
Back to Vertex Model: Convergent Extension

• During convergent extension, tissue doubles in length in 2 hours at fixed area

•

GO TO SLIDES

Sadjad Arzash, Lisa Manning



Myosin Polarization Drives Convergent Extension



Myosin Drives Directed T1 events



Introduce Edge Tensions as Parameters

• Vertex model with edge tensions

local rule
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Convergent Extension Driven by Edge Tensions

Aspect ratio
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Convergent Extension Driven by Edge Tensions

Aspect ratio



Convergent Extension Accompanied by T1 events

The snapping points correspond to T1 events



T1 Events Are Oriented



T1 Events Are Oriented



Tension on Vanishing Edge Increases Before T1 event

They all show an increasing 
trend of tension before 
undergoing T1 



Similar to Active T1s

Brauns ++ bioRXiv (2023)

Lateral ectoderm: active T1s



Compare to Applying Global Shear to Vertex Model
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Tension on Vanishing Edges Remains Flat Before T1



Different Mean Shape Factors During Active vs. Passive Extension

active

passive



• Cost function:
• Parameters: edge conductances
• Physical cost function: dissipated power
• Physical DOF: node pressures or edge currents
• 1st optimzn: Minimize power wrt physical DOF 

—required by physics!
• 2nd optimzn: Use gradient descent to minimize  

control cost function wrt control DOF 

Double Optimization: Is Many More Different?

Rocks, Ronellenfitsch, Liu, Nagel, Katifori PNAS 2019

Is many more different?
Tune for NT targets with response 𝜟
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Yes: Many More is Different

• System can satisfy more targets as system size increases

Rocks, Ronellenfitsch, Liu, Nagel, Katifori PNAS 2019

NTc~N0.65-0.71 w~N0.66-0.74



Many More is Indeed Different

• But many more is different in a familiar way—a phase transition (constraint-
satisfaction transition)

• But here we have 2 sets of DOF—parameters + physical DOF
• Does that change anything?



Yes it can: Funnel Landscape Inspired by Protein Folding

• Instead of minimizing

• minimize

Ri is distance from target i to source
• This provides funnel in space to tune 

targets in order of distance from source
Onuchic, et al 1995

M Ruiz Garcia, AJ Liu, E Katifori PRE (2019)
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Changing Cost Function Changes N-Dependence!

• Steepness of funnel controls scaling

• For large β, NT
c ~ N and width/N is constant as N→∞ (same as Hopfield)

• SAT/UNSAT transition is not sharp 

M Ruiz Garcia, AJ Liu, E Katifori PRE (2019)

How many more is different is subtle and 
needs to be understood



Summary
• Simultaneous optimization of cost function and physical Lypunov function provides systematic 

way of solving inverse design problems:  very general
• Biological systems with adaptive function use local rules to adjust parameters

• What are the parameters?
• What is the process by which they are adjusted??

• Unusual kind of condensed matter
• Many more is different because more constraints can be satisfied with more parameters
• But nature of constraint-satisfaction transition depends on cost function and we don’t know 

what it is in biological contexts
• Important for understanding function in living matter

• Speculation: biology stays in overparameterized regime
• Easiest to introduce extensive number of parameters
• Easy to get good solutions in overparameterized regime
• Good solutions are more generalizable with many flat directions & representational drift
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How do input/output responses emerge as collective phenomena?
• Goal of stat phys: to gain microscopic understanding of macroscopic (collective) 

phenomena in many-body systems
• This requires

• Reducing microstate information (e.g. positions and velocities) to averages/variances 
(distributions) of relevant microscopic quantities (eg order parameters)

• For over a century, statistical physics has provided
• solution to dimensional reduction problem
• bridge between micro & macro scales via relevant micro variables

• But some problems resist statistical physics
• Far from equilibrium
• Complex landscape
• Correlated disorder



Input/Output Problems are Resistant to Statistical Physics
• For protein allostery

• there are 20 different amino acids at each site (adaptive DOF)
• amino acid sequence (values of adaptive DOF) not chosen randomly  

but by evolution/natural selection
• For flow allostery

• there are106 edges in brain vasculature with  
range of potential conductances for each

• vasculature does not choose conductances (adaptive DOF) 
randomly but to satisfy input/output relations

• We need new approaches for these hard problems



Input/Output Problems Require Ensembles
• “Stat Phys” requires ensembles

• Here we need big designed/evolved ensembles
• We have protein families across species
• But these are small by stat mech standards
• New material design approach allows us to construct  

large ensembles! “statistical physics” 
• Consequence of overparameterization 

Goodrich PRL 2015
Rocks PNAS 2017
Hexner Soft Matter 2018
Hexner PRE 2018
Rocks PNAS 2019
Pashine Sci Advances 2019
Pashine Hexner PRR 2020
Hexner PNAS 2020
Rocks PRL 2021
Rocks PRR 2020



What Do We Want “Statistical Physics” To Answer?
• We now have designed ensembles
• So what do we want to know??

• How does edge tuning at microscopic scale lead to emergent collective phenomenon 
of function at macroscopic scale? 

• What happens to networks when they learn function?

• Where to start?

