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Center for Soft and Living Matter at Penn

» >60 faculty from >10 departments across STEM@ Penn

* Awards to faculty since January 2021 include
* BMES Shu Chien Achievement Award (Dennis Discher)

* NAE (Kate Stebe)

* OSA Michael S. Feld Biophotonics Award (Arjun Yodh)
* Sloan Fellowship, Packard Fellowship (Marc Miskin)

* SIAM Early Career Prize (Paris Perdikaris)

* APS Early Career Award for Soft Matter Research (Eleni Katifori)

* MRS Fellow (Shu Yang, Eric Stach)

* AAAS Fellow (Doug Durian, Karen Winey)

* ACS Polymer Prize (Karen Winey)

* [ntel Outstanding Research Award (Chinedum Osuji)

* ACS Outstanding Achievement Award in Nanoscience (Daeyeon Lee)




More is Different vs. Many More is Different

“More is Different” from a few Anderson, Science (1972)

— But usually many more is not much different from more in most condensed matter systems

Systems with many more different from more
— Brains: C. elegans (302 neurons) vs. honeybees (~10¢ neurons) vs humans (~10!! neurons)

— Digital neural networks: ChatGPT4 (~10!4 parameters)

ADAPTIVE MATTER

Why is many more different in these systems?
What physical systems besides brains might have this property!?



Why is Many More Different in Digital Neural Networks!?
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* Network has adjustable parameters

* How to adjust!

— Evaluate cost function C = Z(desired output; — free output;)-
— Minimize C by adjusting paran%\eters

— This is how system evolves



Constraint-Satisfaction Problems

Each term in cost function is another constraint

C = Z(desired output; — free output;)*
i

Similar to problem of jamming. E = \sum (overlaps between particles)"2

When all constraints are satisfied, no overlaps between particles (hard sphere
configurations)

Hard spheres solved in d=infinity so look at what happens there

GO TO SLIDES



Hard Sphere Constraint-Satisfaction Problem

* Hard spheres

_—

(a) hiquid (b) supercooled liquid [|(¢) glass states (d) glass subbasins||(e) glass subbasins (f) jammed states
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IOW density ﬁ

high density

Patrick Charbonneau, Jorge Kurchan, Giorgio Parisi, Pierfrancesco Urbani,
Francesco Zamponi. Exact theory of dense amorphous hard spheres in high

dimension. lll. The full RSB solution. Journal of Statistical Mechanics: Theory and
Experiment, 2014, 2014, pp.10009. 10.1088/1742- 5468/2014/10/P10009



Hard Sphere Constraint-Satisfaction Problem

* Hard spheres

Can satisfy constraints

Can't satisfy

_ | constraints

(a) liquid (b) supercooled liquid [|(¢) glass states (d) glass subbasins||(e) glass subbasins (f) jammed states
& CoP |t
glass traisition  Gardn@r transition Gardner phase jammed

—_—

low density high density

number of constraints number of constraints

<1 > 1

number of degrees of freedom number of degrees of freedom



Constraint-Satisfaction Problems
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Constraint-Satisfaction Problems

Can satisfy constraints Can’t satisfy constraints

(a) liquid

Non-universal stuff

number of constraints <1 number of constraints S 1
number of degrees of freedom number of degrees of freedom

under-parameterized




Why is Many More Different in Digital Neural Networks!?
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Network has adjustable parameters

How to adjust!?

— Evaluate cost function C = Z(desired output; — free Outputi)2

— Minimize C by adjusting pararﬁeters

# constraints that can be satisfied increases with # parameters

Many more is different bc ;

L
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F parameters increases with system size



More is Different vs. Many More is Different

“More is Different” from a few Anderson, Science (1972)

— But usually many more is not much different from more in most condensed matter systems

— No adjustable parameters!

