Back to Vertex Model: Convergent Extension

* During convergent extension, tissue doubles in length in 2 hours at fixed area

—

Sadjad Arzash, Lisa Manning
GO TO SLIDES



Myosin Polarization Drives Convergent Extension

Developmental Cell, Vol. 6, 343-355, March, 2004, Copyright 22004 by Cell Press

Patterned Gene Expression
Directs Bipolar Planar Polarity in Drosophila
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Myosin Drives Directed T | events

Myosin-dependent junction
remodelling controls planar cell
intercalation and axis elongation

Caire Bete, Lawrenco Sulak & Thomas Lecut Myosin || is highly localized on vertical
| edges

The contractility of actomyosin (high
tension) shrinks vertical edges

\ Results in these directed cell
rearrangements that are necessary for

tissue flow




Introduce Edge lensions as Parameters

* Vertex model with edge tensions

E=) E=), [KA’*'(A"_AO*) + Kpalhi = Fog) ] 2T

cells cells cdgcs
2 2
dﬂ=—’)’T ezy:z:_ez]y ET
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Convergent Extension Driven by Edge Tensions
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Convergent Extension Driven by Edge Tensions
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Convergent Extension Driven by Edge Tensions
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Convergent Extension Accompanied by T| events

The snapping points correspond to T1 events
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T1 Events Are Oriented

Angular Distribution of T1 Edges
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T1 Events Are Oriented

Angular Distribution of T1 Edges
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Tension on Vanishing Edge Increases Before T| event

They all show an increasing _
trend of tension before o
undergoing T1 —

lterations



Similar to Active T s

Relative tension

m

Lateral ectoderm: active T ls

1.5 ([ it
1
c n = 2297 n = 2413
-25 0 25
Time [min]

Brauns ++ bioRXiv (2023)



Compare to Applying Global Shear to Vertex Model

— [
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Tension on Vanishing Edges Remains Flat Before T |

Normalized Tension
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Different Mean Shape Factors During Active vs. Passive Extension
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Double Optimization: Is Many More Different!?

Cost function:

C=(A- APT)Q

Parameters: edge conductances

Physical cost function: dissipated power

Physical DOF: node pressures or edge currents AVAVAVAYAREY oo
. L , w0 [ Apr=0.003
| st optimzn: Minimize power wrt physical DOF A AYAYA ALY NPy
— " " ' Lo+t T, > y TSN A
required by physics! N ee/ K]
2nd optimzn: Use gradient descent to minimize VAR LYK A
i + )

control cost function wrt control DOF

Is many more different?
Tune for Nt targets with response A4

GO TO SLIDES

Rocks, Ronellenfitsch, Liu, Nagel, Katifori PNAS 2019



Yes: Many More is Different

* System can satisfy more targets as system size increases

1.0

Flow - Edge Source
Flow - Node Pair Source
Mechanical - Edge Source
Mechanical - Node Pair Source
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Rocks, Ronellenfitsch, Liu, Nagel, Katifori PNAS 2019



Many More is Indeed Different

* But many more is different in a familiar way—a phase transition (constraint-
satisfaction transition)

* But here we have 2 sets of DOF—parameters + physical DOF
* Does that change anything?



Yes it can: Funnel Landscape Inspired by Protein Folding

A

Energy of contacts

J

Coill
“"Conformational Entropy /‘/

* |nstead of minimizing

Molten Globule

J SIQ) = 50(Q') — k (%) ) Q'

N
F=) (A-AV)’0(A - AV))
1=1

Onuchic, et al 1995
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R“?ﬁ"‘“]y}\"—{ /\ 1 °* minimize
e Vi
/% | F=Y" - (A — AV;)20(A — AV))
1—=1 )

Ri is distance from target i to source

* This provides funnel in space to tune
targets in order of distance from source

M Ruiz Garcia, A Liu, E Katifori PRE (2019)



Changing Cost Function Changes N-Dependence!

* Steepness of funnel controls scaling M Ruiz Garcia,AJ Liu, E Katifori PRE (2019)
10° '

10!