GO TO SLIDES



Where to Start in Learning about Learning?
• When in doubt, look at simplest case in  

extreme limits
• Consider 1 source edge with ΔV=1 and one  

target edge with ΔV=Δ=1
• System partitions into two regions  

of constant voltage separated by low- 
conductance barrier

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Function Requires Simultaneous Minimization in Two Landscapes

• Both landscapes evolve during learning 
– Cost function depends on physical DOF (assumed equilibrated)
– Power depends on adaptive DOF 
– Cost Hessian tells us curvatures in phase space of adaptive DOF

• Eigenvalues of HL are curvatures, eigenvectors are corresponding directions in 
phase space of adaptive DOF 

• This is much studied in stat phys of ML
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Cost Hessian Evolves During Learning

• Cost Hessian develops a gap at high end due to learning
• Highest eigenvalue reflects what was learned



Cost Hessian Evolves During Learning

• Cost Hessian develops a gap at high end due to learning
• Highest eigenvalue reflects what was learned



Highest Eigenvectors of Cost Hessian Capture Response

• In this extreme case, system divides 
into 2 sectors separated by low-
conductance barrier

• Useful to verify we have captured the 
right physics

• But not what we want because it 
requires knowing learning cost 
function

1 source edge: 𝜟V=1V
1 target edge:  𝜟V=1V



How to Capture Response Without Learning Cost Function?
• For Δ=1, system partitions into two regions  

of constant voltage
• But what if Δ<1?
• In extreme limit Δ=1,  

edge-tuning/function relation is topological
• Use persistent homology to identify features  

responsible for function 

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Step I: Identify Basins in Voltage-Drop Landscape

• Increase voltage drop and add edge as you reach the voltage drop across the 
edge

• Register appearance of new basin as “birth” of basin
• Connected components (0 Betti number)

Birth: 𝝙V0

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Step I: Identify Basins in Voltage-Drop Landscape

• Increase voltage drop and add edge as you reach the voltage drop across the 
edge

• Register appearance of new basin as “birth” of basin

Birth: 𝝙V3

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Step I: Identify Basins in Voltage-Drop Landscape

• Increase voltage drop and add edge as you reach the voltage drop across the 
edge

• Register appearance of new basin as “birth” of basin

Birth: 𝝙V4

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Step I: Identify Basins in Voltage-Drop Landscape

• Register merging of two basins into one when saddle is reached as “death” of 
younger basin

Death: 𝝙V6

Pair: (𝝙V4,𝝙V6)

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Step I: Identify Basins in Voltage-Drop Landscape

• Register merging of two basins into one when saddle is reached as “death” of 
younger basin

Death: 𝝙V15

Pair: (𝝙V3,𝝙V15)

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Persistent Homology Approach

• For each feature, plot death value of ΔV vs. birth value
• Small shallow basins in landscape fall near diagonal
• “Persistent” features lie far from diagonal

(𝝙V3,𝝙V15)

(𝝙V4,𝝙V6)

(𝝙V20,𝝙V15)

(𝝙V19,𝝙V17)

Birth 𝝙Vb

D
ea

th
 𝝙V d

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Effect of Tuning on Ensemble Heat Map Persistence Diagram

• Ascending: tuned networks have many basins with ΔVb=0 (uniform node pressures) that 
persist all the way up to Δ

• Descending: tuned networks have many inverted basins with ΔVb= Δ (“cracks” that separate 
regions of approx uniform node voltage)

D
ea

th
 𝝙V d

D
ea

th
 𝝙V d

Birth 𝝙Vb Birth 𝝙Vb



Effect of Tuning on Persistence Diagram
• Look at extreme case where 𝝙=1

• Ascending: tuned networks have many 
basins with Δpb=0 (uniform node 
pressures) that persist all the way up to Δ

• Descending: tuned networks have many 
inverted basins with Δpb= Δ (“cracks” of 
removed edges that separate regions of 
uniform pressure)



These Features Really Do Correlate with Δ

D
ea

th
 𝝙V d

Birth 𝝙Vb

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Problem: Too Many Basins!

Δ𝑝

Basins

Voltage Difference Landscape

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020

𝞓V



Δ𝑝

Voltage Difference Landscape

Basins

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020

Vo
lta

ge
 d

iff
er

en
ce

 |𝞓V|

𝞓V

Step 0:  Look at  Voltage Difference Landscape



Step II: Coarse-Grain Landscape

Δ𝑝

Primary Basins

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020

Voltage Difference Landscape

𝞓V



Step II: Coarse-Grain Landscape

Δ𝑝

𝜏

 Persistence (Significance)
Simplify in order of increasing τ (barrier height) 

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020

Voltage Difference Landscape

𝞓V



Step II: Coarse-Grain Landscape

Δ𝑝

 Persistence (Significance)
Simplify in order of increasing τ (barrier height) 

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020

Voltage Difference Landscape

𝞓V



Step II: Coarse-Grain Landscape

Δ𝑝

Stop just before target nodes join same basin

Basin 1
Target Node 1

Basin 2
Target Node 2

 Persistence (Significance)
Simplify in order of increasing τ (barrier height) 

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020

Voltage Difference Landscape

𝞓V



Persistent Homology Captures Function Quantitatively

• Yes, it works!
Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020
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Electrical Networks vs Mechanical Networks
• In flow networks, sectors of nearly uniform node 

pressure or pathways of edges with nearly uniformly high 
pressure drops yield same information

