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linear resistor networks trainedusing
double optimization so at minimum

in cost physicallandscapes
Network has N nodes V2

connected by Ne edges k

Hap is physical Hessian or graph

Laplacian
symmetricHap

Vp NxN

For linear resistors
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recall for single resistor
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model nodez

so in this case
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Introduce adjacency matrix
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Define Ki Ki di

then AT KA
4 In 1 1

k k

k b H

So Hap AT Kij Δ

Suppose we have attages VI in

applied to
Models specified by vectors

Then we will call this the free state

sources applied outputs left free

To satisfy Kirchhoff's law

PF VTHV VTS must be

minimized



Why this additional
term

Add a Lagrange multiplier
P EUTHV 1 V E

all other vector of Lagrange
nodes multipliers

clearly I
has units of current

Construct an extended
Hessian with Nonput extra

rows columns except for 1 on the

diagonal at
each of the input

nodepositions

in thematrix
let U be augmentedvoltage

vector

where a I input

Eiiii
Define the source vector

Thens
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The power is munzed if the nodes

have the voltages
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label
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Double optimization leads
to minimum 6

of G and P Near mummum

G is described by cost Hessian

Hi g
Nex Ne matris

For a system with n constraints

H has n high eigenvalues
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Consider case of single task constraint

E c

even reis iffy
whence

assume double
outerproduct optimization

has

twitself succeeded so 2 10
seat gig

Kator 8

Recall that 2fˢaᵗ as I high

eigenmode for 1 constraint

g is this eigenmode Ishow slideagain

going
downgradient

Note also that a i going
in

directionof
C K Cgi stiff mode



Now recall that c depends on

free state VF

g

But VF H K S

So dVF
TK H H's

gi 4 II H's
But H ATK A
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let a correspond to the ñfdeÉn the ith
r

row of Aid so that a Aix

Then Hui AT Δ

And
g

4 H A Δ H s

so
x gig H

curvature aroundmin in cost landscape

is related to curvatures around him

in physical landscape The 2 become

coupled via double optimization
process

Going further we can show that

M R H when 6 0



Evolution of Eigenvalues with Learning of Linear Regression

Learning 
Hessian

HL

Physical 
Hessian

HP

Highest 
eigenvalues 

increase

Lowest
eigenvalues 
decrease
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But how to extract insight from many low 
eigenmodes of physical Hessian?



Maximally Localized Basis

• Start with low eigenvectors of physical Hessian
• Construct spreading functional that measures spatial extent of eigenvectors 

• Minimize functional 
• Minimum of functional gives new basis vectors that span same space

Felipe Martins, Marcelo Guzman

Lowest eigenvectors

Maximally localized basis



Getting Insight from Maximally Localized Basis

Binarize max 
localized 
modes

Construct 
boundaries 
between 
regions of 
different V

Combine 
boundaries 
together
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Boundary Edge and Boundary Edge Frequency

• The number of boundary edges ~ \sqrt{N_m}
– For each N, assign index n_i to each edge I so that n_i=1 if the edge is a boundary edge, 0 if 

not
– Define a weighted boundary frequency for each edge, f_i = \sum{N_m=1, N_mtot= dN} 

n_i /sqrt{N_m}



Boundary Frequency vs. Number of Modes



Boundary Frequency vs. Number of Modes



How to Determine Reasonable Nm Without Knowing Cost Hessian

Nm



Compare Optimal Nm 

• Number of modes to retain is similar 

Compare to cost Hessian

From physical Hessian alone



Physical Insight Into How Task Is Accomplished
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VT1 = 0.15VS1 + 0.3VS2

VT2 = 0.2VS1 + 0.1VS2

from cost Hessian

Barriers direct flow to make target more 
sensitive to one source than the other

Felipe Martins, Marcelo Guzman

from physical Hessian 

T1 T1S2 S2

S1S1 T2T2

G G



“Statistical Physics” from Big Data
• Summary of our approach:

• Create ensembles of networks that learn the same thing
• Identify microscopic origin of learning with PH analysis/Hessian analysis
• Dimensional reduction to relevant microscopic quantities: mechanism reduced to

• sectors/strain pathways (PH)
• Barriers/pipelines (physical Hessian)

• ANNs vs learning metamaterials
• In ANNs, must rely on cost Hessian (or NTK) for insight

• So must know cost function
• That’s ok because cost function is required to train

• Learning metamaterials learn by local rules—don’t use cost function
• Can use physical Hessian to gain insight into emergent learning without knowing 

what network was trained to learn



Structure/Function Relation from “Statistical Physics”

