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More is Different vs. Many More is Different

• “More is Different” from a few Anderson, Science (1972)

– But usually many more is not much different from more in most condensed matter systems

• Systems with many more different from more
– Brains: C. elegans (302 neurons) vs. honeybees (~106 neurons) vs humans (~1011 neurons)
– Digital neural networks: ChatGPT4 (~1014 parameters)

• Why is many more different in these systems?
• What physical systems besides brains might have this property?

ADAPTIVE MATTER



• Network has adjustable parameters

• How to adjust? 

– Evaluate cost function

– Minimize    by adjusting parameters

– This is how system evolves

Output 1  (1/0 for dog /cat)

Output 2  (1/0 for cat/dog)

 
 

Why is Many More Different in Digital Neural Networks?

<latexit sha1_base64="inQa8EXd1sSOjMfNdQv8Dry0vP4="></latexit>

C =
X

i

(desired outputi � free outputi)
2

<latexit sha1_base64="zrTRzK+H9+GK3lDCwqZ5Cm/eBPE=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjMi1WWxG5cV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuG0lfu9J6YNV/IRZgkLYjKWPOKUgJX8QUxgQonALTys1ty6uwBeJ15BaqhAe1j9GowUTWMmgQpijO+5CQQZ0cCpYPPKIDUsIXRKxsy3VJKYmSBbRJ7jC6uMcKS0fRLwQv29kZHYmFkc2sk8oln1cvE/z08hug0yLpMUmKTLj6JUYFA4vx+PuGYUxMwSQjW3WTGdEE0o2JYqtgRv9eR10r2qe4164+G61rwr6iijM3SOLpGHblAT3aM26iCKFHpGr+jNAefFeXc+lqMlp9g5RX/gfP4AX0WQrA==</latexit>

C



Constraint-Satisfaction Problems

• Each term in cost function is another constraint

• Similar to problem of jamming. E = \sum (overlaps between particles)^2
• When all constraints are satisfied, no overlaps between particles (hard sphere 

configurations)
• Hard spheres solved in d=infinity so look at what happens there
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Hard Sphere Constraint-Satisfaction Problem

• Hard spheres

Patrick Charbonneau, Jorge Kurchan, Giorgio Parisi, Pierfrancesco Urbani, 
Francesco Zamponi. Exact theory of dense amorphous hard spheres in high 

dimension. III. The full RSB solution. Journal of Statistical Mechanics: Theory and 
Experiment, 2014, 2014, pp.10009. 10.1088/1742- 5468/2014/10/P10009

low density high density

Field theory, order parameters, and length 
scales for the glass transition: To understand 
a phase transition perturbatively around the 
mean-field limit, one needs to describe the 
fluctuations of the order parameter and the 
associated correlation length.  Franz & Parisi 
developed a general formalism for identifying 
an order parameter  describing the glass 
transition (the overlap) and the relevant 
diverging four-point susceptibility [44].  They 
[45] and Berthier [46] developed numerical 
methods for free-energy calculations in finite-
dimensional liquids based upon global fluctuations of the overlap.  Biroli & Kurchan studied the possible existence of 
hidden forms of spatial order in glasses [47] and Franz studied these in the mean-field limit [48].  Based on these 
studies, Biroli, Franz, Parisi & Zamponi developed a field theory to describe fluctuations above the upper critical 
dimension (d=8) and constructed a renormalization group for glasses [49].  Berthier, Biroli & Reichman formulated a 
consistent dynamical mean-field theory for describing space-time scaling and dynamical heterogeneities [40] while 
Franz, Parisi & Zamponi formulated a similar theory in a thermodynamic framework [50].  Franz & Kurchan pursued 
the formal analogy between glassy dynamics and supersymmetry-breaking, both in- and out-of-equilibrium and 
obtained an analytical solution for the generic mean-field problem [51].  
Connecting low dimensions to d=∞:  Numerical simulations allow us to explore the whole dimensional range, from the 
perturbative large-d regime to the non-perturbative low-d regime.  Reichman [52] and Charbonneau [53] simulated 
high-dimensional supercooled liquids to demonstrate the relevance of the mean-field starting point.  Kurchan 
developed a model that smoothly interpolates between the finite-dimensional mean-field and the real-space behavior of 
glassy and jamming systems [12].  Parisi & Zamponi derived a cavity-based description of this model [54], and, with 
Charbonneau, used it to understand the mean-field contribution to the breakdown of the Stokes-Einstein relation in 
supercooled liquids and to detect the Gardner transition [55].  
Activation in glasses and dynamical heterogeneity: The ultimate goal is to understand activation in the strongly non-
perturbative regime of long times and low dimensions.  Biroli, Berthier & Charbonneau identified and measured 
different diverging length scales that control the slowing down of the dynamics [56].  Biroli showed that randomly 
pinning a fraction of particles gives access to these length scales in experiments [57] and Reichman showed how 
activated processes emerge and govern transport even at relatively high T [58].  
c) Summary:  These achievements – solving the d=∞ hard-sphere glass transition, introducing and understanding the 
jamming transition in low d and showing the relevance of these phenomena to one another – have set the stage for the 
next era of theoretical glass research.  With these results in hand we now propose how to attack glasses generally.   
3.  Planned research: Low-energy states – starting deep in the landscape 
 We propose to build on the solid basis established in Sec. 2 to understand the essential features of the glass phase of 
matter and to tackle the glass problem from the low-temperature side (as indicated by the arrow #1 in Fig. 1). Our 
starting point is the jammed state, which is marginally stable mechanically and exhibits an associated critical jamming 
transition and scaling behavior.  The jamming transition only exists for systems with finite-ranged repulsive potentials, 
and some of its properties are special to spheres. Nevertheless, we have shown that the jammed solid yields valuable 
insight into properties of amorphous solids with covalent [15] or long-ranged [16] or attractions, or other non-
spherically-symmetric potentials [59].  Our strategy is therefore to start with jammed solids to study the anomalous 
harmonic low-energy excitations and the anharmonic, non-perturbative particle rearrangements that occur at nonzero 
temperature or strain and ultimately cause the system to melt.  We will follow arrow #1 to develop a proper description 
of the glassy state, the free-energy landscape out of which it emerges, and finally the glass transition.  The aim is to use 
a low-energy approach to address a strong-coupling problem, as, for instance, in the droplet theory of spin glasses.  
Simultaneously, we will examine how this description is modified by attractions and non-spherically-symmetric 
potentials.  In addition, we will study the evolution of the Gardner transition, which marks the transition from a simple 
glass basin structure to a fractal hierarchy of subbasins (Fig. 3), as the dimension is lowered from infinity (arrow #2).   
a) Exact mean-field solution for systems with continuous potentials: We have shown that the infinite-dimensional 
solution of hard spheres describes critical exponents in d=2,3 near the onset of jamming at infinite pressure, p=∞ 
[8,43], thus unifying the p�∞ behavior in d=∞ with that in d=2,3.  For hard spheres, however, there is no difference 