Systems with many more different from more

— Brains: C. elegans (302 neurons) vs. honeybees (~10¢ neurons) vs humans (~10!! neurons)

— Digital neural networks: ChatGPT4 (~10!4 parameters)
Why is many more different in adaptive matter?

— # parameters increases with system size

What physical systems besides brains might have this property?
How can we design a simple physical system with this property? (Doug)



Look Again to Digital Neural Networks

[nput layer | Hidden laycrs . Output layer

h, h, h, | 0

OO

Input 1 ‘ ‘

SN \\ :v/r‘ ) 'ﬁo
R AL

)
ol

y AR (
D %4 oa\ A
Input n ‘\ / .

They learn desired input/output relations—desired responses to stimuli

@ Qutput 1 (1 for dog, O for cat)

) QOutput 2 (1 for cat, O for dog)

Inverse input/output problems
What real systems have desired responses to stimuli?
Do they also have adjustable parameters?



Unifying Framework for Adaptive Matter: Definitions

* What is the function?

— Not fithess but constraints that must be satisfied
— Example of protein allostery (GO TO SLIDE)

* What are the parameters?

— Level of description needs to be specified

* e.g. protein allostery
— Microscopic level (amino acids, atom positions)

— Coarse-grained level (spring constants/equilibrium lengths, node positions) (GO TO SLIDE)

* What is process by which parameters are adjusted to achieve function?
— protein allostery: evolution (GO TO SLIDE)

— DNNis: global process where you need to know everything, e.g. gradient descent



Allosteric Proteins Have Desired Input/Output Relations

* Input:local strain at regulatory site

Regulatory Substrate
Molecule ° . :
° P < Output: local strain
Regulatory Substrate
Molecule -
‘ Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017
Rocks, Ronellenfitsch, Liu, Nagel, Katifori PNAS 2019
Hexner, Liu, Nagel PNAS (2020)
Stern, Hexner, Rocks, Liu PRX (2021)
Regulatory Substrate Rocks, Katifori, Liu arXiv (2024)
Molecule

Goodrich, Liu, Nagel PRL (2016)

Hexner, Liu, Nagel Soft Matter (2018)
Stern, Jayaram, Murugan Nat Comm (2018)
Pashine, Hexner, Liu, Nagel Sci Adv (2019)
Stern, Pinson, Murugan PRX (2020)
Stern,Arinze, Perez, Murugan PNAS (2020)
Arinze, Stern, Nagel, Murugan PRE (2023)




Allosteric Proteins Have Desired Input/Output Relations

* Input:local strain at regulatory site

Regulatory Substrate
Molecule ° . :
° P < Output: local strain
Regulatory Substrate
Molecule -
‘ Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017
Rocks, Ronellenfitsch, Liu, Nagel, Katifori PNAS 2019
Hexner, Liu, Nagel PNAS (2020)
Stern, Hexner, Rocks, Liu PRX (2021)
Regulatory Substrate Rocks, Katifori, Liu arXiv (2024)
Molecule

% Goodrich, Liu, Nagel PRL (2016)

: Hexner, Liu, Nagel Soft Matter (2018)
target strain Stern, Jayaram, Murugan Nat Comm (2018)
. . . Pashine, Hexner, Liu, Nagel Sci Adv (2019)
localized strain due to localized Stern, Pinson, Murugan PRX (2020)

- - Stern,Arinze, Perez, Murugan PNAS (2020)
strain aPPIIed far away Arinze, Stern, Nagel, Murugan PRE (2023)

source strain



Unifying Framework for Adaptive Matter: Definitions

* What is the function?

— Not fithess but constraints that must be satisfied
— Example of protein allostery (GO TO SLIDE)

* What are the parameters!?

