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Figure 9.11. Illustration of director and in-
duced flow fields around +1/2 and −1/2

defects in active nematics in a circular ge-
ometry, as determined by Giomi et al., 2014.
The red lines show the director field, while
the white arrows show the flow direction in
the vicinity of the defect. The intensity of the
blue background varies in proportion to the
magnitude of the flow velocity. The asym-
metric flow field induced by the +1/2 defect
leads to self-propulsion of the defect. Image
courtesy of Luca Giomi.21

While the term ‘active turbulence‘ is commonly used, it is impor-
tant to realize that the turbulence we studied for Newtonian fluids
is a distinct phenomenon that occurs at high Reynolds numbers
and involves scaling behavior due to energy transfer across decades
of length scales, whereas the chaotic flows considered here occur
at low Reynolds numbers.

9.5.3 Self-propulsion of topological defects

We have already encountered several examples of the fact that
+1/2 topological defects in active nematics play an important role
as drivers of the dynamics.22 Because of the active flows generated
by the motors, +1/2 and −1/2 defects exhibit very distinct behav-
iors: +1/2 defects inherently self-propel along their symmetry axis
with some characteristic speed, while −1/2 defects are essentially
stationary—they move only under the influence of external forces
or gradients like those resulting from other nearby defects. This
relation between defect motility and topological charge can be un-
derstood through symmetry arguments. In figure 9.11, the active
flows around ±1/2 defects are plotted in white; a +1/2 defect has
a well-defined polarity, leading to imbalanced active flows which
propel the defect along its polarity axis. On the other hand, a −1/2

defect has no polarity. The active flows are balanced and there is
no self-propulsion.

This symmetry argument can be backed up by a hydrodynamic
analysis of active flows around isolated topological defects (subject
of problem 9.7).23 The flow v⃗0 at the defect core is what propels a
defect. For ±1/2 defects, the characteristic propulsion velocity is

v⃗0 =

{
αR
4η x̂ s=+1/2,

0 s=−1/2.
(9.30)

The expression confirms that active stresses propel +1/2 defects
along their symmetry axes, with the direction of motion set by the
sign of α—active nematic media in which parallel filaments tend to
contract (shorten) are called contractile and have α> 0. When the
filaments tend to extend, the medium is called extensile and α< 0.
Active flows do not propel −1/2 defects. Their motion is caused
solely by elastic stresses coming from defect- or boundary-induced
director distortions in the medium.

9.6 Active solids

We now consider the case of a solid composed of active compo-
nents. Once again, we have to reevaluate our passive continuum
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Figure 9.12. Top: quasi-one-dimensional
solids made of oil droplets in water in a
microfluidic channel in the experiments by
Beatus et al., 2006. The droplets are gener-
ated on the left (not in view) and advected
by the water to the right. Because of the un-
derlying water flow, the force exerted by a
droplet on its left-hand neighbor is differ-
ent from the force on its right-hand one—
interactions are not reciprocal. This leads to
asymmetric wave propagation with disper-
sion ω(−q)≠ω(q) and to complex instabili-
ties (two bottom images). Image courtesy of
Tsevi Beatus and Roy Bar-Ziv. Middle: me-
chanical metamaterial made of robotic units.
Programmable sensors and motors are used
to implement nonreciprocal couplings be-
tween neighboring units; see Ghatak et al.,
2020. This leads to unidirectional (nonre-
ciprocal) wave propagation. Image courtesy
of Corentin Coulais.24 Bottom: active solid
composed of polar active agents embedded
in an elastic lattice in experiments by Bacon-
nier et al., 2022. Selective and collective ac-
tuation (limit cycle behavior) emerge in this
system from the interplay between activity
and elasticity. Image courtesy of Paul Bacon-
nier and Olivier Dauchot.

model now that conservation of energy, linear momentum, and an-
gular momentum constraints are lifted. This modifies the relation
between continuum force density fi(r⃗) and deformations param-
eterized by the displacement field ui(r⃗), where the subscript i
labels spatial directions. A gradient expansion of the continuum
force density then takes the general form

fi = f0
i +Aikuk +Bijk∂juk +Kijkl∂j∂luk + · · ·, (9.31)

where f0 is a constant force independent of deformation, Kijkl is
the stiffness tensor containing the elastic moduli, and Aij and Bijk

are tensor coefficients that stipulate respectively the dependence
of the force on particle displacements (e.g., pinning to a substrate)
and displacement gradients. The latter can arise from an effective
violation of Newton’s third law (as discussed in the next section).
As a result, the familiar second derivative term due to elasticity is
no longer the leading contribution. In addition, we shall see that
the usual symmetries of the stiffness tensor are no longer valid
when energy is not conserved. These new terms are responsible
for the phenomena that we shall encounter, and they range from
transverse and nonreciprocal responses to self-sustained energy
cycles and active waves.