102 103 102 102
N \Y

* For large 3, Nt ~ N and width/N is constant as N — 00 (same as Hopfield)
* SAT/UNSAT transition is not sharp

How many more is different is subtle and
needs to be understood



Summary

Simultaneous optimization of cost function and physical Lypunov function provides systematic
way of solving inverse design problems: very general

Biological systems with adaptive function use local rules to adjust parameters
* What are the parameters!
* What is the process by which they are adjusted??
Unusual kind of condensed matter
* Many more is different because more constraints can be satisfied with more parameters

* But nature of constraint-satisfaction transition depends on cost function and we don’t know
what it is in biological contexts

Important for understanding function in living matter
* Speculation: biology stays in overparameterized regime
* Easiest to introduce extensive humber of parameters
* Easy to get good solutions in overparameterized regime

* Good solutions are more generalizable with many flat directions & representational drift



Learning about Learning Metamaterials

Andrea |. Liu
University of Pennsylvania

Felipe Rodrigues Martins UPenn
Marcelo Guzman UPenn
Nachi Stern UPenn
Jason Rocks UPenn/BU
Vijay Balasubramanian UPenn
Eleni Katifori UPenn
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How do input/output responses emerge as collective phenomena!?

Goal of stat phys: to gain microscopic understanding of macroscopic (collective)
phenomena in many-body systems

This requires

* Reducing microstate information (e.g. positions and velocities) to averages/variances
(distributions) of relevant microscopic quantities (eg order parameters)

For over a century, statistical physics has provided

* solution to dimensional reduction problem

* bridge between micro & macro scales via relevant micro variables
But some problems resist statistical physics

* Far from equilibrium

* Complex landscape

* Correlated disorder



Input/Output Problems are Resistant to Statistical Physics

* For protein allostery
* there are 20 different amino acids at each site (adaptive DOF)

* amino acid sequence (values of adaptive DOF) not chosen randomly
but by evolution/natural selection

* For flow allostery

* there arel0¢ edges in brain vasculature with
range of potential conductances for each

* vasculature does not choose conductances (adaptive DOF)
randomly but to satisfy input/output relations

* We need new approaches for these hard problems



Input/Output Problems Require Ensembles

* “Stat Phys” requires ensembles

* Here we need big designed/evolved ensembles
* We have protein families across species
* But these are small by stat mech standards

* New material design approach allows us to construct
large ensembles! “statistical physics”

* Consequence of overparameterization

Goodrich PRL 2015
Rocks PNAS 2017
Hexner Soft Matter 2018
Hexner PRE 2018

Rocks PNAS 2019
Pashine Sci Advances 2019
Pashine Hexner PRR 2020
Hexner PNAS 2020
Rocks PRL 2021

Rocks PRR 2020




What Do We Want “Statistical Physics” To Answer?

* We now have designed ensembles

e So what do we want to know??

* How does edge tuning at microscopic scale lead to emergent collective phenomenon
of function at macroscopic scale?

* What happens to networks when they learn function?

* Where to start!

GO TO SLIDES



Where to Start in Learning about Learning?

* When in doubt, look at simplest case in
extreme limits

* Consider | source edge with AV=| and one
target edge with AV=A=|

* System partitions into two regions
of constant voltage separated by low-
conductance barrier

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Function Requires Simultaneous Minimization in Two Landscapes

* Both landscapes evolve during learning
— Cost function depends on physical DOF (assumed equilibrated)
— Power depends on adaptive DOF

— Cost Hessian tells us curvatures in phase space of adaptive DOF
_ _9°LC
Hy, = Ok ; Ok ;
* Eigenvalues of H| are curvatures, eigenvectors are corresponding directions in
phase space of adaptive DOF

* This is much studied in stat phys of ML

GO TO SLIDES



Cost Hessian Evolves During Learning

Learning Hessian Eigenvalues

Eigenvalues

0 20 40 60 80 100
Learning Epoch

* Cost Hessian develops a gap at high end due to learning
* Highest eigenvalue reflects what was learned



Cost Hessian Evolves During Learning

Learning Hessian Eigenvalues

Eigenvalues

0 20 40 60 80 100
Learning Epoch

* Cost Hessian develops a gap at high end due to learning
* Highest eigenvalue reflects what was learned



Highest Eigenvectors of Cost Hessian Capture Response

Learning Hessian Eigenvalues

| source edge: AV=1V

| target edge: AV=IV
; 1.00
0.75
0 20 40 eaming Enoch 60 80 100 05 O
* In this extreme case, system divides
. 0.25
into 2 sectors separated by low-
conductance barrier 0.00 >
* Useful to verify we have captured the _0.25
right physics
gnt pny | 050
* But not what we want because it
requires knowing learning cost —0.75

function ~1.00



How to Capture Response Without Learning Cost Function?