— Level of description needs to be specified

* e.g. protein allostery
— Microscopic level (amino acids, atom positions)

— Coarse-grained level (spring constants/equilibrium lengths, node positions) (GO TO SLIDE)

* What is process by which parameters are adjusted to achieve function!?
— protein allostery: evolution (GO TO SLIDE)
— DNNs: global process where you need to know everything, e.g. gradient descent

— Brains: Hebbian rule is “local rule”—each neuron does not need to know what every other
neuron is doing in order to change its synapses

GO TO SLIDE



For Physical Systems with Lyapunov Function: Double Optimization

Cost function: eg for allostery

C = (desired target strain — free target strain)® = (A — ep)?
Parameters: edge stiffnesses/equil lengths/presence-absence...
Physics requires minimization of elastic energy/free energy

Physical DOF: node positions | -
| st optimzn: Minimize energy wrt physical DOF  source strain .7
—required by physics! es=]

2nd optimzn: Use gradient descent to minimize » N b
cost function wrt parameters Bk PRERER
O/ KL target
strain
et=A
GO TO SLIDES |

Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017



Double Optimization Works!

Cost function: eg for allostery

C = (desired target strain — free target strain)® = (A — ep)?
Adaptive DOF: edge stiffnesses/equil lengths/presence-absence...
Physics requires minimization of elastic energy/free energy

Physical DOF: node positions A - - —0.005
| st optimzn: Minimize energy wrt physical DOF o AVAVAY NP
—required by physics! 0y VAV~ VAVAVAVA LV
2nd optimzn: Use gradient descent to minimize K] , X

cost function wrt adaptive DOF

— - - -

Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017




Double Optimization is Successful and Efficient

lOO F - -

I

(00
o
w

@)
)

S
o

Tuning Success Rate (%)
=

N
-

Fraction Removed Edges (%)
N

(-
-

101 100 101 102 103 10-2 10-1 10¢ 101 102 103

[
<
(]

tuned target response A tuned target response A

* Can tune to A=
— with essentially 100% success
— by pruning tiny fraction of bonds

Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017



2D Lasercut Realizations In Real Life
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Double optimization on computer yields

designs that are robust in the lab Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017



2D Lasercut Realizations In Real Life

- — —_ - = P
- e ———— — —

. —

Double optimization on computer yields

designs that are robust in the lab Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017



3D-Printed Realizations In Real Life

Double optimization on computer Yyields
designs that are robust in the lab

Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017



Why is Adaptive Matter Framework Useful?

* Benefits of overparameterization
— easy to reach a good solution
— many good solutions
— allows for stochasticity in the initial conditions to choose solution or subset of solutions
— solutions typically generalizable, with many flattish directions in parameter space
* robust to changes in most parameters
* implies possibility of satisfying a different function (evolvability)

* can remain good solution as inputs change

* Provides way of identifying (possibly quantifying) tradeoffs
— how many parameters vs. metabolic cost of parameters
— error vs. energy (metabolic) cost
— error vs. robustness to noise or damage

— error vs. adaptability to new tasks



Poisson’s Ratio

Poisson’s ratio

dB — 2G

d(d —1)B + 2G

Goodrich/Liu/Nagel 2015
Hexner/Liu/Nagel 2018

Poisson’s ratio
is an input/
output relation

ET—-VEs

GO TO SLIDES

Double optimzn
works here, too!



Varying Correlations in Disorder Leads to Highly Malleable Behavior

Poisson’s ratio ol |
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' 'Random ™
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Hexner/Liu/Nagel Soft Matter 2018



Tuning Poisson Ratio with Double Optimization

107 | .. 3 D
108 | MaX ABI .°'-...
\
' /\
G/Blo | | ¢ Prune max AB;i(gradient descent in B)
107 | G/B— 00, v—-1|, auxetic
10°) * Prune max AG; (gradient descent in G)
107 | / | G/B—0,v—d/2
10° | . MaX AGl _
0 e T Goodrich PRL 2015

AZ Hexner PRE 2018



Drawbacks of Global Gradient Descent for Double Optimization

* Not scalable
— Requires precise microscopic knowledge of system to evaluate cost function and gradient
— Requires processor to calculate direction of gradient descent
— requires ability to modify individual parameters

— Design by minimizing cost function is inherently global and therefore requires processor



Drawbacks of Global Gradient Descent for Double Optimization

* Not scalable

— Requires precise microscopic knowledge of system to evaluate cost function and gradient
— Requires processor to calculate direction of gradient descent
— requires ability to modify individual parameters

— Design by minimizing cost function is inherently global and therefore requires processor

Can systems learn input/output relations
on their own, without a processor?



