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why isn't there a force that is linear in u

Becauseofthesymmetry ofthe lattice can

take afouriertransforme.g.ua eikna
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This equation says that D
is
diagonalizablewith

eigenvalues that are positives which can be writtensmall
The factthat Ongoraryperturbation u results in a offsite

restoringforce that drives the system
back

towards the lattice



This means the system is rigid there are noperturbation
u tothe lattice that
cost zero energy

What about disorderedmaterials

Examples
Glasses Polymers cells pilesofants
Granularmateriatstibers Les

Mamta's lectures

finitetemperature
glasses

are really challenging
we willreservediscussion

for later

But TO limit ofrepulsivespheres
is

simpler to
understand
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Recall fromMoumita's lectures in Week1 lecture1

Each contact between a pairofparticles introduces
a constraint on the motion of thesetwoparticles
e g it costs energyto move them closertogether

let z number of contacts perparticle
then there are

constraints because each
constraint is
sharedby 2

So there are particles
constraintsperparticle

and d degreesof freedom perparticle
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If we have a network where the interaction energy is

a functionofa set of contraints e g

F re a U
E Éf on bonds in

Couldbirpungnetworkakshrednetwork
contact network for ads non confluentcells
vertex model for confluent cells
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How many if dimension
Howmanyconstraints
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Ultimately we want to know if it is possibleto

change the configuration without energy
this means the system is floppy

v ariation SU 0 for any change in x ̅

but since it is a function of the fan it usually
suffices to check whether there are variations to

anyofthe that cost zero energy
This is called structuralrigidite

We want to know how a change to the x ̅ changes the
constraintsfa

Sfa 8 dxin higher order terms
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Noe that this object RE m

called the rigidity matrix



is a map from configurationspaceto constraint space
it tells you hope changestoy in alter the bonds

T.fi joEx R is

miffy I rectangular
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z
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Are there a setof displacements x ̅ that don'tchange
any of the constraints

II I 0
7 87 in the right null
space of R

These Jx are called liar zeromodes LZM
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us from constraint space back to configuration
space RT

a set ofperturbations to the bonds e.g
that do not cause changes to the tensions
constraints R E g
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These are called states offffress



They are setsof tensions on the bondsthat don't move any of
the vertices

They are in the right null spaceof map RT
orequivalently in the left null space of R
O o R

Let be the numberof independent
states ofself stress

Now we can use the rank nullitytheorem derive

a nice resut
brank IR null R digged demffe

rank Rt wellR

No Nss
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Nd M s Maxwell Calladine
constraint counting

No 0

Examples particlessmoker rigid rigid
M

Nd Nz two
Nss 0
at jamming

Z Zcwhen N d NIC underconstrained

777 c

FEI overconstrained

So Maxwell Calladine constraint counting
isostaticity

is considering first order perturbations to constraints
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called firstorderrigidity
Example 4 bar linkage
Lubensky

in 2d
2015

y Nd 4 2 8

M 4

No 8 4 4
2 what are these zero modes

3 rigid body motions

1 non trivial flopsmode
i

ttffhearCalled under constrained

Example
2

no 5bar linkage in 2d

Nd 8Ill M s
No 8 5

only rigidThis is floppy bodyrotations
No non trivial

lectuifzisifd.comD
Example 4 bar linkage revisted

Note that none of what we
did above

depended on the rest lengths of the bondsbars
So we could have considered II If



lotsof geometries at fixed topgology
connectivityof thepositionsof vertices network

lengthsofbonds under constrained
So we could consider a special case where

we stretch out the bond
between and 4

I

gf Let's choose the distance

r between 4 such that
it is almostexactly
3 times the rest length of
the other bars

Then the square becomes almost flat

If we make 8,4 310 then the system is flat and
none of the constraints

9 may are satisfied
2 3

e g f 0 fasso 134
liz lo

There is tension in all of the bonds
that doesnt changetheYorkton a statesoff

constraint counting Nd 8
M 4
Nss 1

No 8 4 I S floppymodes

3 rigid bodymotionBut the object should be
rigid fa 0 and perturbations 2 nontrivialtergodes
Should cost energy
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Is this right Yes This analysis only
tells us about
perturbations to 1ˢᵗFifty order in the constrain

7 2 linearFero modes
that cost zero energy to

first order
for solo
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raft II
No term that is linearing

8
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0 Rigidity matrix
doesn't

know about this cost

For this special geometry
we need to consider second order perturbationsto the
constraints 2,0for a LZM