For A=I, system partitions into two regions
of constant voltage

But what if A<|?

In extreme limit A=1,
edge-tuning/function relation is topological

Use persistent homology to identify features
responsible for function

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Step |: Identify Basins in Voltage-Drop Landscape

A Birth: AVo

-
-
-
-
-
-
-_—
-

* Increase voltage drop and add edge as you reach the voltage drop across the
edge

* Register appearance of new basin as “birth” of basin

* Connected components (0 Betti number) L T 2030



Step |: Identify Basins in Voltage-Drop Landscape

s Birth: AV |

* Increase voltage drop and add edge as you reach the voltage drop across the
edge

* Register appearance of new basin as “birth” of basin  Rocks, Liu, Katifori PRL 202!
Rocks, Liu, Katifori PRR 2020



Step |: Identify Basins in Voltage-Drop Landscape

A Birth: AV4

* Increase voltage drop and add edge as you reach the voltage drop across the
edge

* Register appearance of new basin as “birth” of basin  Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Step |: Identify Basins in Voltage-Drop Landscape

. Death: AV

™
=~
o~
~

Pair: (AV4,AVe) |

* Register merging of two basins into one when saddle is reached as “death” of
younger basin

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Step |: Identify Basins in Voltage-Drop Landscape

Death: AV ;5

Pair: (AV3,AV5)

* Register merging of two basins into one when saddle is reached as “death” of
younger basin

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Persistent Homology Approach

* For each feature, plot death value of AV vs. birth value

0.6

Death AV4
¥ -

7/
0.0 ,’ (AV4,AIV6)

o (AV3,AV5) Il

y |
V4
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O
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0.0

* Small shallow basins in landscape fall near diagonal

* “Persistent” features lie far from diagonal

0.2 0.4 0.6
Birth AVs

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Effect of Tuning on Ensemble Heat Map Persistence Diagram

* Ascending: tuned networks have many basins with AVy=0 (uniform node pressures) that

Death AV4
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Birth AV,

1073 101
Average Count

persist all the way up to A

* Descending: tuned networks have many inverted basins with AVpy= A (“cracks” that separate

10!

regions of approx uniform node voltage)
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Effect of Tuning on Persistence Diagram

e Look at extreme case where A=

* Ascending: tuned networks have many
basins with App=0 (uniform node
pressures) that persist all the way up to A

* Descending: tuned networks have many

inverted basins with App,= A (“cracks” of
removed edges that separate regions of
uniform pressure)




These Features Really Do Correlate with A

1.0
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>
0.6
i e
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0 0.4
A
0.2
0.0
0.0 0.2 04 06 0.8 1.0
Birth AV,
EEEEEREERERET

0.0 0.2 04 0.6 0.8 1.0
Tuning Threshold A

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Problem: Too Many Basins!

] “\Q N a:

L oS v Voltage Difference Landscape

:,‘%""“:= AN 2\ " A
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= S MO Basins

/ \\ AV

Rocks, Liu, Katifori PRL 202 |
Rocks, Liu, Katifori PRR 2020



Step 0: Look at Voltage Difference Landscape

100>
SN Voltage Difference Landscape
:
107 g Basins
O
=
S / \ \ AV
107 @
00
3
=
O
103

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Step |ll: Coarse-Grain Landscape

10°
=  Voltage Difference Landscape
<
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107 o Primary Basins A
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10°

Rocks, Liu, Katifori PRL 202 |
Rocks, Liu, Katifori PRR 2020



Step |ll: Coarse-Grain Landscape
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o
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Voltage Difference Landscape
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N
Pressure Difference |Ap|

103

Persistence (Significance)

Simplify in order of increasing T (barrier height)

