal 

breast cells
model for malignant 
breast cancer cells

model for metastatic 
breast cancer cells

Käs lab, Leipzig University



distance from center of aggregate

Steffen Grosser, Jürgen Lippoldt, Josef 
Käs, Matthias Merkel, +++

Testing predictions in 
breast cancer cell lines



Why do vertex models work 
at all?

Possible answer: this rigidity transition is 
universal across a large class of models

Sadjad
Arzash

Elizabeth
Lawson-Keister

Ojan
Damavandi

Damavandi et al BioRXiv 2022 (update coming this week!)



Let’s investigate changes to 
FUNCTIONAL FORM of U:

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐾𝐾𝐴𝐴𝐴𝐴(𝐴𝐴𝑓𝑓 − 𝐴𝐴𝑓𝑓0)2 + �
<𝑖𝑖𝑖𝑖>

𝛾𝛾𝑖𝑖𝑖𝑖 𝑙𝑙𝑖𝑖𝑖𝑖 + Γ∝𝑃𝑃∝2

 

Foam model 
c.f Campas, Shraiman

Standard vertex model
Farhadifar et al 2007

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐾𝐾𝐴𝐴𝐴𝐴(𝐴𝐴𝑓𝑓 − 𝐴𝐴𝑓𝑓0)2 + Λ �
<𝑖𝑖𝑖𝑖>

𝑙𝑙𝑖𝑖𝑖𝑖

 No fluid phase: system becomes 
numerically unstable instead.



Spring-edge model + 
extensions (big change to 

model!)

Plus, can add dynamics on 𝑙𝑙𝑖𝑖𝑖𝑖0   
to mimic myosin recruitment

e.g. active spring edge
Staddon et al Biophys J 2019

e.g. active tension model
Noll 2017

𝑙𝑙0𝑖𝑖𝑖𝑖
−1 𝑑𝑑𝑙𝑙𝑖𝑖𝑖𝑖0

𝑑𝑑𝑑𝑑 = 𝜏𝜏𝑙𝑙−1𝑊𝑊
𝑇𝑇𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖𝑖𝑖 ≈ 𝜏𝜏𝑙𝑙−1

𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖𝑖𝑖  ,

𝑊𝑊 1 = 0

𝑚𝑚𝑖𝑖𝑖𝑖
−1 𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑 = 𝛼𝛼𝑙𝑙0𝑖𝑖𝑖𝑖
−1 𝑑𝑑𝑙𝑙𝑖𝑖𝑖𝑖0

𝑑𝑑𝑑𝑑

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐾𝐾𝐴𝐴(𝐴𝐴𝑓𝑓 − 𝐴𝐴𝑓𝑓0)2 + �
<𝑖𝑖𝑖𝑖>

𝑘𝑘𝑖𝑖𝑖𝑖 (𝑙𝑙𝑖𝑖𝑖𝑖−𝑙𝑙𝑖𝑖𝑖𝑖0 )2

𝛼𝛼 myosin recruitment rate



Standard vertex model
Farhadifar et al 2007

Spring edge model
Sadhukan eLife 2022

Staddon et al Biophys J 2019

Active tension model
Noll 2017

observed cell shape index

observed cell shape index

observed cell shape index

changing 𝛼𝛼 myosin recruitment rate

Damavandi et al BioRXiv 2022 (update coming this week!)



But maybe the zero-strain rate limit isn’t relevant for 
tissues: what about finite frequency?



Phenomenological models in rheology

Elastic element 
(spring)

Mimicking the 
instantaneous bond 

deformations

Viscous element 
(dashpot)

Mimicking the 
entropic uncoiling 

processes

35



Phenomenological models in rheology: an 
example

Maxwell 
material

In stress 
relaxation, 

strain rate is 
zero



Dynamic loading

 in-phase or storage modulus

  out-of-phase or loss modulus



Dynamic loading

38



How do we do it:

39



Standard vertex model
c.f. Tong PLOS Comp Bio 2022

solid

fluid Foam model (no fluid phase)
c.f Campas, Shraiman



Spring-edge model

solid

fluid



Active spring-edge model

solid

fluid



Conclusion: Yes, there is 
universal rigidity transition across 
many models, predicted by the 

shape parameter, in both in zero-
frequency and finite frequency 

response.

Why?