Fig. 3  Depiction of accessible phase space (blue regions) as P increases or 
T decreases. (a) Liquid is fully ergodic. (b) Upon approaching glass 
transition bottlenecks appear that (c) lead to ergodicity breaking (phase 
space clustering). These states undergo a Gardner transition, (d-e) forming 
a fractal hierarchy of subbasins that (f) ultimately results in jammed states. 

jammed
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• Hard spheres
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Constraint-Satisfaction Problems

Cluster without frozen variable
Cluster with frozen variables

CONDENSATION RIGIDITY UNCOL
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Uncolorable phaseColorable phase
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Figure 2. Sketch of the space of solutions —colored points in this representation— in the
q-coloring problem on random graphs when the connectivity c is increased. (i) At low c, all
solutions belong to a single cluster. (ii) For larger c, other clusters of solutions appear but a
giant cluster still contains almost all solutions. (iii) At the clustering transition cd, it splits
into an exponentially large number of clusters. (iv) At the condensation transition cc, most
colorings are found in the few largest of them. (v) The rigidity transition cr (cr < cc and cr > cc
are both possible depending on q) arises when typical solutions belong to clusters with frozen
variables (that are allowed only one color in the cluster). (vi) No proper coloring exists beyond
the COL/UNCOL threshold cs.

a finite number of the largest clusters. From this point, equation (3) is not valid anymore
and becomes just an upper bound. The entropy is non-analytic at cc therefore this is a
genuine static phase transition.

(v) The rigid phase: As mentioned in section 3, two different types of clusters exist: In the
first type, that we shall call the unfrozen ones, all spins can take at least two different colors.
In the second type, however, a finite fraction of spins is allowed only one color within the
cluster and are thus “frozen” into this color. These frozen clusters actually correspond to
non-trivial fixed points of BP and WP, while the first kind are non-trivial fixed points of BP
only. It follows that a transition exists, that we call rigidity, when frozen variables appear
inside the dominant clusters (those that contains most colorings). If one takes a proper
coloring at random beyond cr, it will belong to a cluster where a finite fraction of variables
is frozen into the same color. Depending on the value of q, this transition may arise before
or after the condensation transition (see table 1).

(vi) The UNCOL phase: Eventually, the connectivity cs is reached beyond which no more
solutions exist. The ground state energy (sketched in figure 3) is zero for c < cs and then
grows continuously for c > cs. The values cs computed within the cavity formalism are in
perfect agreement with the rigorous bounds [25] derived using probabilistic methods and
are widely believed to be exact (although they remains to be rigorously proven, but see [26]
for a proof that they are at least rigorous upper bounds).

We report the values of the threshold connectivities corresponding to all these transitions in
table 1 for the regular and the Poissonian (i.e. Erdős-Rényi) random graphs ensembles. Notice
that the 3-coloring is peculiar because cd = cc so that the clustered phase is always condensed in
this case. In view of this rich phase diagram, it is important to get an intuition on the meaning
and the properties of these different phases and, in this respect, it is interesting before entering
the algorithmic implications to discuss the analogies with the glass transition.

Field theory, order parameters, and length 
scales for the glass transition: To understand 
a phase transition perturbatively around the 
mean-field limit, one needs to describe the 
fluctuations of the order parameter and the 
associated correlation length.  Franz & Parisi 
developed a general formalism for identifying 
an order parameter  describing the glass 
transition (the overlap) and the relevant 
diverging four-point susceptibility [44].  They 
[45] and Berthier [46] developed numerical 
methods for free-energy calculations in finite-
dimensional liquids based upon global fluctuations of the overlap.  Biroli & Kurchan studied the possible existence of 
hidden forms of spatial order in glasses [47] and Franz studied these in the mean-field limit [48].  Based on these 
studies, Biroli, Franz, Parisi & Zamponi developed a field theory to describe fluctuations above the upper critical 
dimension (d=8) and constructed a renormalization group for glasses [49].  Berthier, Biroli & Reichman formulated a 
consistent dynamical mean-field theory for describing space-time scaling and dynamical heterogeneities [40] while 
Franz, Parisi & Zamponi formulated a similar theory in a thermodynamic framework [50].  Franz & Kurchan pursued 
the formal analogy between glassy dynamics and supersymmetry-breaking, both in- and out-of-equilibrium and 
obtained an analytical solution for the generic mean-field problem [51].  
Connecting low dimensions to d=∞:  Numerical simulations allow us to explore the whole dimensional range, from the 
perturbative large-d regime to the non-perturbative low-d regime.  Reichman [52] and Charbonneau [53] simulated 
high-dimensional supercooled liquids to demonstrate the relevance of the mean-field starting point.  Kurchan 
developed a model that smoothly interpolates between the finite-dimensional mean-field and the real-space behavior of 
glassy and jamming systems [12].  Parisi & Zamponi derived a cavity-based description of this model [54], and, with 
Charbonneau, used it to understand the mean-field contribution to the breakdown of the Stokes-Einstein relation in 
supercooled liquids and to detect the Gardner transition [55].  
Activation in glasses and dynamical heterogeneity: The ultimate goal is to understand activation in the strongly non-
perturbative regime of long times and low dimensions.  Biroli, Berthier & Charbonneau identified and measured 
different diverging length scales that control the slowing down of the dynamics [56].  Biroli showed that randomly 
pinning a fraction of particles gives access to these length scales in experiments [57] and Reichman showed how 
activated processes emerge and govern transport even at relatively high T [58].  
c) Summary:  These achievements – solving the d=∞ hard-sphere glass transition, introducing and understanding the 
jamming transition in low d and showing the relevance of these phenomena to one another – have set the stage for the 
next era of theoretical glass research.  With these results in hand we now propose how to attack glasses generally.   
3.  Planned research: Low-energy states – starting deep in the landscape 
 We propose to build on the solid basis established in Sec. 2 to understand the essential features of the glass phase of 
matter and to tackle the glass problem from the low-temperature side (as indicated by the arrow #1 in Fig. 1). Our 
starting point is the jammed state, which is marginally stable mechanically and exhibits an associated critical jamming 
transition and scaling behavior.  The jamming transition only exists for systems with finite-ranged repulsive potentials, 
and some of its properties are special to spheres. Nevertheless, we have shown that the jammed solid yields valuable 
insight into properties of amorphous solids with covalent [15] or long-ranged [16] or attractions, or other non-
spherically-symmetric potentials [59].  Our strategy is therefore to start with jammed solids to study the anomalous 
harmonic low-energy excitations and the anharmonic, non-perturbative particle rearrangements that occur at nonzero 
temperature or strain and ultimately cause the system to melt.  We will follow arrow #1 to develop a proper description 
of the glassy state, the free-energy landscape out of which it emerges, and finally the glass transition.  The aim is to use 
a low-energy approach to address a strong-coupling problem, as, for instance, in the droplet theory of spin glasses.  
Simultaneously, we will examine how this description is modified by attractions and non-spherically-symmetric 
potentials.  In addition, we will study the evolution of the Gardner transition, which marks the transition from a simple 
glass basin structure to a fractal hierarchy of subbasins (Fig. 3), as the dimension is lowered from infinity (arrow #2).   
a) Exact mean-field solution for systems with continuous potentials: We have shown that the infinite-dimensional 
solution of hard spheres describes critical exponents in d=2,3 near the onset of jamming at infinite pressure, p=∞ 
[8,43], thus unifying the p�∞ behavior in d=∞ with that in d=2,3.  For hard spheres, however, there is no difference 