• In mechanical networks, focus on local strain instead of 
pressure

• Unlike pressure, strain is defined over region not 
individual edges

• sectors of nearly uniform strain/pathways of nearly 
uniformly high strain do not yield same information



LRMSD Replaces Pressure/Voltage Difference

• Local root-mean-squared displacements measures deviation of node 
displacements in neighborhood with respect to rigid translations/rotations

• First define local deformation tensor     around node i that best describes 
nbrhood:

• Weights      favor nodes j that are close to node i

•      is vector from node i to node j without source strain
•          is displacement of node i from node j due to source strain
•                           ~ local rigid-body rotation matrix
• LRMSD for node i                
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quadratic order in the displacements as

E =
1
2

ÿ

Èi,jÍ

kij

#
b̂ij · �ųij

$2
, [1]

where �ųij = ųj ≠ ųi and b̂ij is a unit vector pointing from node i

to node j. In matrix form, Eq. (1) is written as

E =
1
2

Èu|H|uÍ [2]

where |uÍ is a length-dN vector containing the displacements of all
the nodes and H is the size dN ◊ dN Hessian matrix. The Hessian
can be expressed as

H = QKQ
T [3]

where the equilibrium matrix Q of size dN ◊ Nb maps deformations
of nodes to bonds and K is a size-Nb ◊ Nb diagonal matrix of
sti�nesses for each bond.

In this work, we are interested in the network response when
fixed strains are imposed on NS pairs of source nodes. We define
the strain on a pair of nodes i and j as

ÁS,ij = b̂ij · �ųij/¸ij [4]
in the linear limit and organize them in a length-NS vector |ÁSÍ.
We note that this definition does not require the nodes to share
a bond. We define the dN ◊ NS matrix S to measure the strains
on the source nodes according to Eq. (4), |ÁSÍ = S

T |uÍ. We then
calculate the response using the Lagrangian

L = E ≠ È‡S | (|ÁSÍ ≠ |Áú
SÍ) ≠ È⁄G|GT |uÍ [5]

where
--Áú

S

,
is a length-NS vector of the desired imposed strains

and |‡SÍ is a corresponding vector of Lagrange multipliers for each
constraint. Since the Lagrange multipliers appear conjugate to
|ÁSÍ, we interpret |‡SÍ as the necessary stresses needed to obtain
the desired strains. We also add an additional set of d(d + 1)/2
constraints with Lagrange multipliers |⁄GÍ which constrain the
global translational and rotational degrees of freedoms to zero,
represented by a dN ◊ d(d + 1)/2 matrix G. Extremizing Eq. (5),
we find the solution

A
|uÍ

|‡SÍ
|⁄GÍ

B
=

A
H ≠S

T ≠G
T

≠S 0 0
≠G 0 0

B≠1A
0

≠
--Áú

S

,

0

B
. [6]

A.2. Generation of Initial Disordered Spring Networks. Our initial
spring networks are derived from jammed packings of soft spheres,
created using standard jamming algorithms: particles are initially
placed at random in a d-dimensional periodic box, quenched to a
local energy minimum, and then adjusted until the pressure is ap-
proximately p = 10≠1 (19–21). In this study, we consider packings
in d = 3 with harmonic interactions, consisting of a 50:50 bi-disperse
mixture of particles with diameter ratio 1.0‡ : 1.4‡ where ‡ is the
diameter of the smaller particles. We generated a total of 4096
independent systems each consisting of 2048 particles.

To convert a jammed packing into a central-force spring network,
we replace each particle with a node and each particle contact with
an unstretched spring of unit stretch modulus ⁄ij = 1. We then cre-
ate a ball-shaped network by removing nodes (and adjacent edges)
beyond a cuto� radius Rcuto� chosen to result in a network con-
taining approximately 512 nodes, 4

3 fiR
3
cuto�/L

3 = 512/2048 (where
L

3 is the box volume). To ensure the resulting network is rigid,
we eliminate any zero modes by repeatedly calculating the lowest
energy mode of the Hessian and removing the node whose motion
contributes most to this mode, stopping when the the lowest eigen-
value of the Hessian is at least 10≠2. Finally, to ensure no zero
modes will be introduced during the network tuning process, we
introduce additional 2nd nearest neighbor interactions of sti�ness
kij = 10≠4 that we hold fixed while tuning. In the final ensemble,
each network has on average 509± 9 nodes with 2070± 37 nearest
neighbor bonds (see SI for distributions).

Next, we choose the source and target nodes from the collection
of surface nodes, which we define as those nodes that had at least
one edge removed when the periodic network was converted to a
ball-shaped one. We choose a random point on the surface of the
network and choose the first source node as the surface node closest

to the point, and the second source node to be the next closest
surface node that does not share an edge with the first. We choose
the target nodes by repeating this process at the position on the
opposite pole of the network. By choosing each pair of nodes so that
they do not share an edge, we increase the likelihood that forces
applied to these nodes will couple to the rest of the system.

A.3. Tuning Protocol for Allosteric Responses. In this work, we con-
sider allosteric responses in which the target nodes exhibit a strain
ÁT Æ ≠1 when a strain of size ÁS = 1 is applied to to the source
nodes. To create mechanical networks with such responses, we
optimize the spring networks we generate using a greedy algorithm
in which we add and remove bonds.