9.6.1 Moving and self-propelled solids

In the top and middle of figure 9.12, we show two active solids
in which energy injection at the microscopic scale modifies the
elastic response. The top panel shows a quasi-one-dimensional
solid made of oil droplets generated on the left of a microfluidic
channel filled with water, and pushed to the right by the water flow.
The asymmetry of the driving field leads to nonreciprocal forces
between the droplets: the force exerted by a droplet on its left-hand
neighbor is different from the force on its right-hand neighbor. This
is an effective violation of Newton’s third law of action and reaction
as well as a breaking of mirror symmetry (x → −x). Similar non-
reciprocal interactions can be engineered in robotic metamaterials
such as the one shown in the middle panel, where they arise from
motors controlled by sensors.

As a minimal model for these systems, we consider a one-dimen-
sional solid described by a scalar deformation field u(t, x) whose
dynamics is described by

Note that we can think of (9.32) as obtained
from (2.25) in the overdamped limit.

γ∂tu= β∂xu+ κ∂2
xu. (9.32)

Here, κ is the shear modulus, β is a parameter absent from stan-
dard elasticity that accounts for nonreciprocal forces that break
mirror symmetry, and γ plays the role of a friction coefficient. For
simplicity, we set γ= 1. By performing a Fourier transform, we
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250 μm

Figure 9.13. Starfish embryos which self-
organize into living chiral crystals perform
a global collective rotation. From Tan et al.,
2022. The image shows a magnified snap-
shot of the lattice showing topological de-
fects called disclinations. A fivefold defect in
the lattice is marked in purple, and a sev-
enfold defect in orange. The yellow arrows
indicate the spinning direction of the em-
bryos. Image courtesy of Nikta Fakhri. Mea-
surements of odd-elastic moduli for this sys-
tem have been reported by Tan et al., 2022
by comparing experimental measurements
of the strain field around defects with theo-
retical predictions by Braverman et al., 2021.

obtain the following dispersion relation

σ− iω=−κq2 + iβq, (9.33)

where σ is the growth rate of small disturbances and ω is their
vibration frequency. We see that ω(q) =−βq=−ω(−q). This dis-
persion relation can be contrasted to that of normal elastic waves
in an underdamped solid (ruled by the equation ∂2

t u= κ∂2
xu) for

which ω(q) =
√
κ|q|=ω(−q) (see section 2.6).

Continuing with figure 9.12, bottom panel shows another type
of active solid, composed of moving objects. Here, however, self-
propelled particles (similar to the ones we already encountered
in section 9.2) occupy nodes of a two-dimensional lattice made of
elastic medium. For describing this system at the continuum level,
it is therefore natural to combine an order parameter describing
deformations ui(r⃗, t) (as in elasticity; see chapter 2) with an order
parameter describing the polarization p⃗(r⃗, t) of the particles (as in
flocking; see section 9.2). This hydrodynamic theory allows us to
predict the onset of the collective rotational actuation arising from
the combination of self-propulsion and pinning of the system at
the edge.

9.6.2 Odd elasticity

Figure 9.13 illustrates an in vitro biological realization of chiral
crystals of rotating embryos in which anomalous mechanical be-
havior has been reported and attributed to an active generalization
of elasticity known as odd elasticity. Nonliving matter examples
of active robotic metamaterials are shown in figure 9.14. Although
we will not study these systems in detail, our analysis of odd elas-
ticity applies to them. Elasticity usually assumes conservation of
energy. Odd elasticity is a generalization of traditional elasticity
with this assumption lifted—forces in active solids are typically
nonconservative, and hence cannot be derived from a potential.

Let us start with the general constitutive relation (compare the
discussion following equation (2.3))

σij = σ
pre
ij +Kijkl ekl. (9.34)

Here, σij is the stress tensor, ekl ≡ ∂lvk is the (unsymmetrized)
deformation gradient tensor, and σ

pre
ij are stresses present even

when the solid is undeformed (they are called prestresses). The
tensor Kijkl contains elastic moduli. If all forces are conservative,
then the stress tensor can be written as the derivative