Fig. 3  Depiction of accessible phase space (blue regions) as P increases or 
T decreases. (a) Liquid is fully ergodic. (b) Upon approaching glass 
transition bottlenecks appear that (c) lead to ergodicity breaking (phase 
space clustering). These states undergo a Gardner transition, (d-e) forming 
a fractal hierarchy of subbasins that (f) ultimately results in jammed states. 
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number of constraints

number of degrees of freedom
⌧ 1
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number of constraints

number of degrees of freedom
� 1

Can satisfy constraints Can’t satisfy constraints



• Network has adjustable parameters 

• How to adjust? 

– Evaluate cost function

– Minimize    by adjusting parameters

• # constraints that can be satisfied increases with # parameters

• Many more is different bc # parameters increases with system size

Output 1  (1/0 for dog /cat)

Output 2  (1/0 for cat/dog)

 
 

Why is Many More Different in Digital Neural Networks?

<latexit sha1_base64="inQa8EXd1sSOjMfNdQv8Dry0vP4="></latexit>

C =
X

i

(desired outputi � free outputi)
2
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More is Different vs. Many More is Different

• “More is Different” from a few Anderson, Science (1972)

– But usually many more is not much different from more in most condensed matter systems
– No adjustable parameters!

• Systems with many more different from more
– Brains: C. elegans (302 neurons) vs. honeybees (~106 neurons) vs humans (~1011 neurons)
– Digital neural networks: ChatGPT4 (~1014 parameters)

• Why is many more different in adaptive matter?
– # parameters increases with system size

• What physical systems besides brains might have this property?
• How can we design a simple physical system with this property? (Doug)



Look Again to Digital Neural Networks

• They learn desired input/output relations—desired responses to stimuli
• Inverse input/output problems
• What real systems have desired responses to stimuli? 
• Do they also have adjustable parameters? 

Output 1  (1 for dog, 0 for cat)

Output 2  (1 for cat, 0 for dog)

 
 



Unifying Framework for Adaptive Matter: Definitions
• What is the function? 

– Not fitness but constraints that must be satisfied
– Example of protein allostery (GO TO SLIDE)

• What are the parameters?
– Level of description needs to be specified

• e.g. protein allostery
– Microscopic level (amino acids, atom positions)
– Coarse-grained level (spring constants/equilibrium lengths, node positions) (GO TO SLIDE)

• What is process by which parameters are adjusted to achieve function?
– protein allostery: evolution (GO TO SLIDE)
– DNNs: global process where you need to know everything, e.g. gradient descent



• Input: local strain at regulatory site
• Output: local strain 

Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017
Rocks, Ronellenfitsch, Liu, Nagel, Katifori PNAS 2019
Hexner, Liu, Nagel PNAS (2020)
Stern, Hexner, Rocks, Liu PRX (2021)
Rocks, Katifori, Liu arXiv (2024)

Goodrich, Liu, Nagel PRL (2016)
Hexner, Liu, Nagel Soft Matter (2018)
Stern, Jayaram, Murugan Nat Comm (2018)
Pashine, Hexner, Liu, Nagel Sci Adv (2019)
Stern, Pinson, Murugan PRX (2020)
Stern, Arinze, Perez, Murugan PNAS (2020)
Arinze, Stern, Nagel, Murugan PRE (2023)

Allosteric Proteins Have Desired Input/Output Relations



• Input: local strain at regulatory site
• Output: local strain 

source strain target strain

localized strain due to localized 
strain applied far away

Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017
Rocks, Ronellenfitsch, Liu, Nagel, Katifori PNAS 2019
Hexner, Liu, Nagel PNAS (2020)
Stern, Hexner, Rocks, Liu PRX (2021)
Rocks, Katifori, Liu arXiv (2024)

Goodrich, Liu, Nagel PRL (2016)
Hexner, Liu, Nagel Soft Matter (2018)
Stern, Jayaram, Murugan Nat Comm (2018)
Pashine, Hexner, Liu, Nagel Sci Adv (2019)
Stern, Pinson, Murugan PRX (2020)
Stern, Arinze, Perez, Murugan PNAS (2020)
Arinze, Stern, Nagel, Murugan PRE (2023)

Allosteric Proteins Have Desired Input/Output Relations



Unifying Framework for Adaptive Matter: Definitions
• What is the function? 

– Not fitness but constraints that must be satisfied
– Example of protein allostery (GO TO SLIDE)

• What are the parameters?
– Level of description needs to be specified

• e.g. protein allostery
– Microscopic level (amino acids, atom positions)
– Coarse-grained level (spring constants/equilibrium lengths, node positions) (GO TO SLIDE)

• What is process by which parameters are adjusted to achieve function?
– protein allostery: evolution (GO TO SLIDE)
– DNNs: global process where you need to know everything, e.g. gradient descent
– Brains: Hebbian rule is “local rule”—each neuron does not need to know what every other 

neuron is doing in order to change its synapses

GO TO SLIDE



• Cost function: eg for allostery

• Parameters: edge stiffnesses/equil lengths/presence-absence…
• Physics requires minimization of elastic energy/free energy
• Physical DOF: node positions 
• 1st optimzn: Minimize energy wrt physical DOF 

—required by physics!
• 2nd optimzn: Use gradient descent to minimize  

cost function wrt parameters 

For Physical Systems with Lyapunov Function: Double Optimization

source strain 
eS=1

target 
strain
eT=Δ

Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017
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C = (desired target strain � free target strain)2 = (�� eT )
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GO TO SLIDES



• Cost function: eg for allostery

• Adaptive DOF: edge stiffnesses/equil lengths/presence-absence…
• Physics requires minimization of elastic energy/free energy
• Physical DOF: node positions 
• 1st optimzn: Minimize energy wrt physical DOF 

—required by physics!
• 2nd optimzn: Use gradient descent to minimize  

cost function wrt adaptive DOF 

Double Optimization Works!

Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017
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Double Optimization is Successful and Efficient

• Can tune to Δ=1
– with essentially 100% success
– by pruning tiny fraction of bonds

 tuned target response Δ     tuned target response Δ    

Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017



2D Lasercut Realizations In Real Life

Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017

Double optimization on computer yields 
designs that are robust in the lab



2D Lasercut Realizations In Real Life

Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017

Double optimization on computer yields 
designs that are robust in the lab



3D-Printed Realizations In Real Life

Rocks, Pashine, Goodrich, Bischofberger, Liu, Nagel PNAS 2017

Double optimization on computer yields 
designs that are robust in the lab



Why is Adaptive Matter Framework Useful?