Starting with the untuned network, at each step, we iterate
through each bond in the network (excluding 2nd nearest neighbors
interactions) and determine how the response changes when that
bond is either removed completely, or added back in if it was removed
in a previous step. For each bond, we measure the resulting strain
of the target nodes ÁT , along with the corresponding stress ‡T that
could potentially be exerted by those nodes. To measure the target
strain ÁT , we constrain the source nodes to the source strain ÁS and
measure the response of the target. To measure the target stress
‡T , we apply the source strain while simultaneously constraining
the target nodes to exhibit zero strain. We then measure the
target stress ‡T via the negative of the Lagrange multiplier used
to constrain the target bonds (see Eq. (5)). Next, we choose to
remove or add the edge that results in a negative stress with the
largest magnitude, by setting ⁄ij = 0 or ⁄ij = 1, respectively. We
repeatedly modifying bonds using this process until either the target
strain is ÁT Æ ≠1 (within a margin of 10≠8) or changes by less than
10≠4.

We cycle though each of the 4096 spring networks in our ensemble
(choosing di�erent random source and target nodes each time) to
achieve 105 di�erent tuning attempts. Of these, we find that only
about 35% networks are tuned successfully to the desired target
strain, resulting in about 35000 allosteric networks. Unlike previous
studies, our success rate is not around 100% because we tune the
strain indirectly via the stress. If we were to tune the strain directly,
we would achieve a success rate close to 100%, but we find that most
of those network would not exhibit significant force propagation
through the network (14).

B. Topological Data Analysis.

B.1. Local Root-Mean-Square Displacement (LRMSD). We character-
ize the local deformations associated with allosteric responses via
the local root-mean-square displacement (LRMSD), which measures
the deviation of node displacements in a local neighborhood from
rigid-body translations and rotations. To calculate the LRMSD ”ui

around node i, we first find the local d ◊ d deformation tensor F̂

that best approximates the motion,

F̂ = arg min
F

ÿ

j

wij

#̨
bij + �ųij ≠ F b̨ij

$2 [7]

where b̨ij is a vector pointing from node i to j in the undeformed
configuration. To pick out the local neighborhood, we weight each
particle by its distance from node i using Gaussian weights,

wij =
e

≠
¸2

ij

2‡2 �(¸max ≠ ¸ij)(1 ≠ ”ij)
q
k

e
≠

¸2
ik

2‡2 �(¸max ≠ ¸ik)(1 ≠ ”ik)

, [8]

where ¸ij is the distance between i and j in the undeformed con-
figuration, ‡ is a characteristic length scale, and ¸max is a cuto�
distance which we choose to be 3‡. For our random spring networks,
we choose ‡ to be the diameter of the smaller particles in the original
jammed packings. The resulting deformation tensor around particle
i is then

F̂ =

C
ÿ

j

wij

!̨
bij + �ųij

"̨
b

T
ij

DC
ÿ

k

wik�b̨ik b̨
T
ik

D≠1

. [9]
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quadratic order in the displacements as

E =
1
2

ÿ

Èi,jÍ

kij

#
b̂ij · �ųij

$2
, [1]

where �ųij = ųj ≠ ųi and b̂ij is a unit vector pointing from node i

to node j. In matrix form, Eq. (1) is written as

E =
1
2

Èu|H|uÍ [2]

where |uÍ is a length-dN vector containing the displacements of all
the nodes and H is the size dN ◊ dN Hessian matrix. The Hessian
can be expressed as

H = QKQ
T [3]

where the equilibrium matrix Q of size dN ◊ Nb maps deformations
of nodes to bonds and K is a size-Nb ◊ Nb diagonal matrix of
sti�nesses for each bond.

In this work, we are interested in the network response when
fixed strains are imposed on NS pairs of source nodes. We define
the strain on a pair of nodes i and j as

ÁS,ij = b̂ij · �ųij/¸ij [4]
in the linear limit and organize them in a length-NS vector |ÁSÍ.
We note that this definition does not require the nodes to share
a bond. We define the dN ◊ NS matrix S to measure the strains
on the source nodes according to Eq. (4), |ÁSÍ = S

T |uÍ. We then
calculate the response using the Lagrangian

L = E ≠ È‡S | (|ÁSÍ ≠ |Áú
SÍ) ≠ È⁄G|GT |uÍ [5]

where
--Áú

S

,
is a length-NS vector of the desired imposed strains

and |‡SÍ is a corresponding vector of Lagrange multipliers for each
constraint. Since the Lagrange multipliers appear conjugate to
|ÁSÍ, we interpret |‡SÍ as the necessary stresses needed to obtain
the desired strains. We also add an additional set of d(d + 1)/2
constraints with Lagrange multipliers |⁄GÍ which constrain the
global translational and rotational degrees of freedoms to zero,
represented by a dN ◊ d(d + 1)/2 matrix G. Extremizing Eq. (5),
we find the solution

A
|uÍ

|‡SÍ
|⁄GÍ

B
=

A
H ≠S

T ≠G
T

≠S 0 0
≠G 0 0

B≠1A
0

≠
--Áú

S

,

0

B
. [6]

A.2. Generation of Initial Disordered Spring Networks. Our initial
spring networks are derived from jammed packings of soft spheres,
created using standard jamming algorithms: particles are initially
placed at random in a d-dimensional periodic box, quenched to a
local energy minimum, and then adjusted until the pressure is ap-
proximately p = 10≠1 (19–21). In this study, we consider packings
in d = 3 with harmonic interactions, consisting of a 50:50 bi-disperse
mixture of particles with diameter ratio 1.0‡ : 1.4‡ where ‡ is the
diameter of the smaller particles. We generated a total of 4096
independent systems each consisting of 2048 particles.