Rocks, Liu, Katifori PRL 2021
Rocks, Liu, Katifori PRR 2020



Step |ll: Coarse-Grain Landscape
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Rocks, Liu, Katifori PRR 2020



Step |ll: Coarse-Grain Landscape

10°
=  Voltage Difference Landscape
)
O
1
10 @ Basin | Basin 2 1
e Target Node |  Target Node
a AV
5 @
=102 =
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-
o
1073

Persistence (Significance)

Simplify in order of increasing T (barrier height)

. . . Rocks, Liu, Katifori PRL 2021
Stop just before target nodes join same basin  _'\i Katifori PRR 2020



Persistent Homology Captures Function Quantitatively
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* Yes, it works!
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Rocks, Liu, Katifori PRL 202 |
Rocks, Liu, Katifori PRR 2020



Electrical Networks vs Mechanical Networks

In flow networks, sectors of nearly uniform node E e o F T
| v | e St FNNERN| %0 iy
pressure or pathways of edges with nearly uniformly high R o e | +_l-|_-_|__a‘.-('_--—__ P
. . . * T ¥+ i NNLF
pressure drops yield same information DR LR W] b L O L
: . ++++_|7:' P S +++++‘:‘:‘-':*++:+
In mechanical networks, focus on local strain instead of t+_|j-+++;:_—‘_"_:";++*_l-_ Fe T m Tt 4
ressure R W | R O et
P S I A T I S o
. . . . +++++ -I""T"__;"*-'-"'-l-l- ++"')-____——___’f"’a|-++
Unlike pressure, strain is defined over region not W i SR, £ R L o IR Sttt o s,
indivi i T e P S L AN SRR g,
individual edges B T it i et
L N St Y P S TR,

sectors of nearly uniform strain/pathways of nearly
uniformly high strain do not yield same information




LRMSD Replaces Pressure/Voltage Difference

Local root-mean-squared displacements measures deviation of node
displacements in neighborhood with respect to rigid translations/rotations

First define local deformation tensor Faround node | Ehat best describes

nbrhood:
F = szg ij T Auw)bm ZwlkAbZkb@k 02
i ]
e 202 O(lmax — £i5)(1 — 0;;
Weights w;; favor nodes j that are close to node i wi; = Iz ( - -
Z & 2;% @(gma,x — ezk)(l - 5zk>
,\ k

bi; is vector from node i to node j without source strain
Au;; is displacement of node i from node j due to source strain

R = F(FTF)~Y2? ~local rigid-body rotation matrix
LRMSD for node i : I
> +

5u7; — ' Aﬁij — (R — I)bij
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Hinge and Pathway Scales

Hinge pathway
connects
minimum ou

within each sector
with pathway of
lowest ou

Strain pathway is
pathway of highest
ou connecting

source to target

OUsp is min Ou along

Ouh is max ou
pathway

along pathway

Ou™ is max ou at

ou™ is max ou at
source/target nodes

source/target

nodes Ousp/ou™ quantifies

significance of strain
pathway

Oun/ou™ quantifies
significance of

hinge sectors —

0.0 0.2 0.4 0.6 0.8 1.0
Local Deformation 5u




Persistent Homology for Mechanical Networks

* Classify with strain pathway scale and

hinge scale

* Continuum of mechanisms from hinges
to strain pathways

* Perhaps this is why allostery mechanisms
have resisted easy classification?!

Strain Pathway Scale &, /€

1.0

o
n
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A (B): Scissor
B (C): Pathway

- ¢ (D): Shear
@ (E): Twist

0.0 .
0.0 0.5
Hinge Scale £,/&"
(C1) Pathway

. ~ e -i-\"::i‘
K e wv'&;;r o
3 5 5&9%%,‘”’:"
N »

: -

*

Distribution
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Persistent Homology for Proteins

R O IGF-1 receptor

O
™
]

0.2F <7
[ 7 e 2 Sectors

7 = 3+ Sectors

Strain Pathway Scale &£,,/&"
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Persistent Homology Works Reasonably Well for Protein Allostery

* Hinge motion overlap quantifies

overlap between predicted and 1.0
observed

* For sufficiently persistent features, Q. 0.8
overlap is high = 06

* Drops at very high hinge scale due 5 |
to fluid/nearly-fluid sectors with v 04
large displacements unrelated to S
allostery o

0?2 = Tuned Networks

e 2 Sectors
m 3+ Sectors

0.0 0.2 04 0.6 08 1.0
Hinge Scale &,/&"




What Did “Statistical Physics” Tell Us?