σij =
∂F
∂eij

(9.35)
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Figure 9.14. Active solids with odd elasticity are relevant to robotic metamaterials, as the energy cycles can power robotic functionalities
such as propulsion (see also chapter 10). The figure shows three examples. (a) A robotic metamaterial with active hinges; each one of
the elements is a minimal robot that is able to sense the behavior of its neighbors and act consequently. This type of system exhibits
anomalous impact response: a bullet hitting the odd-elastic wall is deflected at an angle controlled by the sign of the odd modulus
Ko. From Brandenbourger et al., 2021. (b) Four successive snapshots illustrating locomotion of a chiral robotic element with nonlinear
work cycle. The elements consist of chiral elements connected with passive bands (blue) providing bending stiffness, and with sensors
providing feedback. From Brandenbourger et al., 2021. Images a and b courtesy of Martin Brandenbourger. (c) A freestanding active
metabeam with piezoelectric elements and electronic feed-forward control that displays odd elasticity. This results in a direction-
dependent bending modulus and unidirectional wave amplification. Adapted from Y. Chen et al., 2021.

of some strain energy density

F =
1

2
Cijkleijekl, (9.36)

so that σij =
1
2

(
Cijkl +Cklij

)
ekl and therefore

Kijkl =Kklij. (9.37) The symmetry Kijkl =Kklij of the stiffness
tensor is known as Maxwell-Betti reciprocity.

Odd elasticity emerges from nonconservative forces which can-
not be represented as a derivative of an energy. Now, in general
the elastic stiffness tensor can be decomposed into even and odd
parts,

We refer you to Fruchart et al., 2023 for an in-
troduction to odd elasticity and to Scheibner
et al., 2020 for a more detailed discussion.

Kijkl =Ke
ijkl +Ko

ijkl, (9.38)

with
Ke

ijkl =Ke
klij and Ko

ijkl =−Ko
klij. (9.39)

The tensor Ke
ijkl contains the usual (even) moduli arising from con-

servative forces, while Ko
ijkl holds odd-elastic moduli arising from

nonconservative forces. Odd elasticity results from the influence
of the additional elastic moduli contained in Ko

ijkl.

We will focus on odd elasticity in the special case of a two-dimen-
sional solid. In such a material, the modulus tensor Kijkl has 16
independent components while ekl has four components. Though
ekl is a rank 2 tensor, we can represent it as a column vector eα using
as a

The four real basis matrices are given by

τ0 =
(

1 0
0 1

)
, τ1 =

(
0 1
−1 0

)
,

τ2 =
(

1 0
0 −1

)
, τ3 =

(
0 1
1 0

)
.

(9.40)

When viewed as vectors in the space of 2×
2 matrices, these matrices are normed and
orthogonal to each other. One can show (see
problem 9.8) that they obey the identity

1

2

∑

ij

(τα)ij(τβ)ij = δαβ . (9.41)

Any 2× 2 matrix X can uniquely be writ-
ten as X = xατα. In this section, the compo-
nents of quantities with respect to this basis
are indicated with Greek indices, while the
spatial components of matrices (tensors) are
indicated with Roman indices.

basis the matrices given in (9.40). These correspond to the four
modes of deformation, namely dilation, rotation, and two different
shears. They form a complete basis, which allows us to write any
matrix eij as a column vector eα such that eij =

∑
α eα (τα)ij .

We can similarly write the stress components as a column vec-
tor σij = σγ (τγ)ij , where the basis matrices now correspond to
pressure, torque, and two shear stresses. The elastic moduli tensor



422 Chapter 9

Table 9.1. Irreducible components of rank 2 tensors in two dimensions. A pure shear (rate) corresponds to a (rate of) change in shape
without a change in volume or orientation. Shear 1 describes a horizontal elongation and vertical compression while shear 2 describes
elongation along the 45◦ direction and compression along the −45◦ direction. They are mathematically orthogonal. We note that
ė0 =∇ · v and ė1 = ω is vorticity. The stresses are the conjugate forces to these deformations, and they have similar interpretations. In
particular, σ0 includes pressure and the antisymmetric stress is σ1. Adapted from Fruchart et al., 2023.

deformation deformation rate stress geometric meaning

e0 = = ∂xux + ∂yuy ė0 = = ∂xvx + ∂yvy σ0 = = [σxx + σyy ]/2 isotropic area change

e1 = = ∂xuy − ∂yux ė1 = = ∂xvy − ∂yvx σ1 = = [σyx− σxy ]/2 rotation

e2 = = ∂xux− ∂yuy ė2 = = ∂xvx−∂yvy σ2 = = [σxx− σyy ]/2 pure shear 1

e3 = = ∂xuy + ∂yux ė3 = = ∂xvy + ∂yvx σ3 = = [σxy + σyx]/2 pure shear 2

becomes a matrix in this basis, allowing the constitutive relation
(9.34) to be written compactly as (see problem 9.8 for the interme-
diate steps and more details)

σα=Kαβeβ , (9.42)

where

Kαβ =
1

2
(τα)ij Kijkl (τβ)kl. (9.43)

Using the graphical notation summarized in table 9.1, the column
vectors for stress and strain read

σα=

⎛

⎜⎜⎝

⎞

⎟⎟⎠ and eβ =

⎛

⎜⎜⎝

⎞

⎟⎟⎠, (9.44)

where similar to the components of σα the components of eβ rep-
resent dilation, rotation, and the two shears (see problem 9.8).