To convert a jammed packing into a central-force spring network,
we replace each particle with a node and each particle contact with
an unstretched spring of unit stretch modulus ⁄ij = 1. We then cre-
ate a ball-shaped network by removing nodes (and adjacent edges)
beyond a cuto� radius Rcuto� chosen to result in a network con-
taining approximately 512 nodes, 4

3 fiR
3
cuto�/L

3 = 512/2048 (where
L

3 is the box volume). To ensure the resulting network is rigid,
we eliminate any zero modes by repeatedly calculating the lowest
energy mode of the Hessian and removing the node whose motion
contributes most to this mode, stopping when the the lowest eigen-
value of the Hessian is at least 10≠2. Finally, to ensure no zero
modes will be introduced during the network tuning process, we
introduce additional 2nd nearest neighbor interactions of sti�ness
kij = 10≠4 that we hold fixed while tuning. In the final ensemble,
each network has on average 509± 9 nodes with 2070± 37 nearest
neighbor bonds (see SI for distributions).

Next, we choose the source and target nodes from the collection
of surface nodes, which we define as those nodes that had at least
one edge removed when the periodic network was converted to a
ball-shaped one. We choose a random point on the surface of the
network and choose the first source node as the surface node closest

to the point, and the second source node to be the next closest
surface node that does not share an edge with the first. We choose
the target nodes by repeating this process at the position on the
opposite pole of the network. By choosing each pair of nodes so that
they do not share an edge, we increase the likelihood that forces
applied to these nodes will couple to the rest of the system.

A.3. Tuning Protocol for Allosteric Responses. In this work, we con-
sider allosteric responses in which the target nodes exhibit a strain
ÁT Æ ≠1 when a strain of size ÁS = 1 is applied to to the source
nodes. To create mechanical networks with such responses, we
optimize the spring networks we generate using a greedy algorithm
in which we add and remove bonds.

Starting with the untuned network, at each step, we iterate
through each bond in the network (excluding 2nd nearest neighbors
interactions) and determine how the response changes when that
bond is either removed completely, or added back in if it was removed
in a previous step. For each bond, we measure the resulting strain
of the target nodes ÁT , along with the corresponding stress ‡T that
could potentially be exerted by those nodes. To measure the target
strain ÁT , we constrain the source nodes to the source strain ÁS and
measure the response of the target. To measure the target stress
‡T , we apply the source strain while simultaneously constraining
the target nodes to exhibit zero strain. We then measure the
target stress ‡T via the negative of the Lagrange multiplier used
to constrain the target bonds (see Eq. (5)). Next, we choose to
remove or add the edge that results in a negative stress with the
largest magnitude, by setting ⁄ij = 0 or ⁄ij = 1, respectively. We
repeatedly modifying bonds using this process until either the target
strain is ÁT Æ ≠1 (within a margin of 10≠8) or changes by less than
10≠4.

We cycle though each of the 4096 spring networks in our ensemble
(choosing di�erent random source and target nodes each time) to
achieve 105 di�erent tuning attempts. Of these, we find that only
about 35% networks are tuned successfully to the desired target
strain, resulting in about 35000 allosteric networks. Unlike previous
studies, our success rate is not around 100% because we tune the
strain indirectly via the stress. If we were to tune the strain directly,
we would achieve a success rate close to 100%, but we find that most
of those network would not exhibit significant force propagation
through the network (14).

B. Topological Data Analysis.

B.1. Local Root-Mean-Square Displacement (LRMSD). We character-
ize the local deformations associated with allosteric responses via
the local root-mean-square displacement (LRMSD), which measures
the deviation of node displacements in a local neighborhood from
rigid-body translations and rotations. To calculate the LRMSD ”ui

around node i, we first find the local d ◊ d deformation tensor F̂

that best approximates the motion,

F̂ = arg min
F

ÿ

j

wij

#̨
bij + �ųij ≠ F b̨ij

$2 [7]

where b̨ij is a vector pointing from node i to j in the undeformed
configuration. To pick out the local neighborhood, we weight each
particle by its distance from node i using Gaussian weights,

wij =
e

≠
¸2

ij

2‡2 �(¸max ≠ ¸ij)(1 ≠ ”ij)
q
k

e
≠

¸2
ik

2‡2 �(¸max ≠ ¸ik)(1 ≠ ”ik)

, [8]

where ¸ij is the distance between i and j in the undeformed con-
figuration, ‡ is a characteristic length scale, and ¸max is a cuto�
distance which we choose to be 3‡. For our random spring networks,
we choose ‡ to be the diameter of the smaller particles in the original
jammed packings. The resulting deformation tensor around particle
i is then

F̂ =

C
ÿ

j

wij

!̨
bij + �ųij

"̨
b

T
ij

DC
ÿ

k

wik�b̨ik b̨
T
ik

D≠1

. [9]
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R = F̂ (F̂T F̂ )�1/2

DRAFT

We then use F̂ to estimate the local rigid-body rotation matrix R.
For nonlinear deformations, we use the formula R = F̂ (F̂ T