• Benefits of overparameterization
– easy to reach a good solution
– many good solutions
– allows for stochasticity in the initial conditions to choose solution or subset of solutions
– solutions typically generalizable, with many flattish directions in parameter space

• robust to changes in most parameters
• implies possibility of satisfying a different function (evolvability)
• can remain good solution as inputs change

• Provides way of identifying (possibly quantifying) tradeoffs
– how many parameters vs. metabolic cost of parameters
– error vs. energy (metabolic) cost
– error vs. robustness to noise or damage
– error vs. adaptability to new tasks



Poisson’s Ratio
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⌫ =
dB � 2G

d(d� 1)B + 2G

Poisson’s ratio

Goodrich/Liu/Nagel 2015
Hexner/Liu/Nagel 2018

ϵS

ϵT

ϵT=-νϵS

Poisson’s ratio 
is an input/

output relation

Double optimzn 
works here, too!

GO TO SLIDES



Varying Correlations in Disorder Leads to Highly Malleable Behavior
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⌫ =
dB � 2G

d(d� 1)B + 2G

Poisson’s ratio

Goodrich/Liu/Nagel PRL 2015
Hexner/Liu/Nagel Soft Matter 2018

Random



Tuning Poisson Ratio with Double Optimization

• Prune max ΔBi (gradient descent in B)
G/B→∞, ν→-1, auxetic

• Prune max ΔGi (gradient descent in G)

G/B→0, ν→d/2

Goodrich PRL 2015
Hexner PRE 2018
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Drawbacks of Global Gradient Descent for Double Optimization

• Not scalable
– Requires precise microscopic knowledge of system to evaluate cost function and gradient
– Requires processor to calculate direction of gradient descent
– requires ability to modify individual parameters 
– Design by minimizing cost function is inherently global and therefore requires processor



Drawbacks of Global Gradient Descent for Double Optimization

• Not scalable
– Requires precise microscopic knowledge of system to evaluate cost function and gradient
– Requires processor to calculate direction of gradient descent
– requires ability to modify individual parameters 
– Design by minimizing cost function is inherently global and therefore requires processor

Can systems learn input/output relations 
on their own, without a processor?



Digital vs. Real Neural Networks

• Gradient descent on cost function 
requires knowing all network details

• Requires processor
• Costs much energy

– Each ChatGPT text query ~ 200 kJ
– Image generation ~10,000 kJ

Output 1  (1 for dog, 0 for cat)

Output 2  (1 for cat, 0 for dog)

 
 

• Neurons update without knowing what 
all other neurons are doing

• Doesn’t require processor
• Relatively energy efficient: adult human 

brain uses ~ 2000 kJ/day



Digital vs. Real Neural Networks

• Gradient descent on cost function 
requires knowing all network details

• Requires processor
• Costs much energy

– Each ChatGPT text query ~ 200 kJ
– Image generation ~10,000 kJ

Output 1  (1 for dog, 0 for cat)

Output 2  (1 for cat, 0 for dog)

 
 

• Neurons update without knowing what 
all other neurons are doing

• Doesn’t require processor
• Relatively energy efficient: adult human 

brain uses ~ 2000 kJ/day

Key to adjusting adaptive DOF in real time:  
local rules

Stern, Murugan ARCMP (2023)



Brain Vasculature Has Desired Input/Output Relations

http://campar.in.tum.de/Main/ProjectVascularNetworks

brain vasculature as 
flow network

Katifori
• Brain is 2% of body mass but uses 25% of O2

• Input: pressure drop at arteries
• Output: pressure drop (enhanced blood current/

O2) at specific local region 

Rocks, Ronellenfitsch, Liu, Nagel, Katifori PNAS 2019
Rocks, Liu, Katifori PRR 2020
Rocks, Liu, Katifori PRL 2021
Stern, Hexner, Rocks, Liu PRX (2021)



Brain Vasculature

• Function: deliver desired pressure drop/current to designated location
• Parameters:

– Level of description: low Re flow network of pipes (edges) connecting nodes
– parameters: edge conductances. —extensive

• Process:
– Involves astrocytes and reaction to low O2, but I don’t know much about it
– Has to use local rules

• What are they?
• How do they lead to the function?



Simple Models for Allosteric Proteins/Brain Vasculature

• Flow networks are 1D mechanical networks without an embedding      in space 
•   Low-Re-flow/linear-electrical-resistor networks are identical
•   Pressure ↔ Voltage

Mechanical: central force spring networks

Flow networks with conductance on each edge:

E = 1
2 ∑

⟨ij⟩
kij(b̂ij ⋅ ( ⃗ui − ⃗uj))2 = 1

2 ⃗uH ⃗u

H ⃗u = ⃗f

P = 1
2 ∑

⟨ij⟩
kij(pi − pj)2 = 1

2 ⃗pL ⃗p

L ⃗p = ⃗j
b̂ij

nodes adjust 
positions so that 

network is at 
energy minimum

flows on edges 
adjust so that 
network is at 
power loss 
minimum



• Cost function:
• Adaptive DOF: edge conductances
• Physics requires minimization of dissipated power
• Physical DOF: node pressures
• 1st optimzn: Minimize power wrt physical DOF 

—required by physics!
• 2nd optimzn: Use gradient descent to minimize  

cost function wrt adaptive DOF 

Double Optimization Works!

Rocks, Ronellenfitsch, Liu, Nagel, Katifori PNAS 2019
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More Examples: Physical Systems That Maintain High-Dim Homeostasis

• Homeostasis is not typical CS problem but are desired response to stimuli 
– many inputs (high-dimensional) that vary a lot
– relatively few outputs (low-dimensional) that vary very little

• Example: rigidity homeostasis
– Epithelial amnioserosa during dorsal closure during Drosophila development
– Actin cortex

GO TO SLIDES



Maintaining Rigidity During Dorsal Closure

• Sheet of tissue one cell thick
• Covers dorsal opening between two cell sheets
• No cell rearrangements (T1 events) during entire process! AS is rigid
• Must adapt to extreme shrinking of tissue to remain rigid