In addition to the work on spinning embryos,
see Bililign et al., 2021 for a study of spin-
ning colloids, where experimental behaviors
compatible with odd elasticity are reported.
See also Shankar and Mahadevan, 2022 and
Zahalak, 1996 for a discussion of anisotropic
odd elasticity in the context of muscles.

Assuming that the material under consideration is invariant under
rotations, the most general matrix Kαβ then reads

(9.45)
In this equation, the prestresses include a hydrostatic pressure
ppre and a hydrostatic torque τpre present even when the system
is undeformed. The hydrostatic torque is therefore a zeroth order
effect that drives a large part of the phenomenology of systems with
broken mirror symmetry.

We refer you to Poncet and Bartolo, 2022 for a
systematic treatment of active solids with ef-
fective violations of Newton’s third law and
to Baek et al., 2018; Chajwa et al., 2020; Ivlev
et al., 2015; Meredith et al., 2020; Saha et al.,
2014; and Soto and Golestanian, 2014 for ex-
amples of systems in which such forces are
generated.

The coefficients B and µ are the familiar
compression and shear moduli from passive elasticity.25 One often
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Figure 9.15. Upper panel right: schematic il-
lustration of two disks of diameter d, sep-
arated by a distance r and spinning in a
fluid at angular speed Ω. They experience
non-central hydrodynamic forces (i.e., forces
that have a component fφ transverse to the
vector joining the centers of the particles).
Upper panel left: A microscopic odd-elastic
spring. In addition to the standard com-
pression/extension force, the spring exerts
a force fφ = koδr transverse to its radial dis-
placement δr. Bottom right of upper panel:
an odd-elastic energy cycle. The spring is
stretched through the path shown and the
work is proportional to the area of the path
times ko. Lower panel: schematic phase dia-
gram of the odd-elastic media as a function
of the odd moduli A and Ko normalized by
the bulk modulus B. The red lines indicate
the transition between an overdamped solid
without wave propagation and active waves
(it coincides with a line of exceptional points;
see text). The dashed line represents a tra-
jectory of increasing odd microscopic spring
constant ko. Note that the medium becomes
unstable in the yellow areas. Adapted from
Scheibner et al., 2020.

assumes that solid-body rotations do not induce stresses, implying
Λ = Γ= 0. This assumption can, however, be violated, for instance,
when the solid is on a substrate.

The remaining terms A and Ko are odd-elastic moduli. They are
allowed when the symmetry constraint Kijkl =Kklij (equivalently,
Kαβ =Kβα) is lifted. A represents a coupling of dilation to torques
while Ko describes a shear stress response which is rotated with
respect to an applied strain.

As a result of these new moduli, the work done on the system is
no longer a state function but in fact depends on the path taken in
strain space. If odd elasticity is present, work can be extracted or
lost from the system by performing quasi-static strain cycles. Elastic
forces are given by fi = ∂jσij , so the power per unit area exerted
by elastic forces when the solid is deformed is fiu̇i. Consider now
a cyclic deformation ui(t) = ui(t+ T ) imposed from the outside.
The work done over one cycle of deformation is then

∆W =
ˆ

dtfiu̇i =−
˛

deijσij =−
˛

deijKo
ijklekl ≠ 0. (9.46)

To see that this quantity is in general not zero, let us take the
dilation-torque coupling A= 0. The work done over some cyclic
path in strain space is then

∆W =
˛

deijσij =
˛

deβσβ =
ˆ

d2S ϵαβ
∂σβ
∂eα

, (9.47)

where in the rightmost term the integral is over the area enclosed by
the path in strain space and ϵ is the two-dimensional Levi-Civita
tensor (see equation (2.124)). Only the odd components Kαβ =
Koϵαβ will remain, leading to

∆W =
ˆ

d2S ϵαβϵαβKo = 2Ko × Area. (9.48)

Thus, the work extracted from an odd-elastic engine is proportional
to the odd-elastic modulus and the area of the cycle in strain space.
We can visualize this using an example of a microscopic model
with odd-elastic bonds, depicted in figure 9.15. The force law of
the linear spring with odd elasticity is

f⃗ =−(kr̂+ koφ̂)δr, (9.49)

where we use polar coordinates, so that r̂ is the unit vector pointing
along the spring, φ̂ the unit vector orthogonal to r̂, and δr the
spring extension, while ko is the odd and k the regular microscopic
spring constant.