F̂ )≠ 1
2 ,

while for linear deformations, we use R ¥ I + 1
2 (F̂ ≠ F̂

T ). Finally,
we define the LRMSD as

”ui =
Ûÿ

j

wij

#
�ųij ≠ (R ≠ I )̨bij

$2
. [10]

B.2. Identification of Hinge Domains and and Strain Pathways. To
analyze the topological structure of allosteric responses, we utilize
the methods for topological coarse-graining developed in Ref. (11).
In this approach, the response ”ui defined on the nodes of a network
is used to create a pair of spanning trees, which we call the hinge and
pathway skeletons. These two trees are then used to identify hinge
domains or allosteric pathways, respectively. For our mechanical
networks, we utilize the network of all nearest-neighbor interactions
present before tuning, even if they are eventually removed by the
tuning process. We provide examples of both the hinge and pathway
skeletons of a network in the SI.

To create the hinge skeleton, we first use ”ui on the nodes to
introduce an ordering on the edges of the network. For each edge
connecting nodes i and j, we create a tuple (”ui, ”uj), sorted so that
”ui > ”uj , and then sort these tuples in ascending lexicographic
order. We then use this ordering to perform a filtration of ”ui on
the network. Starting with an empty network with no edges, we
add each edge to the network in order, one at a time, taking note of
any changes in the connected components, defined as contiguously
connected sets of edges. In particular, we focus on changes in
the number of connected components or their sizes (defined as the
number of nodes contained in a component).

When a new edge is introduced, there are four possibilities: (i)
the new edge is not connected to any of the pre-existing edges, creat-
ing a new connected component, (ii) the new edge is shared between
two di�erent pre-existing components and joins them together, (iii)
the new edge is connected to a single pre-existing component by
a single node, incurring no change in the number of connected
components, but increases its size, or (iv) the new edge is connected
to a single pre-existing component by both nodes. We define the
hinge skeleton as the collection of edges defined by (i), (ii), and (iii).
Analogously, to create the pathway skeleton, we perform the same
process with a reverse ordering of the nodes, equivalent to replacing
”ui with ≠”ui throughout the process.

To identify a pair of hinge domains from the hinge skeleton, we
utilize the edges that fall into case (ii) above, which we call boundary
edges. These boundary edges uniquely divide the hinge skeleton
into a set of domains, each containing a single local minimum in ”ui.
Each domain corresponds to a region of the network that moves
with relatively rigid motion compared to its surroundings. Since
the hinge skeleton is a tree, removing a single boundary edge from
the network creates a pair of domains. To assess the topological
significance of such domains, we first measure the maximum LRMSD
of the nodes that comprise the boundary edge, ”uboundary. This
quantity characterizes the minimal maximum strain of any path in
the full network that goes from one of the domains to the other,
i.e., the minimal deformation separating the two domains along the
boundary. We then measure the minimum LRMSD in each of the
two domains and take the maximum of these two values, ”udomain.
We define the hinge scale as the di�erence between these two values,

·h = ”uboundary ≠ ”udomain. [11]

This quantity is an approximation of – and often equivalent to – the
persistence of the connected component corresponding to ”udomain.
We measure the topological significance via ·h for each candidate
pair of domains created by a boundary edge, choosing the domains
with the largest value. We skip any of the boundary edges that
would create a sector smaller than a minimal cuto� Nmin. For
mechanical networks, we choose Nmin = 3, the minimal number
of nodes needed to uniquely calculate the rigid body motion of a
domain in three dimensions.

To identify an allosteric pathway of maximal strain between
a source node and a target node, we simply identify the unique
pathway on the pathway skeleton between those nodes. To assess
the topologically significance of a pathway, we measure the minimum

LRMSD encountered along the path, ”umin. We then define the
strain path scale as

·p = ”umin. [12]
In our analysis, we choose the pathway with the largest value of
·p. If two pathways share the same value , we choose the shorter
of the two. For mechanical networks, we choose the normalization
scale ”u

ú as the LRMSD of the source node at the beginning of the
chosen allosteric pathway.

B.3. Hinge Motion. To characterize the motion of the hinge domains
we identify, we assess the similarity of their motion to that of two
rigidly moving hinge domains. To find this approximate rigid-body
response for a single hinge domain, we first calculate the position
and displacement of the center of mass,

X̨cm =
1

Nd

ÿ

i

X̨i, ųcm =
1

Nd

ÿ

i

ųi [13]

where X̨i is the position of node i in the undeformed coordinates
and the sum ranges over the nodes in the hinge domain of size Nd.