Digital vs. Real Neural Networks

[nput layer Hidden layers - Output layer
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* Neurons update without knowing what

e Gradient descent on cost function all other neurons are doing

requires knowing all network details

Doesn’t require processor
* Requires processor

* Relatively energy efficient: adult human

* Costs much energy brain uses ~ 2000 kJ/day
— Each ChatGPT text query ~ 200 k]

— Image generation ~10,000 k]



Digital vs. Real Neural Networks

Input layer Hidden layers Outpnt layer 28 T’; 4_1'_ ’ 4
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‘\f.‘“.{t‘,;?&‘. Key to adjusting adaptive DOF in real time:

local rules

Stern, Murugan ARCMP (2023) : hat
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all other neurons are doing

* Gradient descent on cost function
requires knowing all network details

Doesn’t require processor
* Requires processor

* Relatively energy efficient: adult human

* Costs much energy brain uses ~ 2000 kJ/day
— Each ChatGPT text query ~ 200 k]

— Image generation ~10,000 k]



Brain Vasculature Has Desired Input/Output Relations

brain vasculature as Katifori
flow network  Brain is 2% of body mass but uses 25% of O»

P * Input: pressure drop at arteries
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* Output: pressure drop (enhanced blood current/
O») at specific local region

Rocks, Ronellenfitsch, Liu, Nagel, Katifori PNAS 2019
Rocks, Liu, Katifori PRR 2020
Rocks, Liu, Katifori PRL 2021

Stern, Hexner, Rocks, Liu PRX (2021)
http://campar.in.tum.de/Main/ProjectVascularNetworks



Brain Vasculature

* Function: deliver desired pressure drop/current to designated location
* Parameters:

— Level of description: low Re flow network of pipes (edges) connecting nodes

— parameters: edge conductances. —extensive

* Process:
— Involves astrocytes and reaction to low O2, but | don’t know much about it
— Has to use local rules
* What are they!?
* How do they lead to the function!?



Simple Models for Allosteric Proteins/Brain Vasculature

Mechanical: central force spring networks |
nodes adjust

1 . 1 >
F=_ Z k. ( (i — 0 )) — 7 Hii positions so that
) hd UNTY p) network is at
7 energy minimum
Hii = |
Flow networks with conductance on each edge: flows on edges
1 1 adjust so that
_ 2 _ J
P = 5 klj(pi - p]) Epr network is at
(i) power loss
R minimum
Lp =]

* Flow networks are 1D mechanical networks without an embedding b;; in space
* Low-Re-flow/linear-electrical-resistor networks are identical
* Pressure <> Voltage



Double Optimization Works!

Cost function: C = (A — Aprp)~
Adaptive DOF: edge conductances

Physics requires minimization of dissipated power

Physical DOF: node pressures NAVAVAVAY RN [
. L , s [ Apr=0.003 §

| st optimzn: Minimize power wrt physical DOF N/ [ DA ATFAINTIKT
S " " ' Lo+t T, . y TSN A
required by physics! N ee/ K]
2nd optimzn: Use gradient descent to minimize VAVARY LYK A

. . i v A " + \

cost function wrt adaptive DOF ISV BSOS I

Rocks, Ronellenfitsch, Liu, Nagel, Katifori PNAS 2019



More Examples: Physical Systems That Maintain High-Dim Homeostasis

* Homeostasis is not typical CS problem but are desired response to stimuli
— many inputs (high-dimensional) that vary a lot