We now have designed ensembles

So what do we want to know??

How does edge tuning at microscopic scale lead to emergent collective phenomenon
of allosteric function at macroscopic scale!?

What happens to networks when they learn allostery?

Edge tuning affects topological structure of response

Most topologically significant features (sectors/hinges/strain pathways) are
responsible for function



“Statistical Physics” from Big Data

* Summary of our approach:
* Design ensembles of networks with same function
* |dentify microscopic origin of function with topological data analysis

* Dimensional reduction: allosteric mechanism reduced to |(2) variables for electrical/
flow (mech) networks

* Apply analysis to real systems
* What did we learn!
* Allosteric mechanisms in proteins are not distinct—there is a continuum

* Mechanism can be specified by two variables that can be extracted from structural
measurements



Persistent Homology Works! But Let’'s Get Even More Ambitious

* We have to apply the inputs in order to carry out PH analysis

* |s it possible to figure out what network has learned without applying inputs!?
Can we extract the structure-function relation!?

* Recall double optimization
— Cost landscape
* Cost function: (desired input/output relation - free input/output relation)?2
* DOF: edge conductances

* Cost Hessian (2nd derivative of cost function wrt to parameters): need cost function
(inputs)
— Physical landscape
* power dissipation
* physical DOF: node pressures/voltages

* Physical Hessian: doesn’t depend on cost function!



Persistent Homology Works! But Let’'s Get Even More Ambitious

* We have to apply the inputs in order to carry out PH analysis

* |s it possible to figure out what network has learned without applying inputs!?
Can we extract the structure-function relation!?

* Recall double optimization

— Cost landscape
* Cost function: (desired input/output relation - free input/output relation)?2
* DOF: edge conductances
* Cost Hessian (2nd derivative of cost function wrt to parameters): need cost function

(inputs)

— Physical landscape What can we learn from the physical Hessian?
* power dissipation
* physical DOF: node pressures/voltages

* Physical Hessian: doesn’t depend on cost function!



Recall Learning Requires Simultaneous Minimization in Two Landscapes

Power landscape evolves during learning

— Power depends on parameters (edge conductances)

Learning Hessian tells us curvatures in learning phase space

_ 9°L
Hy, = Ok ; Ok ;

Eisenvalues of HL are curvatures, eigenvectors are corresponding directions in
learning phase space

Physical Hessian tells us curvatures in physical phase space

_ _O°P
ip = OV OV
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Physical Landscape Flattens in Direction of Learned Response

.
-
=

eigenvalues

-
-
o

eigenvector - response

Stern, Liu, Balasubramanian, PRE (2024)

* Lowest eigenvalues decrease

* As system learns

* Lowest eigenvectors overlap more with response to inputs

* Lowest eigenvectors tell us about learned response
* Look at lowest eigenvectors of physical Hessian



Evolution of Eigenvalues in Learning and Physical Hessians

Learning,

Hessian
HL
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Hy, ~ [Hp']"

40 60 80 100
Learning Epoch Stern, Guzman, Martins, Liu, Balasubramanian arXiv (2024)



Evolution of Eigenvalues in Learning and Physical Hessians

Learning,

Hessian

Physical
Hessian
Hp

igenvalu

E

Igenvalues

E

_100

107 3

—
o
e

1072 -

1073

* Physical Hessian does not require

— Knowing cost function
— Knowing input and output nodes

— Applying inputs

109 -

Learning Epoch

Highest

eigenvalues
Increase

Lowest

eigenvalues
decrease

Hy, ~ [Hp']"

Stern, Guzman, Martins, Liu, Balasubramanian arXiv (2024)



Lowest Mode of Physical Hessian Corresponds to Highest Mode of Cost Hessian

1.00
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0.25

-0.00 >

-—0.25

—0.50

—0.75

from physical Hessian ~ from learning Hessian overlap ~1.00

| source edge: AV=1V
| target edge: AV=IV Felipe Martins, Marcelo Guzman



