Notes on connection between cost & physical Hessians. Stern, Guzman, Martins, Liu, Balasubramanian arXiv 2406.09689 linear resistor networks trained using double optimization so at numme in cost & physical landscapes. Nehmark has N nodes Va connected by Ne edges K; Hap is physical Hessian (or graph $Laplacian) \\ H_{\alpha\beta} = \frac{\partial^2 P}{\partial V_{\alpha} \partial V_{\beta}}$ Symmetric N x N For linear resistors, where $V = \begin{pmatrix} V_{i} \\ V_{2} \\ \vdots \\ V_{\alpha} \\ \vdots \\ V_{n} \end{pmatrix}$ $P = \frac{1}{2} V^T H V$

recall for single resistor Vie KV2 $P = \frac{1}{2} \mathcal{K} \left(\mathcal{V}_{1} - \mathcal{V}_{2} \right)^{2} = \frac{1}{2} \mathcal{K} \left(\mathcal{V}_{2} - \mathcal{V}_{1} \right)^{2}$ node1 node2 so in this case $H = \frac{1}{2} \mathcal{K} \left(\mathcal{V}_{2} - \mathcal{V}_{1} \right)^{2}$ node2 $\left(-\mathcal{K} - \mathcal{K} \right)$ node2 $\left(-\mathcal{K} - \mathcal{K} \right)$ $P = \begin{pmatrix} V_{1} & V_{2} \end{pmatrix} \begin{pmatrix} K & -K \end{pmatrix} \begin{pmatrix} V_{1} \\ V_{2} \end{pmatrix} \begin{pmatrix} K & -K \end{pmatrix} \begin{pmatrix} V_{2} \\ V_{2} \end{pmatrix}$ Introduce adjacency matrix Aix where $\Delta_{ix} = -1, 0, 1$ (put arrow on diagram above) node 1 node 2 $\Delta = kdge 1 (-1 1)$

Define Kij = Ki Sij Phen $\Delta^{\top} \kappa \Delta = \begin{pmatrix} -1 \\ 1 \end{pmatrix} (\kappa) (-1 1)$

 $=\begin{pmatrix} k - k \\ -k & k \end{pmatrix} = H$

 $S_{0} H_{\alpha\beta} = \Delta_{\alpha i}^{T} K_{ij} \Delta_{j}$ Sappose we have valtages Vain supplied to nodes, specified by vector S Then we will call this the free state (sources applied, outputs left free). To Sahisfy Kirchhoff's law, $P^{+} = \frac{1}{2}V^{T}HV - V^{T}S$ must be minnnzed.

Why this additional term? Add a Lagrange multiplier $P = \frac{1}{2}V^T + 1V + 1 \cdot (V - V)$ allather vector of Lagrange nodes multipliers Clearly, I has mits of current. Construct an extended Hessian, with Ninput extra rows& columns except for -1 oth the diagonal at each of the input node positions m'the matrix. m rue matrix. Let \mathcal{U} be angemented voltage vector V_i where $\lambda = \tilde{\mathcal{K}} V^{input}$ V V V input input Vinput Define the source vector $S = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ S_1 = VV_1 \\ \vdots \\ S_1 = VV_1 \\ \vdots \\ S_1 = VV_1 \\ VV_1 \\ \vdots \\ S_1 = VV_1 \\ \vdots \\ S_1 = VV_1 \\ V$ Then $P = \frac{1}{2} U H U - U S$

The power is number of the nodes have the voltages $V_{(\kappa,\tau)}^{F} = H^{-4}(\kappa)S$ Define the coast function $C = \frac{1}{2} \sum_{\substack{tasks \\ tasks \\ n}} \left(V_r^F - V_r^{desiret} \right)^2$ $= \frac{1}{2} \sum_{\substack{tasks \\ r}} C_r^2$ Denble ophimization leads to nimum G=0
of G and P. Near mummum, C is described by cost Hessian: $\mathcal{H}_{ij} = \frac{\partial^2 G}{\partial \kappa_i \partial \kappa_j}$ Nex Ne matrix For a system with n_T constrant \mathcal{Y}_i : has n_T high eigenvalues n_t constraints, Sagun, Bottou, Le Cun 1611.07476 (2016)

Consider case of smigle task (constrant) $\mathcal{H}^{\text{sat}} = 9 \cdot 0$ assume double optimizatorhas sacceeded So H=0 $= \begin{array}{c} g_i g_j \\ We dor \\ \end{array} \begin{array}{c} \partial c \\ \partial c \\ \partial c \\ \partial \kappa \end{array}$ Recall that H^{sat} as I high eigenmode for I constraint: gi is this eigennade. (show stide agin) going down gradiant Note also that $\partial G \qquad \partial C$ $\overline{\partial K_i} = C \overline{\partial K_i}$ V is going in direction of Gi stiff mode!