Sfa if in 8k in

if the only Oxin that satisfy
are rigidbody

motions then system is send orderrigid

Howtofigurenisontn.TK
d of complicated in all finesstifiedFEEL

here we'll sketch out the idea



For all that is quadratic in some constraint

U fa

Ofbecause
at an energy
minimum
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transition for
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So these two can only beequal when bothsides
are zero

but RHS zero onlyfor Ex a LZM
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tinna sohat
it is also floppy to second order

OR

T.P.si f
Note Thereare systems forwhich P is not positive

semi define

and in general then this
condition is not sufficientto

prove floppiness

So goingback to our example

1 Apr
a stateof selfstress

Ox

our LZM is dy I
k rut 1 a 8 yy to

8 y 19 not floppyto secondorder

g
0 the system is rigid

One might think that this is a specialexample
as thisparticulargeometry won't happen

generically



But it turns out that rigidstates
are a finite regionofthe space
for this example To see this hff4
its a little easier to plot the between 1 4 but

allow joints torotat
phase space

with a 3 bar time
in criticatifold

In lecture 3 I'll talk allpoints
more about the properties
of this critical manifold f

tg

e

and how one might use
it to

Pinffoppy
designstuff or how biologymight

self organize on
it

keypoint Not a specialfeature of
this

example
verygeneric a change

in geometry

ofnetwork can allow an underconstrain

material to become rigid
slides on fiber networks

for lecture 2



Examples Underconstrained spring networks

Z Zc in both 2D 3D

I modelfor collagennetworks

teeth typical branching connectivity

go
is between.infurYonstrained

for fxfk.CA lo just as in our

NDGF Nvertices d

M Nieri
U fi formulation above

Npo
We can either keep box

fixed
and shrink rest length lo

or fix to and grow
size often

constraints M
2N Find a critical dot

for lo lo the systembecomeNV rigid
under constrained Equivalently a critical sizeof

Ghodulus the box or strain at which

LI gaxinmid
l do I Encodesboundary

vector instead eqrdyg.to
conditions Experiodic

alongbond
go if.ieIx.cisatheadofedgextail

configurational

chosenby depends
ff ftp fF fyivee

in and gai

Note Next week Andrea Liu
will

discuss these as adaptivedegrees

of freedom that biology can use to learn



Vertex models for biological tissues

Nagai Hondaapicalffffffth phil Mag B 2001

fffhfffffahfdnfts.twfey 2007

also
Hufnagelet albasal PNAS 2007

monolayer of cells
apical side looks like

a network ofpolygons
positions of the vertices in
incidence matrix gai which edges connect

which vertices

FIFI
gives rise to faces f
with properties
cross sectional area

At

Yo
cross sectional perimeter

P

I

in isotropic tissues the vertices are usually
3 fold coordinated Why

Assume that eachedge has the same
tensionof2dsurface tension
lowestenergy U 101 o la

minimizing U minimizing El
fi fix fix
to

compare 1 vs

fiff f



one can show Exercise that the 3 fold
coordinatedsystem minimizes the energy
note this breaks down in eganisotropicsystems

where o's are different can

get rosettes É
Toproceed we need to describe how a

mpquameters
mechanicalenergy U arises from the config
vertices in and connectivityfrom gai v9 L
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Farhadifor Farhadifar

cells are approximately
interfacial contractile ring

incompressible v const
tension
generated shrinks

in the monolayer assume by competition petiklythat there is a quadratic between couldalso be
penaltyfor height adhesion

any otherprocesfluctuations cortical
tension

that limits the
U n hot perimeterofa

surface tension all eg aAh so to linear
like termorderthis generates a

generatedby
limited Pool
of cadherinquadraticpenalty long time see Latorreon Area fluctuation behavior of

actin myosin Nature
cortex 2018

Note adhesiontends to elongate
cell cellinterfaces in contact
But E cadherin is ordersof
magnitudeweaker than

corticaltension prettie

Probably more correct E cadherin
regulates

corticalsurface tension at interfaceswhere it
acts



TFtF iomo
geneous system

where all the model

parameters are the same for every cell

this can be simplified

Hot f Uf
A AFAR kp o

fromAEledge AP
and completing

the

square
Po If Ka KP

andfinally we
can nondimensionalizebyFeng effigy

Ntot flq 17tkfsffFp

YIA.it so

EYE Tipindex
there are two
constraints on each face

Nfaces
Z

Nvertice

Constraint counting 2

degreesof freedom www.sg
fnfertefodel

constraints M 2N faces 2 2 Nvertices

constraints NDOF

Ties Everies underconstrained



But one state ofselfstress at the transition
Similar to the spring

network there is a

critical so atwhich systembecomesrigid

slides for lecture 3

vertex model examples

Universality
finite frequency

programming
materials