In problem 9.9, we calculate the net work done over the cycle
shown in figure 9.15 directly, and we confirm that it is proportional
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to both ko and the area enclosed by the path. This ability to extract
work enables self-sustained waves powered by odd-elastic energy
cycles in overdamped media that contain the noncentral springs.
An experimentally viable way of generating noncentral interaction
forces is by having colloidal particles, swimming algae, or embryos
that constantly spin in a fluid so that they experience friction-like
transverse forces.For a study of the hydrodynamics of swim-

ming algae we refer you to Drescher et al.,
2009.

In fact, it is possible to obtain explicit formulas
for the odd moduli by coarse-graining these microscopic forces.26

9.6.3 Odd elastodynamics

We now discuss the effect of odd elasticity on dynamics. As we shall
see, odd elasticity can lead to active waves in overdamped systems
and even to instabilities.An example of transverse hydrodynamic in-

teraction is the so-called lubrication force
fφ∝Ω log

(
r−d

d

)
between two disks whose

diameter is equal to d, at distance r from each
other, spinning with fixed angular speed Ω

(Happel and H. Brenner, 1982). Note, how-
ever, that these hydrodynamic forces are not
pairwise additive.

For overdamped systems, the dynamics
of the displacement field can be described by taking

γ∂tui = fi = ∂jσij , (9.50)

where γ is a friction coefficient. Using the constitutive relation
in equation (9.45) along with table 9.1, we find that the odd-
elastodynamics equations explicitly read

γ∂tu⃗=B
→
∇(
→
∇ ·u⃗) +µ∆u⃗+Koϵ · ∆u⃗ − Aϵ ·

→
∇(
→
∇ ·u⃗). (9.51)

PerformingAs in (9.47), ϵ is the Levi-Civita tensor. a Fourier transform of equation (9.51), we find

iγω

(
u∥
u⊥

)
= q2

(
B +µ Ko

−Ko +A µ

)(
u∥
u⊥

)
, (9.52)

In rotating Rayleigh-Bénard convection, the
fluid is put under rotation, leading to Cori-
olis forces (see chapter 8). The relaxation of
the pattern is then described by an equation
of motion formally identical to that of odd
elastodynamics, even if the interpretation in
terms of stress does not carry through; see
Fruchart et al., 2023 and references therein.

in which we have defined the longitudinal u∥= q̂ · u and trans-
verse u⃗⊥= u⃗ − u∥q̂ components of the displacement. In an over-
damped system, passive elastodynamics (A=Ko = 0) is diffu-
sive: ω=−iq2 B+µ

γ and ω=−iq2 µ
γ (with our conventions, a neg-

ative imaginary frequency implies that a wave is attenuated). In
the case of an overdamped odd-elastic solid with A, Ko

≠ 0, we
obtain

ω=−iq2 B/2+µ ±
√
(B/2)2 − Ko(Ko − A)

γ
. (9.53)

When Ko(Ko − A)> (B/2)2, the frequency has a real part: there
are oscillations even though the system is overdamped.

Experimental observations of such elastic
waves have been reported in the systems
shown in figure 9.14.

The
transition between exponential relaxation and damped oscillations,
marked by an exceptional point of the matrix in equation (9.52),
is the point where the matrix is not diagonalizable (red lines in
figure 9.15), in a similar way as in a damped harmonic oscilla-
tor. The system can even become unstable (yellow region in figure
9.15) when the imaginary part of the frequency becomes positive.
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200 μm

20 μm

Figure 9.16. Layers of a chiral active fluid
consisting of spinning colloidal magnets.
The particles are made to spin in a magenetic
field. Upper panel: various snapshots of lay-
ers of varying thickness. Below a thickness
of 32 µm the layers exhibit a hydrodynamic
instability. Lower panel: a chiral fluid strip
approaching instability. Experiments on this
instability allow us to test minimal hydro-
dynamic models of chiral fluids in detail.
Adapted from Soni et al., 2019.

In this case, linear elasticity cannot accurately describe the system
and nonlinearities have to be considered.

9.7 Chiral active fluids

Consider an active granular fluid whose particles are constantly
spinning in a plane. In a passive granular system, the particles lose
energy in collisions through friction, while in an active one, the
particles can gain energy when their rotation speed is reset after
a collision by microscopic torques or external fields. Active matter
whose particles are all spinning in the same direction is known as
a chiral active fluid. We already showed a couple of examples of
chiral active fluids in figure 9.14 (collections of robots) and figure
9.13 (spinning embryos), but chiral active behavior has also been
observed in magnetic colloids; see figure 9.16. In all these systems
there is a central force that models a soft repulsion between par-
ticles and a noncentral force that captures interparticle friction. In
addition to this interaction force, each particle experiences an active
torque which tends to maintain a constant angular velocity. This
active torque imparts a fixed chirality to the system. The macro-
scopic effects of these microscopic ingredients can be captured by
the hydrodynamic approach summarized below.