Now recall that c depends on
free state
$$V^{F}$$
:
 $g_{i} = \frac{d_{C}}{dVF} \cdot \frac{dV^{F}}{dK_{i}}$
But $V^{F} = H^{-1}(K)S$
So $\frac{dV^{F}}{dK_{i}} = -H^{-1} \frac{dH}{dK_{i}} H^{-1}S$
 $g_{i} = \frac{d_{C}}{dV_{F}} H^{-1} \frac{d(H)}{dK_{i}} H^{-1}S$

But H = AKA

let a correspond to the nodes on the ith row of A_{id} so that $A_{d}^{(i)} = A_{id}$ And $g_{i} = -\frac{dc}{dV_{F}} H^{-1} A^{(i)} \Lambda^{(i)} H^{-1} S$ So $\mathcal{X}_{ij}^{sat} = \mathcal{G}_{ij}^{sat} \sim (\mathcal{H}^{-1})^{4}$ curvature avoimment in cost landscape is related to curvatures around im in physical landscape! The 2 become coupled via double optimization process. Going Further, we can show that $\chi^{olyn} \sim \sqrt{C} H^{-3} \rightarrow 0$ when $C \rightarrow 0$.

Evolution of Eigenvalues with Learning of Linear Regression

Highest eigenvalues increase

Lowest eigenvalues decrease

 $H_L \sim \left[H_P^{-1}\right]^4$

Stern, Guzman, Martins, Liu, Balasubramanian arXiv (2024)

Evolution of Eigenvalues with Learning of Linear Regression

- Start with low eigenvectors of physical Hessian $\mathcal{B} = \{\Psi_1, \Psi_2, \Psi_3, ...\}$

- Minimize functional
- Minimum of functional gives new basis vectors that span same space

$$\mathcal{B}' = \{\Psi_1', \Psi_2', \Psi_3', ...\}$$

Lowest eigenvectors

Maximally localized basis

Felipe Martins, Marcelo Guzman

Maximally Localized Basis

• Construct spreading functional that measures spatial extent of eigenvectors

 $\Omega[\mathcal{B}] = \sum \left(\Psi_i^{\mathrm{T}} \mathcal{R}^2 \Psi_i - (\Psi_i^{\mathrm{T}} \mathcal{R} \Psi_i)^2 \right)$

	0.10	
	- 0 .08	
	0 .06	
^	0.04	
	- 0.02	
	0 .00	
	0.10	
	- 0 .08	
	- 0.06	
~	- 0.04	
	- 0.02	
	0 .00	

Getting Insight from Maximally Localized Basis

Binarize max localized modes

Construct boundaries between regions of different V

Combine boundaries together

Getting Insight from Maximally Localized Basis

Binarize max localized modes

Construct boundaries between regions of different V

Combine boundaries together

Getting Insight from Maximally Localized Basis

Binarize max localized modes

Construct boundaries between regions of different V

Combine boundaries together

$$N_T = 2, \Delta = [0.4, 0.4]$$

Boundary Edge and Boundary Edge Frequency

- The number of boundary edges ~ \sqrt{N m}
 - For each N, assign index n_i to each edge I so that n_i=1 if the edge is a boundary edge, 0 if not
 - Define a weighted boundary frequency for each edge, $f_i = \sum\{N_m = 1, N_m = 1, N_$ n i /sqrt{N m}

Boundary Frequency vs. Number of Modes

Modes accumulated up to 2

Boundary Frequency vs. Number of Modes

Modes accumulated up to 2

How to Determine Reasonable N_m Without Knowing Cost Hessian

Nm

Compare Optimal N_m

• Number of modes to retain is similar

Physical Insight Into How Task Is Accomplished

$V_{T1} = 0.15V_{S1} + 0.3V_{S2}$ $V_{T2} = 0.2V_{S1} + 0.1V_{S2}$

from cost Hessian

Barriers direct flow to make target more sensitive to one source than the other Felipe Martins, Marcelo Guzman

from physical Hessian

- Summary of our approach:

 - Create ensembles of networks that learn the same thing • Identify microscopic origin of learning with PH analysis/Hessian analysis • Dimensional reduction to relevant microscopic quantities: mechanism reduced to
 - - sectors/strain pathways (PH)
 - Barriers/pipelines (physical Hessian)
- ANNs vs learning metamaterials
 - In ANNs, must rely on cost Hessian (or NTK) for insight
 - So must know cost function
 - That's ok because cost function is required to train
 - [•] Learning metamaterials learn by local rules—don't use cost function
 - Can use physical Hessian to gain insight into emergent learning without knowing what network was trained to learn

Structure/Function Relation from "Statistical Physics"

- relations
 - ability to create ensembles of networks with desired functions allows study of statistics
 - new application of persistent homology for identifying structure/function relation that can be applied to real systems
 - leaves detectable signatures
 - e.g. connection between allostery and low-frequency vibrational modes (2017), Husain/Murugan Mol Biol Evol (2020)

Holy Grail for proteins: understand sequence/mechanics/structure/function

• Learning sculpts both the learning landscape and the physical landscape and

(Jacobs/Rader/Kuhn/MF Thorpe Proteins (2001), Yan/Ravasio/Brito/Wyart

Prove that we can replace cost with contrast as 170. Recall that there is a Lyapunov for e.g. power P for linear resistor networks that is minimized to satisfy Kirchhoff's law. For nonlinear realstors, $P = cocontent = \frac{1}{2} \sum_{v \in V} dV I(v)V$ edges " In the freestate we are applying inputs Is at a subset of nodes; call this vector Sz. let Va be The nodevoltages & K, be the conductomes So $P_F = P_F(V_F, K, S)$

Note that V_F are the voltages that number P_F so $\frac{\partial}{\partial V} P_F(V, \kappa) = 0.$ Now consider some Cost for $G = \frac{1}{2}K \sum (V_B - V_B)^2$ turns error , Ataget nodes B P = . P= + 1C Define a new "sourcer" as Then following same linear algebra as before for applying inputs is a vector of Lagrange multipliers, $P = P + \lambda \cdot (V - \tilde{V}) \text{ where } \lambda$ We see this looks the same of we set $\lambda = \frac{1}{2}\tilde{\kappa} (V - \tilde{V}) \cdot \lambda \text{ acts like a current}$ This is the clamped Define the clamped state as V with P(*Ve, K, y) where V munges Pc c Ve, K, y) where V munges Pc Now define the contract function $C = \eta^{-1} \left[P_c - P_F \right]$

Show that $\frac{d}{dk} \mathcal{C}(V_{F}(k)) = \lim_{\substack{y \to 0 \\ \eta \to 0}} \frac{\partial}{\partial k} \mathcal{C}(V_{F}, k, \eta)$ $\frac{1}{\gamma}$ total derivative partial derivative clamped state $\frac{\partial}{\partial V} P_{c}(V, \kappa, \gamma) \Big|_{V=V_{c}} = 0.$ $\frac{dP_c}{dK}\Big|_{V} = \frac{\partial P_c}{\partial K}\Big|_{V} + \frac{\partial P_c}{\partial V}\Big|_{\partial K}\Big|_{V}$ $\frac{dP_c}{d\eta} \bigg|_{v} = \frac{\partial P_c}{\partial \eta} \bigg|_{v} + \frac{\partial P_c}{\partial V} \bigg|_{v} \frac{\partial V}{\partial \eta} \bigg|_{v}$ $\frac{d}{d\kappa} \left(\frac{dP_c}{d\eta} \right) \right|_{V_c} = \frac{d}{d\eta} \frac{dV_c}{d\kappa} |_{V_c}$

Bont Pc =	PF + M	Ċ
-----------	--------	---

 $\frac{d}{dK} \frac{d}{d\eta} \left(pF + \eta e \right) = \frac{de}{d\pi}$ and $d_{\gamma} = \frac{d}{d\kappa} \left[\frac{\partial P_{c}(v,\kappa,\eta)}{\partial \kappa} \right] = \frac{1}{2} \lim_{\nu \in I_{\gamma} \to 0} \frac{\partial}{\partial \kappa} \left[\frac{P_{c}(v,\kappa,\eta)}{\nu} - \frac{R_{c}(v,\kappa,\eta)}{\nu} \right]$ $=\frac{1}{\eta}\int_{\eta\to 0}^{2} \frac{\partial}{\partial \kappa} \left[\mathcal{P}_{\mathcal{L}}(v,\kappa,\eta) - \mathcal{P}_{\mathcal{L}}(v,F) \right]$ $S_{o} \frac{dG}{dK} = \frac{1}{\eta} \lim_{\eta \to 0} J_{K} \left[\frac{P_{c}(v, \kappa, \eta)}{V_{c}} - \frac{P_{c}(v, F)}{P_{c}(v, F)} \right]$ $\frac{dG}{dK} = \lim_{\substack{n \to 0 \\ n \to 0 \\ }} \frac{\partial C}{\partial K}$ Subleties : mage howards desined Voltage a/ current or voltage EP CL For CL there is an extra term that