Second order rigidity: there are two length scales in the system: 
1) the number of cells/vertices per unit area and 
2) the characteristic distance between two cells or vertices defined 
by the energy functional (parameterized by the cell perimeter in 
vertex models or the rest length for edges in spring-edge models)

The second-order rigidity transition occurs at a special 
point in configuration space where states that are 
compatible with both the energy length scale and the 
density length scale disappear.

perhaps cell shape is a dimensionless comparison of 
these two lengthscales that generically describes the 
point at which these states disappear across models?



Designing mechanical 
metamaterials

Tyler Hain
Chris 

Santangelo

Hain, Santangelo, Manning, to appear on arXiv this week!



Preliminary: 
Examples of 

small designed 
networks

optimized: maximum bulk stiffness / minimum shear stiffness
sh

ea
r f

or
ce

Ryan HaywardJoe Roback

3D printed hydrogel



theory: representing a spring 
network

Encodes boundary conditions: 
which edges don’t go to zero when 

all vertices are collapsed?

Periodic Boundary

Fixed Boundary



Can we solve for the 
coordinates?

The critical manifold contains all configurations 
that satisfy force balance while having internal 

stresses:

Can we make a new set of degrees of freedom 
that parameterizes the critical manifold?

Coordinates of 
vertices

Generalized 
stresses

Net forces on 
vertices



Describe internal stresses by coarse-graining the 
lowest level degrees of freedom (node 

coordinates) into higher geometric quantities 
(lengths, areas, etc)

Generalized stress associated 
with 

Geometric 
relationship 



Prestress 
Matrix

Quantifies boundary conditions

Tension on edge 

Length of 
edge 

Schek, Comput. 
Methods Appl. 
Mech. Eng. (1974)

Generalized stress is 
a force density

If we instead choose                                       
, the force balance equation is linear!



If you give me your favorite

• Network structure:

• Boundary conditions:

• Self-stress:

Yes, we can 
parameterize the 
critical manifold!

I can give you the coordinates of the 
corresponding critical configuration:



Critical Manifold of the 3-Bar Linkage

Space of Self-Stresses



With this self-stress parameterization, we can 
rationally search the critical manifold for special 

configurations

Can we compare these with configurations sampled 
randomly from the critical manifold?



Randomly generated configurations

Randomly assign rest lengths, 
strain to the critical manifold

Randomly assign self-stresses, use 
parameterization to get 

configuration



With this self-stress parameterization, we can 
rationally search the critical manifold for special 

configurations
Use gradient descent to traverse 

the space of self-stresses to 
optimize any objective function

Self-stress parameterization 
lets us take a total 

derivative!



Structure-Based Objective 
Functions:

Say we want to find rigid networks with 
regular structure: e.g. all edges have 

equal lengths or equal tensions

We can minimize the fluctuations of 
these quantities

With this self-stress parameterization, we can 
rationally search the critical manifold for special 

configurations



Structural Objective Functions

Minimized length fluctuations Minimized tension 
fluctuations



We can use the Hessian to calculate elastic moduli
• Hessian contains all microscopic details, but we often just 

care about the stiffness of a material under a bulk 
deformation

Uniaxial 
Strain

Volumetric 
Strain

Shear 
Strain

Young’s Modulus

Bulk Modulus
Shear 

Modulus



Linear Response is determined by 
the Hessian

• Hessian describes the curvature 
of the energy landscape

• Lets us calculate the 
deformation due to an applied 

force



Maximize bulk modulus at the transition



Maximize shear modulus at the 
transition



Increasing 
Tim

e
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Maximize shear modulus at the 
transition

TensionLongest edge becomes 
larger than the box 

size

The edge with the most 
stress is under 
compression

Optimization leads 
to weird 

configurations!



Maximize shear modulus at the 
transition

Optimize new objective function:

We can add additional constraints to 
keep the self-stress above a given 

threshold



Maximize shear modulus at the transition (w/ 
constraint)



Lower threshold produces more aligned 
networks



Random SamplesResponse Objective 
Functions

Structural Objective 
Functions

Ra
nd

om
 R

es
t 

Le
ng

th
s

Ra
nd

om
 S

el
f-S

tr
es

s

Bu
lk

 M
od

ul
us

Sh
ea

r M
od

ul
us

Eq
ua

l T
en

sio
ns

Eq
ua

l L
en

gt
hs



Summary

What is the space of states at the transition?
There is a manifold of states at the critical point of 

any underconstrained network, which we can 
completely characterize with an analytic 

parameterization

Can we search this space to find 
configurations with specific desired 

properties?
Yes! We can find configurations that optimize a 

smooth objective function



End of lecture 3
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