Next, we calculate the approximate rigid-body rotation expe-
rienced by the hinge domain. Similar to our calculation of the
LRMSD, we find the deformation matrix F̂ via Eq. (7) which best
approximates the overall motion. However, we perform this calcula-
tion relative to the center of mass, rather than particle i, and take
the weights to be unity for all particles with no cuto� distance. We
then extract the rotation matrix R from F̂ in the same way. The
approximate rigid-body motion of each particle in the hinge domain
is then

ųh,i = ųcm + (R ≠ I)(X̨i ≠ X̨cm). [14]
We assemble these displacements for all particles in all hinge domains
into a single length-dN vector |uhÍ and then measure the similarity
of this motion to the original displacement |uÍ via the hinge overlap,

q =
Èu|uhÍ

ÎuÎ ÎuhÎ
. [15]

C. Analysis of Allosteric Proteins. We assembled a database of al-
losteric protein structures from Refs. (4, 8, 25). For each protein,
we obtained a pair of active (bound to substrate) and inactive (not
bound to substrate) configurations from the Protein Data Bank (24),
and manually identified the relevant ligands and substrates corre-
sponding to the allosteric and active sites, respectively. For proteins
that undergo phosphorylation at the allosteric site, we treat the
phosphorylated residues as e�ective ligands. We also ignore any
atoms with insertion codes specifying alternative residues.

We construct an approximate atomic contact network for each
fully assembled protein structure and any relevant ligands or sub-
strates using the Arpeggio Python package (26) with default settings.
We utilize all contact types identified by the software excluding
proximal contacts. We identify allosteric and active sites on a pro-
tein structure by recording any atoms in contact with a ligand or
substrate molecule. Before we perform any analysis, we remove any
atoms or contacts associated with any ligands or substrates since
they will not be shared between the active and inactive configura-
tions.

To calculate displacements, we identify corresponding atoms in
inactive and active protein structures, excluding any bound ligands
or substrates. We then calculate the di�erence in positions using
the active configuration as the reference. This means that if a
protein is activated by the binding of ligand(s) to the allosteric
site(s), then we utilize the configuration with bound ligand as the
reference configuration. Alternatively, if the protein is inhibited, we
utilize the configuration without bound ligand as the reference. We
subtract any global rigid-body translations and rotations assuming
nonlinear deformations (see Hinge Overlap). Next, we calculate the
LRMSD for each atom in the protein using a characteristic length
scale of ‡ = 5Å.

When identifying hinge domains, we use a minimum domain size
of Nmin = 200 atoms, or approximately 10 amino acids. This is to
ensure that small chains of atoms on the protein surface that exhibit
large deformations are not identified as hinge domains. To divide
proteins into more than two hinge domains, we iteratively repeat
our hinge identification procedure, removing any chosen boundary
edges from the hinge skeleton at each step.
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Hinge and Pathway Scales

Hinge pathway 
connects 

minimum 𝛿u 
within each sector 
with pathway of 

lowest 𝛿u𝛿uh is max 𝛿u 
along pathway𝛿u* is max 𝛿u at 
source/target 

nodes𝛿uh/𝛿u* quantifies 
significance of 
hinge sectors

Strain pathway is 
pathway of highest 𝛿u connecting 
source to target𝛿usp is min 𝛿u along 

pathway𝛿u* is max 𝛿u at 
source/target nodes𝛿usp/𝛿u* quantifies 
significance of strain 

pathway

strain𝛿u

𝛿u



Persistent Homology for Mechanical Networks

• Classify with strain pathway scale and 
hinge scale 

• Continuum of mechanisms from hinges 
to strain pathways

• Perhaps this is why allostery mechanisms 
have resisted easy classification?!



Persistent Homology for Proteins

IGF-1 receptor

source

target

strain pathway

glucokinaseUPRTase



Persistent Homology Works Reasonably Well for Protein Allostery
• Hinge motion overlap quantifies 

overlap between predicted and 
observed

• For sufficiently persistent features, 
overlap is high

• Drops at very high hinge scale due 
to fluid/nearly-fluid sectors with 
large displacements unrelated to 
allostery



What Did “Statistical Physics” Tell Us?
• We now have designed ensembles
• So what do we want to know??

• How does edge tuning at microscopic scale lead to emergent collective phenomenon 
of allosteric function at macroscopic scale? 

• What happens to networks when they learn allostery?

• Edge tuning affects topological structure of response
• Most topologically significant features (sectors/hinges/strain pathways) are 

responsible for function



“Statistical Physics” from Big Data
• Summary of our approach:

• Design ensembles of networks with same function
• Identify microscopic origin of function with topological data analysis
• Dimensional reduction: allosteric mechanism reduced to 1(2) variables for electrical/

flow (mech) networks
• Apply analysis to real systems

• What did we learn?
• Allosteric mechanisms in proteins are not distinct—there is a continuum
• Mechanism can be specified by two variables that can be extracted from structural 

measurements



Persistent Homology Works! But Let’s Get Even More Ambitious

• We have to apply the inputs in order to carry out PH analysis
• Is it possible to figure out what network has learned without applying inputs? 

Can we extract the structure-function relation?
• Recall double optimization

– Cost landscape
• Cost function: (desired input/output relation - free input/output relation)2

• DOF: edge conductances
• Cost Hessian (2nd derivative of cost function wrt to parameters): need cost function 

(inputs)
– Physical landscape

• power dissipation
• physical DOF: node pressures/voltages
• Physical Hessian: doesn’t depend on cost function!



Persistent Homology Works! But Let’s Get Even More Ambitious

• We have to apply the inputs in order to carry out PH analysis
• Is it possible to figure out what network has learned without applying inputs? 