Hoem't vannoh as 970 See Scellier, Ernoult, Kendall, Kumar Pro Neur IP3 (2023) App B

Ben Pisanty

Jovana Andrejevic

Sid Nagel

DOE Biomolecular Materials Simons Foundation

Coupled karang for spring networks $C = \frac{1}{2} (desured response - free response)$ $C = \frac{1}{2} [E^{cl} - E^{freed}] \ge 0$ due to physics $C = \frac{1}{2} [E^{cl} - E^{freed}] \ge 0$ due to physics Justas before, $\frac{\partial C}{\partial k}$ approximates $\frac{\partial G}{\partial k}$. spring constant vector $k_{j} = -\alpha \overline{\beta} k_{j} \left[E^{l} - E^{free} \right]$ $= -\frac{\alpha}{2\eta}\frac{\partial}{\partial k_{j}}\frac{\partial}{\partial k_{j}}\left[l_{i}^{c}-l_{o}\right]^{2}-\left[l_{i}^{c}-l_{o}\right]^{2}$ $= -\frac{\alpha}{2\mu} \left[\left(l_{j}^{c} - l_{o}^{c} \right)^{2} - \left(l_{j}^{F} - l_{o}^{c} \right)^{2} \right]$ Task: Cooperative bunding vs allostery allostery free BC: Clamped Source fargetstrain $\epsilon = 1$ $\epsilon = \Delta$ E=1 E=1 $\epsilon = \epsilon_{\mathsf{F}} + \eta \left(\Lambda - \epsilon_{\mathsf{F}} \right)$

Go TO SLIDES

Training for Cooperative Binding vs. Allostery

 E^{A+B} E^A BFA $\frac{1}{2}$

Differences Between Allostery and Cooperative Binding

- Cooperative binding response projects more strongly onto lowest eigenmode of physical Hessian
- Energy required to apply strain at B (to bind B) is much higher for cooperative binding but energy to bind B once A is bound is small, as desired

Allostery

Cooperative Binding

Denation of crossoner T Consider eigenmodes of physical Hession (vibrational normal modes) Denote these as $\vec{e_j}$ in unstramed case jundexes mode. First 6 modes correspond to rigid trans & notation in 3D. exclude these saft mades. Consider i, vector of node displacements. $\overline{u} = \Xi \, \overline{e_j} \, \overline{e_j}$ modes = jAt temp T, equipartition tells us that

a; have Gaussian distor w/ mean 0, variance $\frac{T}{m\omega_{0,j}^2}$ So clearly me can calculate the mean & variance of the strain a the target $\langle \epsilon_{T} \rangle = 0, \quad \epsilon_{\tau}, 0$ (w/out input stain) $\langle \epsilon_{T} \rangle$, $\sigma_{\epsilon_{T}}^{2}$ (with mput strain) in terms of eigenmodes of H,

Strains and Thermal Fluctuations

• Thermal fluctuations wipe out 1.2 cooperative binding at ~T* 1.0 0.8 0.6 ε7 0.4 0.2 0.0 $\left\langle \epsilon_T \right\rangle = \left(\sigma_{\epsilon_T} + \sigma_{\epsilon_T}^0 \right)$ -0.2 +

Crossover Temperature is Non-Monotonic in Response Δ

Crossover Temperature is Non-Monotonic in Response Δ

How to increase T*: energy "regularization" ongmal contrast: $C = \frac{1}{\eta} \left[\left(E^{c} - E^{f} \right) + \left(E^{c} - E^{f} \right) \right]$ add a term to raise the energy of the three state: $C = \frac{1}{\eta} \left[\left(E^{C} - E^{F} \right)_{A \to B} + \lambda E^{F}_{A \to B} \right]$ $+ (E^{C} - E^{F})_{B \to A} + \lambda E_{B \to A}^{F}$ if E^F is higher then made energies are higher.

Trade off: evor is higher.

Energy Regularization Improves Thermal Resilience