D. Kiehart

Amnioserosa during 
dorsal closure of 

Drosophila melangaster

Tah/Haertter/Crawford/Kiehart/Schmidt/Liu

Rigidity under 
trying 

circumstances



Vertex Model of 2D (Epithelial) Tissue

Cell’s optimal 
perimeter

Cell’s optimal  
area

T. Nagai, H. Honda, Philos. Mag. B 81, 699 (2001)
Hufnagel et al, PNAS vol. 104 (10) pp. 3835 (2007)
Farhadifar et al, Current Biology (2007)
Jülicher et al Phys. Rep. (2007)
Hilgenfeldt et al, PNAS 105 3 907–911 (2008)
Manning et al, PNAS (2010)
Staple et al EPJE 33 (2) 117 (2010)
Chiou et al PLOS Comp Bio 8 (5) e1002512 (2012)

actomyosin contractility
adhesion/cortical tension

cell incompressibility
preferred cell height

Key variables:

shape index
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q0 = p0/
p
a0
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stiffness ratio
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Figure 4 | With increasing maturation of HBECs in ALI culture, cell perimeter, as expressed by the non-dimensional parameter p̄, decreases
systematically towards the critical value p∗

0 (3.81) predicted to occur at jamming by the vertex model together with the theory of critical scaling
exponents. a, Over the course of maturation in ALI culture, HBECs from a representative non-asthmatic donor (Fig. 2 and Supplementary Movie 2)
approached the jammed state, and the median ratio of perimeter to the square root area of cells systematically approached the jamming threshold p∗

0. In
HBECs from a representative asthmatic donor (Fig. 2 and Supplementary Movie 3), however, the approach of p̄ to p∗

0 was considerably delayed. Over time,
and in both cases, p̄ systematically approached the jamming threshold of 3.81. Inset: p̄ for representative non-asthmatic and asthmatic donors plotted with
the same axis of ALI days to allow comparison of the jamming transition timing. Boxplot shows median and quartiles. Whiskers are maximum and
minimum data points. b, Simulated tissues with input parameters of target cell-shape index p0=4.2, corresponding to a fluidized state (top panel), and
p0=3.813, corresponding to a jammed tissue (bottom panel).

behaviour with a finite shear modulus of the cellular collective.
However, the other branch approaches a vanishing energy-barrier
height and a vanishing shear modulus, thus implying no barrier
to rearrangements and, therefore, unjammed fluid-like behaviour
of the cellular collective. The former branch is predicted to prevail
when p0<p∗

0 and the latter when p0>p∗
0 .

To test further the prediction that cells in late ALI days were
approaching a jammed state, we measured the shape index p
for cells in HBEC layers as a function of ALI day in non-
asthmatic and asthmatic HBECs (Methods); the median of p
is denoted p̄. Data indicate highly significant differences in p̄
between ALI days, between cells derived from healthy versus
asthmatic donors, and often between the observed value of p̄ and
the critical value 3.81 for jamming (Fig. 4 and Supplementary
Fig. 5). However, as ALI day progressed, the structural parameter
p̄ progressively approached p∗

0 (Fig. 4a and Supplementary Fig. 5).
Note that because p̄ is a measure of cellular structure, not
cellular dynamics or intercellular stresses, it is independent of
measurements of MSD, χ4 and cellular stresses. As such, the
behaviour in Fig. 4 independently validates the critical behaviour
as jamming is approached, and implies that cells in the jammed
state are unable to surmount the mechanical energy barriers that
increase as cell–cell adhesion decreases (Supplementary Fig. 7).
Importantly, in asthmatic compared with non-asthmatic HBECs,
the approach of p̄ to p∗

0 is appreciably delayed. Moreover, after
application ofmechanical compressive stresses similar inmagnitude
to those expected during bronchospasm, the HBECs layer becomes
unjammed and, as predicted from the vertex model, p̄ substantially
exceeds p∗

0 (Supplementary Fig. 6).
Even for cells within the same epithelial layer, an important

feature of the observed values of p for individual cells is their
striking variability (Fig. 4 and Supplementary Fig. 5), which is

much larger than measurement errors attributable to identification
of cell boundaries derived from phase-contrast images. Geometry
imposes some constraints on this variability; p, and therefore p̄,
have no upper limit, but can never be smaller than the shape
index for a circle, roughly 3.54. In the limit of vanishing active
force fluctuations, as described here, the vertex model predicts the
variability to be highly skewed19 and to increase away from the
critical point. Interestingly, the former of these predictions is borne
out by observations, but the latter is not (Supplementary Fig. 5). As
such, we suspected that active force fluctuations may contribute to
the observed variability.

Therefore, we next incorporated small but non-negligible
active-force fluctuations into the vertex model (Supplementary
Information). Not surprisingly, increased force fluctuations are seen
to work in concert with increased adhesion to unjam the cellular
collective, providing another path to unjamming (Supplementary
Movie 4). Cells in jammedmodel tissues fluctuate but do not change
places with immediate neighbours, whereas structural rearrange-
ments occur frequently in the unjammed tissue. Interestingly, such
rearrangements cease and the model tissue becomes jammed when
the shape index p̄ approaches the same critical value of 3.81, regard-
less of the magnitude of the active fluctuations. This finding would
explain why active HBECs still jam at p̄=3.81, and suggests that the
observed variability in p near the critical point might be attributable
to active-force fluctuations. If true, then it may be possible in the
future to estimate the properties of these active forces by compar-
ing shape fluctuations predicted by active-vertex behaviour versus
experimental observations. Another open question is the extent to
which p̄ can be used as a structural order parameter in other tissue
types; finding that p̄ is experimentally close to 3.81 is sufficient for an
interpretation of a jammed state in our HBECs, which are isotropic
in the plane. We expect that this analysis and this shape index may
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Figure 4 | With increasing maturation of HBECs in ALI culture, cell perimeter, as expressed by the non-dimensional parameter p̄, decreases
systematically towards the critical value p∗

0 (3.81) predicted to occur at jamming by the vertex model together with the theory of critical scaling
exponents. a, Over the course of maturation in ALI culture, HBECs from a representative non-asthmatic donor (Fig. 2 and Supplementary Movie 2)
approached the jammed state, and the median ratio of perimeter to the square root area of cells systematically approached the jamming threshold p∗

0. In
HBECs from a representative asthmatic donor (Fig. 2 and Supplementary Movie 3), however, the approach of p̄ to p∗

0 was considerably delayed. Over time,
and in both cases, p̄ systematically approached the jamming threshold of 3.81. Inset: p̄ for representative non-asthmatic and asthmatic donors plotted with
the same axis of ALI days to allow comparison of the jamming transition timing. Boxplot shows median and quartiles. Whiskers are maximum and
minimum data points. b, Simulated tissues with input parameters of target cell-shape index p0=4.2, corresponding to a fluidized state (top panel), and
p0=3.813, corresponding to a jammed tissue (bottom panel).

behaviour with a finite shear modulus of the cellular collective.
However, the other branch approaches a vanishing energy-barrier
height and a vanishing shear modulus, thus implying no barrier
to rearrangements and, therefore, unjammed fluid-like behaviour
of the cellular collective. The former branch is predicted to prevail
when p0<p∗

0 and the latter when p0>p∗
0 .