— relatively few outputs (low-dimensional) that vary very little
* Example: rigidity homeostasis

— Epithelial amnioserosa during dorsal closure during Drosophila development

— Actin cortex

GO TO SLIDES



Maintaining Rigidity During Dorsal Closure

Rigidity under

trying
circumstances

Amnioserosa during
dorsal closure of
Drosophila melangaster

Tah/Haertter/Crawford/Kiehart/Schmidt/Liu

30 pm
00:00:00

* Sheet of tissue one cell thick
. D. Kiehart
* Covers dorsal opening between two cell sheets

* No cell rearrangements (T | events) during entire process! AS is rigid
* Must adapt to extreme shrinking of tissue to remain rigid



Vertex Model of 2D (Epithelial) Tissue

Cell adhesion, |

‘ contractlllty_J

O N

ka)drostatuc pressure,

limited compressibility|

T. Nagai, H. Honda, Philos. Mag. B 81, 699 (2001)
Hufnagel et al, PNAS vol. 104 (10) pp. 3835 (2007)
Farhadifar et al, Current Biology (2007)

Julicher et al Phys. Rep. (2007)

Hilgenfeldt et al, PNAS 105 3 907-911 (2008)
Manning et al, PNAS (2010)

Staple et al EPJE 33 (2) 117 (2010)

Chiou et al PLOS Comp Bio 8 (5) el002512 (2012)

E:kpZ(p

— po) +k’2

cells
Cell’s optimal

dlred

cell incompressibility
preferred cell height

cells
Cell’s optimal

perimeter

actomyosin contractility
adhesion/cortical tension

Key variables:

go = Po/+/ao shape index

r = kqao/ k, stiffness ratio

E=) (q

cells cells

2

i—QO)QJFTZ(&z‘ —1)°



Predicts Rigidity Transition Quantitatively!
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Park et al Nat Phys 2015

Vertex model accounts

not only for cell shape

but also shape variation
Park et al Nat Phys 2015

Atia et al., Nat Phys 2018
Bi/Lopez/Schwarz/Manning, Nat Phys 2015

Shape variation

= Non-Asthmatic
Asthmatic
Aday 6
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Mean(AR)

Cell shape

Critical ¢y ~ 3.81



Predicts Rigidity Transition Quantitatively!
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but also shape variation

* Amnioserosa during dorsal closure has q
Park et al Nat Phys 2015 __ : : : f i |
Atia et . Nat Phys 2018 =4.24 increasing to 4.36 and is always rigid!

Bi/Lopez/Schwarz/Manning, Nat Phys 2015 e How?



Adaptive Degrees of Freedom (DOF)

Recall vertex model

E:]{?pZ( p() —|—]{? Z —CL()

cells cells

This energy is minimized by adjusting vertex positions as physical DOFs
Let each cell have different preferred perimeter poi as parameters

Double optimization: adaptive DOF couple physical DOF so that energy must
be re-minimized as learning DOF adjust

GO TO SLIDES

Tah, Haertter, Crawford, Kiehart, Schmidt, Liu arXiv (2023)



Maintaining Rigidity During Dorsal Closure

Rigidity under

trying
circumstances

Amnioserosa during
dorsal closure of
Drosophila melangaster

Tah/Haertter/Crawford/Kiehart/Schmidt/Liu

30 pm
00:00:00

* Sheet of tissue one cell thick
. D. Kiehart
* Covers dorsal opening between two cell sheets

* No cell rearrangements (T | events) during entire process! AS is rigid
* Must adapt to extreme shrinking of tissue to remain rigid



What Local Rules?