9.7.1 Hydrodynamics of self-spinning particles

The Navier-Stokes equations that we introduced in chapter 1 de-
scribe the conservation of mass and linear momentum (and possi-
bly of energy). In order to describe a collection of spinning objects,
one has to also consider the angular momentum of the particles
at the continuum level. For identical particles, this can be done by
introducing the angular velocity field Ω⃗(r⃗, t) as the coarse-grained
version of the spinning speed of individual particles, very much as
the velocity field v⃗(r⃗, t) is a coarse-grained version of the transla-
tion speeds of individual particles.27

Even in passive fluids, it is sometimes nec-
essary to add a continuum equation to de-
scribe the conservation of angular momen-
tum. This equation is in principle required
as soon as the particles are not point-like,
and even more so if they are not spherical.
However, it is often the case that the angu-
lar velocity field relaxes more quickly than
other fields, and it can therefore be ignored
or eliminated.

For concreteness, we consider a two-dimensional fluid of spinners,
where the angular velocity field is a pseudoscalar Ω(r⃗, t). The
resulting continuum equations read

(∂t + v⃗ · ∇⃗)ρ=−ρ∇⃗ · v⃗,

ρ(∂t + v⃗ · ∇⃗)v⃗ = ∇⃗ ·σ+ f⃗vol,

I(∂t + v⃗ · ∇⃗)Ω = τ + ϵijσij − ΓΩΩ + ηΩ∇2
Ω,

(9.54)

where ω= (∇⃗ × v⃗)z is the vorticity and f⃗vol are body forces, and
τ are body torques. Besides, ΓΩ is a phenomenological damping
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term describing the damping of the spinning, while Γ describes
the coupling between spinning and vorticity, and ηΩ is a rotational
viscosity. Finally, the stress is

σij = ϵij
Γ

2
(Ω −ω)− P δij + ηijkl∂lvk +

IΩ

2

(
∂iϵjlvl + ϵil∂lvj

)
.

(9.55)
While these equations have several moving parts, note that the an-
gular velocity field and the velocity field are coupled by the stress
σij . When the driving performed by external torques τ is strong
enough, a steady state with almost uniform and almost constant
angular velocity Ω ≈ τ/ΓΩ can be achieved. In this regime, the an-
gular velocity field can be integrated out to obtain an effective hy-
drodynamic equation for the velocity and the density fields. At this
level, the main effect of a maintained rotation of the particles is the
appearance of additional terms in the hydrodynamic response—in
the viscosity tensor—as we discuss in the next section.

Outside of the regime, where Ω is approximately uniform and con-
stant, more complex behaviors can occur, where the full continuum
equations (9.54) are needed.

9.7.2 Odd viscosity

TheSee Fruchart et al., 2023 for an introduction
to odd viscosity.

evolution of the velocity field v⃗ of the chiral active fluid is des-
cribed by the Navier-Stokes equation for an incompressible fluid,

ρ(∂t + v⃗ · ∇⃗)v⃗ = ∇⃗ ·σ+ f⃗vol, (9.56)

where the term on the left is the material derivative (1.1), σ is the
stress tensor, fvol are external body forces, and ρ=nm is the mass
density (n is the number density), which is taken as constant (see
section 1.9). The stress tensor σ in equation (9.56) is composed of a
reversible part σss (the pressure for ordinary fluids; see section 1.5),
and a dissipative or viscous part σvis that describes surface forces
between fluid layers that arise in response to velocity gradients.

The viscous stress is given by σvis
ij = ηijkl ∂lvk , where ηijkl is the

viscosity tensor of the fluid.Just as in section 9.6.2 on odd elasticity, it is
convenient to express σvis

ij and the unsym-
metrized shear rate ėkl≡ ∂lvk as column
vectors σvis

α and ėβ using as basis the matri-
ces introduced in equation (9.40). Then ηijkl

can be represented as a matrix ηαβ .

In the same way as in section 9.6.2, we
decompose the viscosity tensor

ηijkℓ= ηe
ijkℓ+ ηo

ijkℓ (9.57)

into symmetric (even)ηe
ijkℓ= ηe

kℓij and antisymmetric (odd)ηo
ijkℓ =

−ηo
kℓij parts. Odd viscosities are contained in ηo

ijkℓ, i.e., they are
those that violate the symmetryηijkℓ= ηkℓij (or, equivalently,ηαβ =
ηβα; see the margin note next to (9.57)).