To test further the prediction that cells in late ALI days were
approaching a jammed state, we measured the shape index p
for cells in HBEC layers as a function of ALI day in non-
asthmatic and asthmatic HBECs (Methods); the median of p
is denoted p̄. Data indicate highly significant differences in p̄
between ALI days, between cells derived from healthy versus
asthmatic donors, and often between the observed value of p̄ and
the critical value 3.81 for jamming (Fig. 4 and Supplementary
Fig. 5). However, as ALI day progressed, the structural parameter
p̄ progressively approached p∗

0 (Fig. 4a and Supplementary Fig. 5).
Note that because p̄ is a measure of cellular structure, not
cellular dynamics or intercellular stresses, it is independent of
measurements of MSD, χ4 and cellular stresses. As such, the
behaviour in Fig. 4 independently validates the critical behaviour
as jamming is approached, and implies that cells in the jammed
state are unable to surmount the mechanical energy barriers that
increase as cell–cell adhesion decreases (Supplementary Fig. 7).
Importantly, in asthmatic compared with non-asthmatic HBECs,
the approach of p̄ to p∗

0 is appreciably delayed. Moreover, after
application ofmechanical compressive stresses similar inmagnitude
to those expected during bronchospasm, the HBECs layer becomes
unjammed and, as predicted from the vertex model, p̄ substantially
exceeds p∗

0 (Supplementary Fig. 6).
Even for cells within the same epithelial layer, an important

feature of the observed values of p for individual cells is their
striking variability (Fig. 4 and Supplementary Fig. 5), which is

much larger than measurement errors attributable to identification
of cell boundaries derived from phase-contrast images. Geometry
imposes some constraints on this variability; p, and therefore p̄,
have no upper limit, but can never be smaller than the shape
index for a circle, roughly 3.54. In the limit of vanishing active
force fluctuations, as described here, the vertex model predicts the
variability to be highly skewed19 and to increase away from the
critical point. Interestingly, the former of these predictions is borne
out by observations, but the latter is not (Supplementary Fig. 5). As
such, we suspected that active force fluctuations may contribute to
the observed variability.

Therefore, we next incorporated small but non-negligible
active-force fluctuations into the vertex model (Supplementary
Information). Not surprisingly, increased force fluctuations are seen
to work in concert with increased adhesion to unjam the cellular
collective, providing another path to unjamming (Supplementary
Movie 4). Cells in jammedmodel tissues fluctuate but do not change
places with immediate neighbours, whereas structural rearrange-
ments occur frequently in the unjammed tissue. Interestingly, such
rearrangements cease and the model tissue becomes jammed when
the shape index p̄ approaches the same critical value of 3.81, regard-
less of the magnitude of the active fluctuations. This finding would
explain why active HBECs still jam at p̄=3.81, and suggests that the
observed variability in p near the critical point might be attributable
to active-force fluctuations. If true, then it may be possible in the
future to estimate the properties of these active forces by compar-
ing shape fluctuations predicted by active-vertex behaviour versus
experimental observations. Another open question is the extent to
which p̄ can be used as a structural order parameter in other tissue
types; finding that p̄ is experimentally close to 3.81 is sufficient for an
interpretation of a jammed state in our HBECs, which are isotropic
in the plane. We expect that this analysis and this shape index may
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BUT
• Amnioserosa during dorsal closure has q 

≅4.24 increasing to 4.36 and is always rigid!

• How?



Adaptive Degrees of Freedom (DOF)

• Recall vertex model

• This energy is minimized by adjusting vertex positions as physical DOFs
• Let each cell have different preferred perimeter p0i as parameters 
• Double optimization: adaptive DOF couple physical DOF so that energy must 

be re-minimized as learning DOF adjust
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GO TO SLIDES



Maintaining Rigidity During Dorsal Closure

• Sheet of tissue one cell thick
• Covers dorsal opening between two cell sheets
• No cell rearrangements (T1 events) during entire process! AS is rigid
• Must adapt to extreme shrinking of tissue to remain rigid

D. Kiehart

Amnioserosa during 
dorsal closure of 

Drosophila melangaster

Tah/Haertter/Crawford/Kiehart/Schmidt/Liu

Rigidity under 
trying 

circumstances



What Local Rules?

• Wide distbn of cell perimeters requires 𝞂p0=0.45

• Mean cell perimeter shrinks linearly during process
• Allow preferred cell perimeter to shrink at same rate
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Fig. 1. Experiment and vertex model for dorsal closure. (A) The geometry of the experimental embryo during an early (left), middle (center), and towards the end (right) of
the DC process. Enlargements show tissue with selected cells, several of which are ingressing during closure (highlighted by triangles). (B) We mimic the DC process in our
model as a quasistatic uni-axial deformation. The geometry of the model is shown at the beginning (left), middle (center, at 45 % closure), and towards the end (right, 80 %
closure) of the process. �A(t) = A0≠A(t)

A0
is the fractional change in total AS area of the closure process, where A0 is the AS area at the onset of dorsal closure. (C)

Normal-distributed initialization of the preferred shape index of the model tissue (dashed red) leads to heterogeneity in the actual shape index after minimization (solid blue) that
is in excellent agreement with the observed experiment shape index distribution (solid black) at the beginning of dorsal closure. (D) Illustration of AS tissue regions included for
model comparison (white center), and edge regions excluded (gray regions). (E) In our model, we reduce the preferred cell perimeter of the cell at a linear rate (blue) to capture
the experimentally observed decrease of junctional lengths (black). To make the comparison, we rescale the average perimeter by its value at the onset of the process. Inset:
schematic representation of the reduction of cellular junction length and apical area during dorsal closure.