Can we extract the structure-function relation?
• Recall double optimization

– Cost landscape
• Cost function: (desired input/output relation - free input/output relation)2

• DOF: edge conductances
• Cost Hessian (2nd derivative of cost function wrt to parameters): need cost function 

(inputs)
– Physical landscape

• power dissipation
• physical DOF: node pressures/voltages
• Physical Hessian: doesn’t depend on cost function!

What can we learn from the physical Hessian?



Recall Learning Requires Simultaneous Minimization in Two Landscapes

• Power landscape evolves during learning 
– Power depends on parameters (edge conductances)

• Learning Hessian tells us curvatures in learning phase space

• Eigenvalues of HL are curvatures, eigenvectors are corresponding directions in 
learning phase space 

• Physical Hessian tells us curvatures in physical phase space
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Physical Landscape Flattens in Direction of Learned Response

• As system learns
• Lowest eigenvalues decrease
• Lowest eigenvectors overlap more with response to inputs

• Lowest eigenvectors tell us about learned response
• Look at lowest eigenvectors of physical Hessian

9

FIG. 3. Hessian changes during learning. a) Hessian eigen-
value flow during training of fully connected linear networks
(N = 20) for a single task. The lowest eigenvalue tends to
be significantly reduced, showing that learning creates a soft
mode. b) The lowest (blue) and highest (orange) eigenmodes
of the Hessian significantly align with the input force defined
by the task (measured by dot product). (c-f) Similar results
are found for flow and mechanical networks (N = 40), ex-
cept that the higher eigenmodes do not align with the task.
Results averaged over 50 realization of networks and tasks.

B. E↵ective conductance

The properties of a physical system are often char-
acterized by its responses to generic forces (e.g., finite
temperature fluctuations), quantified below by an e↵ec-

tive inverse-sti↵ness/conductance ḡ. Suppose we com-
pute the responses to M random forces {~F

R
m
} sampled

from some distribution and indexed by m. In each case
we have the free state response (~xR

� ~x
0)m = H

�1 ~FR
m
.

The e↵ective conductance is the average amplitude of
these responses:

ḡ = M
�1

X

m

|~x
R
m
� ~x

0
|

|~FR
m
|

= M
�1

X

m

s
|H�1 ~FR

m
|2

|~FR
m
|2

(26)

Now suppose that the random forces are drawn
component-by-component independently from a Gaus-
sian distribution and normalized to amplitude |~FR

m
|
2 = 1.

Decompose the Hessian as H�1 = v⇤�1
v
T (v is a matrix

of eigenmodes and ⇤ a diagonal matrix of eigenvalues
�). The eigenmodes v are a set of orthonormal vectors
completely uncorrelated with the random forces. Thus
the components of the vector R = v

T ~F
R are inner prod-

ucts between random vectors on the unit sphere. In high
dimension N , these inner products are approximately
drawn from a normal distribution N (0, N�1) with zero

FIG. 4. Training increases the e↵ective conductance and re-
duces response dimension in physical networks. a) E↵ective
conductance is increased during training in all systems consid-
ered, suggesting that trained systems are softer, with stronger
responses to random forces. b) The physical response dimen-
sion is decreased in all systems during learning, so that the
response of these systems to random forces is concentrated
in low-dimensional manifolds. Results averaged over 50 net-
works and tasks.

mean and variance 1/N . Now, note that

H
�1 ~F

R = v⇤�1
v
T ~F

R

|H
�1 ~F

R
|
2
⇠ R

T⇤�2
R

(27)

where in the second line we used the fact that vT v is the
identity. The second line in (27) equals the sum squared
of the components of R scaled by the inverse square of
the eigenvalues. Thus its expectation value is a scaled
sum of the variances of the components of R, each of
which equals 1/N . Putting everything together, we find
that the expected value of |H�1 ~FR

|
2 is a sum over the

square inverse eigenvalues
P

a
�
�2
a

.
Therefore, the e↵ective conductance is a simple func-

tional of the eigenvalue spectrum:

ḡ =

sX

a

�
�2
a . (28)

Note that the e↵ective conductance ḡ is dominated by
the lower eigenvalues. It is expected to change during
learning, as the eigenvalues �a of the Hessian change.
In particular, we have seen that successful learning low-
ers the lowest eigenvalues, suggesting that trained sys-
tems have an increased e↵ective conductance. Therefore,
trained systems will be ‘softer’ than random systems, ex-
hibiting larger responses on average to random applied
forces. Note that the increased e↵ective conductance is
unrelated to the specific details of the learned task; such
physical systems trained for any task are expected to
become softer/more conductive.
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Evolution of Eigenvalues in Learning and Physical Hessians

Learning 
Hessian

HL

Physical 
Hessian

HP

Highest 
eigenvalues 

increase

Lowest
eigenvalues 
decrease
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Evolution of Eigenvalues in Learning and Physical Hessians

Learning 
Hessian
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Physical 
Hessian

HP

Highest 
eigenvalues 
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Lowest
eigenvalues 
decrease
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Stern, Guzman, Martins, Liu, Balasubramanian arXiv (2024)

• Physical Hessian does not require
– Knowing cost function
– Knowing input and output nodes
– Applying inputs



Lowest Mode of Physical Hessian Corresponds to Highest Mode of Cost Hessian

from physical Hessian from learning Hessian overlap

1 source edge: 𝜟V=1V
1 target edge:  𝜟V=1V Felipe Martins, Marcelo Guzman