Usual viscosities are dissipative. The rate of loss of mechanical en-
ergy by viscous dissipation per unit volume is28
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ẇ = σvis
ij ∂jvi = ηijkℓ(∂jvi)(∂ℓvk) = ηe

ijkℓ(∂jvi)(∂ℓvk). (9.58)

Therefore, only the symmetric part of the viscosity tensor con-
tributes to viscous dissipation. Odd viscosities correspond to the
non-dissipative part of the viscosity tensor. In the context of non-equilibrium thermody-

namics, the symmetry ηijkℓ = ηkℓij of the
viscosity tensor is known as Onsager reci-
procity; see section 1.5.

As an example, let us consider the constitutive relation for rotation
invariant two-dimensional fluids,

(9.59)

See table 9.1 for the deformation rates and stresses σα. The vis-
cosity matrix includes the standard bulk ζ and shear η viscosity
coefficients, and several new ones which are allowed due to broken
time-reversal and parity (i.e., mirror) symmetry. The odd viscosity ηo

couples shear strains and stresses, and additional parity-violating
viscosities ηA and ηB couple compression and rotation.

Odd viscosity has been measured in a num-
ber of systems, including chiral fluids com-
posed of self-spinning colloids (Soni et al.,
2019)—see figure 9.16—as well as magne-
tized polyatomic gases—see Beenakker and
McCourt, 1970 and references therein (table
2)—and electrons in the presence of an ex-
ternal magnetic field—see Berdyugin et al.,
2019.

Using the constitutive relation in equation (9.59) along with table
9.1, we find that the full Navier-Stokes equation reads

ρdtv⃗ = ∇⃗ ·σh + ζ ∇⃗(∇⃗ · v⃗) + η ∆v⃗ + ηo ϵ · ∆v⃗

− ηA ϵ · ∇⃗(∇⃗ · v⃗) + ηB ∇⃗(∇⃗ × v⃗)− ηR ϵ · ∇⃗(∇⃗ × v⃗),
(9.60)

in which σh is the hydrostatic stress tensor (∇⃗ × v⃗)z = ϵij∂ivj in
two dimensions, and dt denotes the material derivative (1.2).

The appearance of odd viscosity can be understood from the more
general hydrodynamics discussed in section 9.7.1 by focusing on
the last term in the stress equation (9.55). Assuming incompress-
ibility (∇⃗ · v⃗ = 0) and using the identity ∇⃗ω= ϵ · ∇2v⃗ for incom-
pressible two-dimensional fluids, one can show that

∂jσij =
IΩ

2
∂j

(
ϵjl∂ivl + ϵil∂lvj

)
+ · · ·=

IΩ

2
ϵij∇2vj + · · · .

(9.61)
Comparison between equations (9.60) and (9.61) shows that this
system exhibits odd viscosity, with

ηo =
IΩ

2
. (9.62)

The

The relation between odd viscosity and mi-
croscopic violations of mirror symmetry can
be quantified in certain microscopic models.
For each collision, one computes the twist-
ing angle θ≡ angle(v⃗, ∆v⃗) between the ini-
tial velocity v⃗ and the change in velocity dur-
ing the collision ∆v⃗. The ratio ηo/η is then
proportional to ⟨θ⟩, the average twisting over
the ensemble of all particles (M. Han et al.,
2021).odd viscosity is a hydrodynamic manifestation of the chiral

collisions in a microscopic model. When two self-spinning particles
collide, their outgoing velocities will be rotated compared to the
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Figure 9.17. Nonreciprocal interactions be-
tween two species, R (Red) and B (Blue),
induce a phase transition from static align-
ment to a chiral motion that spontaneously
breaks parity. Top: nonreciprocal synchro-
nization. Angular variables with nonrecip-
rocal interactions drawn as robots sponta-
neously rotate either clockwise or counter-
clockwise, despite no average natural fre-
quency (ωm = 0 in equation (9.63)). Middle
row: non-reciprocal flocking. Self-propelled
particles run in circles despite the absence of
external torques. Bottom: space-time plots of
an example of pattern formation with non-
reciprocal interaction. A one-dimensional
stationary pattern starts traveling, either to
the left or to the right as in the chiral case,
when nonreciprocal interactions are turned
on. The figure represents an experimental
observation of a moving oil-air interface (so-
called viscous fingering). Adapted and re-
produced with permission from Fruchart et
al., 2021.29

incoming ones in a manner set by their spinning direction. Odd
viscosity is not related to energy dissipation and, unlike standard
(even) viscosity, cannot be derived from an entropy production rate
equation, very much as an odd-elastic coefficient cannot be derived
from variations of an elastic potential energy.