• Holy Grail for proteins: understand sequence/mechanics/structure/function 
relations
• ability to create ensembles of networks with desired functions allows study of statistics
• new application of persistent homology for identifying structure/function relation that can 

be applied to real systems

• Learning sculpts both the learning landscape and the physical landscape and 
leaves detectable signatures

• e.g. connection between allostery and low-frequency vibrational modes 
(Jacobs/Rader/Kuhn/MF Thorpe Proteins (2001), Yan/Ravasio/Brito/Wyart 
(2017), Husain/Murugan Mol Biol Evol (2020)



 

Prove that we can replace cost with

contrast as y o

Recall that there is a Lyapunov for

e g power P for linear
resistor

networks that is minimized to satisfy
Kirchhoff's law

omit
For nonlinear resistors r

P cocontent
ff.ge iNI

In the free state we are applying

inputs Is at a subset of nodes

call this vector Let V2 be

the nodevoltages K be the conductance

So PE Pe Ve N S



Note that Vp are the voltages that

mining Pp so

Pp IV w 0

Now consider
somet cost for

desired

6
ÑƩp

Vp Vp

turns error target
intopower nodes

Define a new sower as P Pr 7C

Then following same linear algebra as before
forapplying

inputs

P P 1 V E where a is arectorofLagrangemultipliers

we seethislooks
thesame if we set

in iv w̅ actslike a current
This is thedamped
power

Define the clamped state as ve

with
Pctv K y

where Ve munges

Now define the contrast
function

C y Pc Pe



Show that

a
1K K y

totalderivative partialderivative

clampedstate

Pc V K 7 v.v
0

L it É
I

File Fit L
I 11 L
But Pc PF 76



Ek PF ye

and EE.IT jf fr.lisnmnil B

flying
Pc inkind f

r e

so if ftp.n.KCP.irkindly E
v F

If w

Subleties nudge towards
desired

voltage at current
or voltage

EP CL

For CL there is an extra term that

doesn't vanish as y
0

see Scellier Ernoult Kendall Kumar
Pro Neur IPS 2023 App B
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Coupledbearing for spring networks

G desired response
free response

C Ed E freed due tophysics

Just as before approximates

spiringconstant
vector

k 4
Ed Ence

4 ki ti l l If

46
l let 1

Task Cooperative binding vs allostery

allostery
free BC

clamped

source targetsmanof stra.me 1 1 01 Δ
E EE y A E



cooperative binding alternate between

case above and

free clamped

Go 1

E Efty A EF

k 4 E EF
Be

E E
B A

GO TO SLIDES



Training for Cooperative Binding vs. Allostery

Site A

Site B

cooperative binding

allostery
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Differences Between Allostery and Cooperative Binding

• Cooperative binding  
response projects more 
strongly onto lowest  
eigenmode of physical  
Hessian

• Energy required to apply  
strain at  B (to bind B) is  
much higher for cooperative 
binding but energy to  
bind B once A is bound is 
small, as desired 

Allostery Cooperative Binding



Donation of crossover T

Consider eigenmodes of physical
Hession

vibrationalnormalmodes

Denote these as in unstrained case

j indexes
mode

First 6 modes correspond
to rigid trans

rotation in 3D excludethese soft
modes

Consider it vector of node displacements

modes
a

At temp T equipartition tells us that

a have Gaussian distbn
w mean 0 varianceIwg

so clearly we can calculate the mean

varianceof the strain
the target

LETE I In out inputstrains

ET
with inputstrain

in terms of eigenmodes of H



Strains and Thermal Fluctuations
• Thermal fluctuations wipe out  

cooperative binding  at ~T*

⟨𝜖𝑇⟩ = (𝜎𝜖𝑇
+ 𝜎0

𝜖𝑇) 𝑇∗

T*



Crossover Temperature is Non-Monotonic in Response 𝜟
• As 𝜟 increases, so do the fluctuations (lowest eigenfrequency drops)

Δ = 0.2 Δ = 0.98Δ = 0.8Δ = 0.4 Δ = 0.6



Crossover Temperature is Non-Monotonic in Response 𝜟
• As 𝜟 increases, so do the fluctuations (lowest eigenfrequency drops)

Δ = 0.2 Δ = 0.98Δ = 0.8Δ = 0.4 Δ = 0.6



How to increase T
energy regularization

original contrast

C E EF
B

E E
A

add a team to raise the energy of the

free state

C y
EC EF Bt AEA B

E EF B A E A

if EF is higher then mode energies are
higher

Trade off error is higher



Energy Regularization Improves Thermal Resilience