30 pm

A 1.0 m— Experiment
* Wide distbn of cell perimeters requires 6p0=0.45 Tog - — e
Li/Das/Bi PRL (2019) a
v 06 7
* Mean cell perimeter shrinks linearly during process 4 1)
o Allow preferred cell perimeter to shrink at same rate T

Tah, Haertter, Crawford, Kiehart, Schmidt, Liu arXiv (2023) >0 O¢2|osu?'e4AA((t))'6 -



Adaptive Degrees of Freedom Are Changing During Dorsal Closure
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* This is local rule that allows system to maintain rigidity
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Quantitative agreement with experiments! Closure AA(D)



Biological Filament Networks That Confer Rigidity

Chugh et aI Nat Cell Bio (2017) Sharma et al Nat Phys (2016) Yasudasan, Averett Polym (2020)

They are rigid in a crazy way that is common across all 3 systems

Under-coordinated networks z < 4 <6

Rigidified by prestress (tensegrity)—significant fraction of their stiffness

Constant turnover with edges removed/added

* Tension-inhibited pruning (cofilin, collagenase, filamin)

* Filaments self-assemble/disassemble

Galvani Cunha, Liu, Crocker arXiv (2023)



Biological Filament Networks That Confer Rigidity

Chugh et aI Nat Cell Bio (2017) Sharma et al Nat Phys (2016) Yasudasan, Averett Polym (2020)

They are rigid in a crazy way that is common across all 3 systems

Under-coordinated networks z < 4 <6

Rigidified by prestress (tensegrity)—significant fraction of their stiffness

Constant turnover with edges removed/added

* Tension-inhibited pruning (cofilin, collagenase, filamin) use it or lose it

* Filaments self-assemble/disassemble

Galvani Cunha, Liu, Crocker arXiv (2023)



These Networks Have Desired Input/Output Relations

They must maintain rigidity in face of constantly changing stresses

Turnover creates parameters (presence/absence of edge)

# parameters scales with system size—lots of parameters!
Overparameterization implies
* There many good solutions— each network is different but maintains rigidity
* Systems tend to fall into minima with bigger basins of attraction—Ilots of flat

directions in landscape that don’t change rigidity much

Representational drift—each network can maintain rigidity despite turnover
solves ship of Theseus problem

GO TO SLIDE



These Networks Have Desired Input/Output Relations

They must maintain rigidity in face of constantly changing stresses

Turnover creates parameters (presence/absence of edge)

# parameters scales with system size—lots of parameters!
Overparameterization implies
* There many good solutions— each network is different but maintains rigidity
* Systems tend to fall into minima with bigger basins of attraction—Ilots of flat

directions in landscape that don’t change rigidity much
Representational drift—each network can maintain rigidity despite turnover

solves ship of Theseus problem

It's not crazy—it’'s BRILLIANT
Thinking of biological function, especially homeostasis, this

way is potentially useful
GO TO SLIDE



Low-Tension Pruning Leads to Lower Critical Coordinations

* Biologically-relevant Z. ~ 3-4 much easier to reach with low-tension pruning

than random pruning

Galvani Cunha/Liu/Crocker arXiv 2023

* Can only reach realistic ratios of prestress/stiffness with low-tension pruning

low-tension pruning
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Low-Tension Pruning Allows Biologically-Realizable Networks
e Match Z, G for random vs.

Y T 1 3 vvvvll Y T Y ""l_!'!"l Y vlvvvl Y Y Y 1 3
(a) -
. Min E;

1
i i i 10°4 |
low-tension pruning . i Randorm
* TJranslate into real units: 104 Matched:
= 3.93
k~40pN/nm, £~ um % G = 0.0044
G~0.0044 k/£~16 kPa c.f. 20 kPa 102
I1~0.0015 k/t~6 kPa. c.f. 5 kPa
0
* Compare top tension to breaking 186 s Min E
force: Random
— experimental value for actin ~600pN ’6104 Rtk
— low-tension: 400pN a Max Ej=5 x 10~
2
— random: 900pN 10 Gming, = 0.0040
Grandom = 0.002
0 . e
190" 10° 10 1051073