“standard” vertex model is defined as52

E =
Nÿ

i=1

1
2ka(ai ≠ a0)2 + 1

2kp(pi ≠ p0,i)2. [1]53

where N is the total number of cells, pi and ai are the actual54

cell perimeters and areas, p0,i and a0 are the preferred cell55

perimeters and area, respectively, and kp and ka represent56

the perimeter and area elastic moduli of the cells. The first57

term is the energy cost of apical area fluctuations away from58

a preferred value, and can arise from cell height fluctuations59

as well as active fluctuations in the medio-apical actin net-60

work at constant or near constant volume. Active contractility61

of the actomyosin sub-cellular cortex makes a contribution62

proportional to the square of the perimeter, while e�ective63

cell tension due to cell-cell adhesion makes a contribution64

proportional to the perimeter (24). These contributions are65

combined into the second term of Eq. 1. The e�ective line ten-66

sion, kp, can be positive or negative – cell-cell adhesion favors67

increasing cell perimeter and makes a negative contribution,68

while actomyosin contractility favors decreasing cell perimeter69

and makes a positive contribution (29, 30).70

We use time-lapse confocal microscopy to image the entire71

dorsal closure process in E-cadherin-GFP embryos. We use our72

custom machine-learning-based cell segmentation and track-73

ing algorithm to create time series of cell centroid position,74

area, perimeter, aspect ratio, and individual junction contour75

lengths for every cell in the AS (31). At the onset of closure 76

we find that cells in the AS exhibit considerable variability of 77

the cell shape index q = Èpi/
Ô

aiÍ (Fig. 1C). In our model, we 78

introduce initial polydispersity in the cell shape index through 79

a normal distribution of preferred cell perimeters p0,i. We 80

fix the preferred cell area and use it to set our units so that 81

a0 = 1 for all cells, following Ref. (32). The distribution of 82

actual shape index q after minimizing the mechanical energy 83

of our model is in excellent agreement with our experiments 84

(Fig. 1C). 85

During a substantial part of closure (Fig. 1A), the leading 86

edges of the two flanking epithelial sheets approach the dor- 87

sal mid-line at a roughly constant rate (7). To mimic these 88

dynamics, we linearly decreased the vertical height of the rect- 89

angle representing the AS (Fig. 1B) by 0.125 % of the initial 90

height at every step, enforcing force balance by minimizing 91

the mechanical energy after each deformation step. We used 92

periodic boundary conditions throughout. 93

Since closure rates varied from embryo to embryo, we mea- 94

sured progress during closure not in terms of time, but in 95

terms of fractional change of the total area of the exposed AS 96

(i.e. the dorsal opening), �A(t) = A0≠A(t)
A0

, where A0 is the 97

AS area at the onset of dorsal closure. In many prior studies 98

(33, 34), the height of the AS has been used as a descriptor 99

of closure progress. In Fig. S2 (SI D) we demonstrate a close 100

to linear relation between the height and area of the AS for a 101

large part of closure, validating our use of increasing �A(t) 102

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Tah, Haertter et al.

<
p/

p(
t=

0)
>

<
p/

p(
t=

0)
>

Li/Das/Bi PRL (2019)

Tah, Haertter, Crawford, Kiehart, Schmidt, Liu arXiv (2023) 



• Wide distbn of cell perimeters requires 𝞂p0=0.45

• Mean cell perimeter shrinks linearly during process
• Allow preferred cell perimeter to shrink at same rate
• This is local rule that allows system to maintain rigidity
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Fig. 1. Experiment and vertex model for dorsal closure. (A) The geometry of the experimental embryo during an early (left), middle (center), and towards the end (right) of
the DC process. Enlargements show tissue with selected cells, several of which are ingressing during closure (highlighted by triangles). (B) We mimic the DC process in our
model as a quasistatic uni-axial deformation. The geometry of the model is shown at the beginning (left), middle (center, at 45 % closure), and towards the end (right, 80 %
closure) of the process. �A(t) = A0≠A(t)

A0
is the fractional change in total AS area of the closure process, where A0 is the AS area at the onset of dorsal closure. (C)

Normal-distributed initialization of the preferred shape index of the model tissue (dashed red) leads to heterogeneity in the actual shape index after minimization (solid blue) that
is in excellent agreement with the observed experiment shape index distribution (solid black) at the beginning of dorsal closure. (D) Illustration of AS tissue regions included for
model comparison (white center), and edge regions excluded (gray regions). (E) In our model, we reduce the preferred cell perimeter of the cell at a linear rate (blue) to capture
the experimentally observed decrease of junctional lengths (black). To make the comparison, we rescale the average perimeter by its value at the onset of the process. Inset:
schematic representation of the reduction of cellular junction length and apical area during dorsal closure.

“standard” vertex model is defined as52

E =
Nÿ

i=1

1
2ka(ai ≠ a0)2 + 1

2kp(pi ≠ p0,i)2. [1]53

where N is the total number of cells, pi and ai are the actual54

cell perimeters and areas, p0,i and a0 are the preferred cell55

perimeters and area, respectively, and kp and ka represent56

the perimeter and area elastic moduli of the cells. The first57

term is the energy cost of apical area fluctuations away from58

a preferred value, and can arise from cell height fluctuations59

as well as active fluctuations in the medio-apical actin net-60

work at constant or near constant volume. Active contractility61

of the actomyosin sub-cellular cortex makes a contribution62

proportional to the square of the perimeter, while e�ective63

cell tension due to cell-cell adhesion makes a contribution64

proportional to the perimeter (24). These contributions are65

combined into the second term of Eq. 1. The e�ective line ten-66

sion, kp, can be positive or negative – cell-cell adhesion favors67

increasing cell perimeter and makes a negative contribution,68

while actomyosin contractility favors decreasing cell perimeter69

and makes a positive contribution (29, 30).70

We use time-lapse confocal microscopy to image the entire71

dorsal closure process in E-cadherin-GFP embryos. We use our72

custom machine-learning-based cell segmentation and track-73

ing algorithm to create time series of cell centroid position,74

area, perimeter, aspect ratio, and individual junction contour75

lengths for every cell in the AS (31). At the onset of closure 76

we find that cells in the AS exhibit considerable variability of 77

the cell shape index q = Èpi/
Ô

aiÍ (Fig. 1C). In our model, we 78

introduce initial polydispersity in the cell shape index through 79

a normal distribution of preferred cell perimeters p0,i. We 80

fix the preferred cell area and use it to set our units so that 81

a0 = 1 for all cells, following Ref. (32). The distribution of 82

actual shape index q after minimizing the mechanical energy 83

of our model is in excellent agreement with our experiments 84

(Fig. 1C). 85

During a substantial part of closure (Fig. 1A), the leading 86

edges of the two flanking epithelial sheets approach the dor- 87

sal mid-line at a roughly constant rate (7). To mimic these 88

dynamics, we linearly decreased the vertical height of the rect- 89

angle representing the AS (Fig. 1B) by 0.125 % of the initial 90

height at every step, enforcing force balance by minimizing 91

the mechanical energy after each deformation step. We used 92

periodic boundary conditions throughout. 93

Since closure rates varied from embryo to embryo, we mea- 94

sured progress during closure not in terms of time, but in 95

terms of fractional change of the total area of the exposed AS 96

(i.e. the dorsal opening), �A(t) = A0≠A(t)
A0

, where A0 is the 97

AS area at the onset of dorsal closure. In many prior studies 98

(33, 34), the height of the AS has been used as a descriptor 99

of closure progress. In Fig. S2 (SI D) we demonstrate a close 100

to linear relation between the height and area of the AS for a 101

large part of closure, validating our use of increasing �A(t) 102
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Fig. 2. Results from experiment (black solid) and model (blue dashed) during dorsal closure. (A) A comparison of average shape index q as a function of closure area
percentage, where �A(t) = A0≠A(t)

A0
). Here A0 is the AS area at the onset of dorsal closure and A(t) is the area as it shrinks during dorsal closure, so that �A(t) = 0

at onset. Error bars denote the variation among embryos (experiment) or initial configurations (model). (B) Comparison of standard deviation of the shape index from cell to cell
(‡q ) vs. �A(t). (C) Orientational order parameter (Q) of the cells as a function of �A(t). (D) Experimental initial junction recoil velocity (left y-axis) tips after performing
laser ablation of the junction, and predicted average cellular cortical tension (·J )(right y-axis) of the model, plotted vs. �A(t). (E) Average initial recoil velocity of junction tips
after laser cutting as a function of junctional straightness (ratio of the inter-vertex distance (dv ) to the junctional length (L), see inset) immediately before cutting. Junctional
recoil velocity is independent of junctional straightness (fitted with the red dashed line) until S = dv/L & 0.93. The crossover point at dv/L ¥ 0.93 marks the intersection
of the red and blue dashed lines; the latter fits the data points in the gray-shaded region, indicating that the recoil velocity increases strongly and approximately linearly with
junctional straightness in this regime. (F) Comparison of experimental junctional straightness (left y-axis) and model cellular junctional tension (right y-axis) vs. �A(t).

to mark the progression of closure. We defined the beginning103

of closure by A0 = 11, 000 µm2 for each embryo, so that we104

could average over multiple embryos. To exclude complex105

tissue boundary e�ects, we excluded cells at the AS borders106

and the regions at the canthi in the comparison between model107

and experiment (Fig. 1D).108

AS cells reduce their perimeter (inset Fig. 1E) (35) during109

the closure process by removing a portion of junctional mate-110

rial and membranes through endocytosis, while maintaining111

junctional integrity (36, 37). The average perimeter shrinks112

at a constant rate in the experiments (Fig. 1E). We therefore113

assume in our model that the preferred perimeter decreases114

linearly with �A(t) at the same rate.115

During dorsal closure, ≥ 10 % of AS cells ingress into the116

interior of the embryo (3, 38, 39) from the bulk of the AS117

(additional cells ingress at the canthi and adjacent to the118

lateral epidermis). In our model, we remove cells randomly at119

the experimentally measured rate (see details in SI) so that120

roughly 9 % of the AS cells ingress.121

For details of the model and the experiments, see SI A and122

Materials and Methods.123

2. Results124

We tracked the following quantities during DC, in model and125

experiments: mean cell shape index q =
+
pi/

Ô
ai

,
, mean126

aspect ratio – (see SI B), orientational order parameter Q =127

Ècos(2◊)Í (40) (see SI E) characterizing the degree of cellular128

alignment (where ◊ is the angle between the major axis of each129

cell and the anterior-posterior axis), standard deviation of cell130

shape index ‡q and standard deviation of the aspect ratio ‡–. 131

Note that Q = 0 for randomly aligned cells and Q = 1 for cells 132

perfectly aligned with the AP axis. 133

Note that we compare experimental data and simulations 134

without any parameter modifications, adjustments, or rescaling 135

with time. Considering the simplicity of the model, the agree- 136

ment is remarkably good, both for cell shape and cell shape 137

variability (Fig. 2A,B) as well as cellular alignment (Fig. 2C). 138

The mean and standard deviation of cell aspect ratio agree 139

equally well (SI G and Fig. S4). The error bars (shaded region) 140

in the experimental data, which represent variations between 141

di�erent embryos, are significantly larger than those in the sim- 142

ulation data, which represent only variations between initial 143

configurations based on a single distribution of cell shape in- 144

dices from the distribution measured over all embryos (Fig. 1C). 145

In the experiments there is intrinsic embryo-to-embryo vari- 146

ability in the distributions of cell shape index (see SI C and 147

Fig. S1) that we neglected in our model for simplicity. 148

In experiment and model, the mean shape index q̄ initially 149

decreases, reaches a minimum at �A ¥ 0.55 and then in- 150

creases (Fig. 2A). In the model, this behavior arises from two 151

competing e�ects. (i) Decreasing preferred mean perimeter 152

(Fig. 1E) implies a decreasing preferred mean shape index, 153

(q0 = Èp0,i/
Ô

a0,iÍ ). According to Eq. 1, this tends to drag 154

down q̄, causing the decrease up to �A ¥ 0.55. (ii) As dorsal 155

closure progresses, the shape of the tissue becomes increasingly 156

anisotropic (Fig. 1A,B), increasing q̄. This e�ect eventually 157

dominates for �A & 0.55. This competition between decreas- 158

ing q̄0 and increasing anisotropy is also reflected in the width 159

of the q-distribution, ‡q (Fig. 2B). In the model, the standard 160
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Quantitative agreement with experiments!

Adaptive Degrees of Freedom Are Changing During Dorsal Closure

Tah, Haertter, Crawford, Kiehart, Schmidt, Liu arXiv (2023) 



Biological Filament Networks That Confer Rigidity

• They are rigid in a crazy way that is common across all 3 systems
• Under-coordinated networks
• Rigidified by prestress (tensegrity)—significant fraction of their stiffness
• Constant turnover with edges removed/added

• Tension-inhibited pruning (cofilin, collagenase, filamin)
• Filaments self-assemble/disassemble

Chugh et al Nat Cell Bio (2017) Sharma et al Nat Phys (2016) Yasudasan, Averett Polym (2020)

Galvani Cunha, Liu, Crocker arXiv (2023)
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use it or lose it



These Networks Have Desired Input/Output Relations

• They must maintain rigidity in face of constantly changing stresses
• Turnover creates parameters (presence/absence of edge)
• # parameters scales with system size—lots of parameters!
• Overparameterization implies 

• There many good solutions— each network is different but maintains rigidity
• Systems tend to fall into minima with bigger basins of attraction—lots of flat 

directions in landscape that don’t change rigidity much 
• Representational drift—each network can maintain rigidity despite turnover
• solves ship of Theseus problem

GO TO SLIDE



These Networks Have Desired Input/Output Relations

• They must maintain rigidity in face of constantly changing stresses
• Turnover creates parameters (presence/absence of edge)
• # parameters scales with system size—lots of parameters!
• Overparameterization implies 

• There many good solutions— each network is different but maintains rigidity
• Systems tend to fall into minima with bigger basins of attraction—lots of flat 

directions in landscape that don’t change rigidity much 
• Representational drift—each network can maintain rigidity despite turnover
• solves ship of Theseus problem

Thinking of biological function, especially homeostasis, this 
way is potentially useful

It’s not crazy—it’s BRILLIANT

GO TO SLIDE



Low-Tension Pruning Leads to Lower Critical Coordinations

• Biologically-relevant Zc ~ 3-4 much easier to reach with low-tension pruning  
than random pruning

• Can only reach realistic ratios of prestress/stiffness with low-tension pruning
Galvani Cunha/Liu/Crocker arXiv 2023

low-tension pruning

random pruning



Low-Tension Pruning Allows Biologically-Realizable Networks

• Match Z, G for random vs.  
low-tension pruning

• Translate into real units:  𝞳~40pN/nm, 𝓁~1𝝁m
G~0.0044 𝞳/𝓁~16 kPa c.f. 20 kPa✓𝜫~0.0015 𝞳/𝓁~6 kPa.  c.f. 5 kPa✓

• Compare top tension to breaking 
force:

– experimental value for actin ~600pN
– low-tension: 400pN✓
– random: 900pN×  