Hydrodynamic theories of active fluids capture several striking
phenomena observed in experiments, including the instability
shown in figure 9.16.

9.8 Nonreciprocal phase transitions

Non-equilibrium systems are typically modeled by stochastic pro-
cesses that violate detailed balance. As a result, the steady states of
these systems are characterized by nonvanishing probability cur-
rents between microstates, and they exhibit entropy production. A
simple example is a system composed of three states with cyclic
clockwise transition rates. The steady state is reached when the
probabilities of being in each state are equal. This system is not at
equilibrium even if it possesses a Boltzmann distribution with con-
stant energy because it does not obey detailed balance. Similarly,
physical systems with absorbing states—states out of which tran-
sitions have zero probability—clearly violate detailed balance.30

Flocking states are a non-equilibrium example of such behavior.
Nonreciprocal phase transitions describe the transitions from and
to these non-equilibrium steady states.

When we discussed the flocking transition in terms of the Toner-Tu
theory of section 9.2.3, we associated the transition with a pitch-
fork bifurcation arising from minimizing a quartic potential (see
section 8.2.1 for a brief summary of the pitchfork bifurcation). The
analysis of chapter 8 showed that bifurcations to time-dependent
states (such as traveling waves) are typically non-potential. We now
consider an example of this in active matter, in which nonrecipro-
cal interactions lead to time-dependent phases that spontaneously
break parity (mirror symmetry).31

9.8.1 Chiral phases in nonreciprocal active matter

We can illustrate the main features of nonreciprocal active matter
with the following model:

∂tθm =ωm +
∑

n

Jmn sin(θn − θm) + ηm(t), (9.63)

which can be thought of as a simple extension of the Vicsek model.
When the agents are at fixed positions, this model is known as the
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Kuramoto model, which was introduced to study the synchroniza-
tion of coupled oscillators with phase angles θm. It qualitatively
describes the collective behavior of clocks ticking, neurons firing,
or fireflies flashing.32 With strong enough coupling, a synchro-
nized state emerges where all oscillators evolve in phase with the
same frequency.

In our case, the variable θm describe the angle in the plane of the
velocities with which the agents move, so that the positions r⃗m in
the plane are given by

∂tr⃗m = v0

(
cos θm

sin θm

)
. (9.64)

An agent m tends to align with an agent n when Jmn > 0, or to
antialign when Jmn < 0. The standard Vicsek flocking model cor-
responds to Jmn > 0. In the absence of interactions and noise the
agents all rotate independently with their own frequency ωm. For
positive Jmn, there is a critical coupling at which a transition takes
place, from incoherent rotations or motion to synchronized rota-
tion (when the positions are fixed whileωm ≠ 0) or to flocking when
the particles move according to equation (9.64).

Now consider two copies of the Vicsek model describing two
species, labeled 1 and 2. Without interaction between the two
species, each has its own order parameter (average velocity) de-
scribing the flocking. The behavior of the model becomes espe-
cially interesting, however, when there are interactions between the
species. When the interactions are reciprocal, J12 = J21, we find, in
addition to a disordered phase, two static phases where v⃗1 and v⃗2

are (anti)aligned, in analogy with (anti)ferromagnetism. When the
interactions are nonreciprocal, J12 ≠ J21, a time-dependent chiral
phase with no equilibrium analogue emerges between the static
phases. In this chiral phase, parity is spontaneously broken:

Interestingly, Rayleigh-Bénard convection in
rotating cells is described by a nonrecipro-
cal model, in which the nonreciprocal effects
affect the nonlinear terms describing mode
interactions. See the note in the margin of
equation (8.54).

v⃗1

and v⃗2 (the two species are represented in red and blue in fig-
ure 9.17) rotate with a fixed relative angle ∆φ, either clockwise or
counterclockwise, at a constant rotation rate Ωss ≡ ∂tφ̄, where φ̄
is the angle between (v⃗1 + v⃗2)/2 and a fixed direction. The chiral
phase is caused by the frustration experienced by agents with op-
posite goals: species 1 (red) wants to align with species 2 (blue) but
not vice versa. This dynamical frustration results in a ‘chase and
run away’ motion of the order parameters v⃗1 and v⃗2.

Figure 9.17 illustrates the aligned-to-chiral transition in flocking as
well as in synchronization and pattern formation.33 The bottom
row of the figure illustrates a strong link with the formation of pat-
terns as discussed in chapter 8: in pattern-forming non-equilibrium
systems, nonreciprocal interactions can similarly lead to a transi-
tion from stationary to moving patterns, and the methods of the
theory of pattern formation and dynamical systems can be used to
understand general features of the phases and phase transitions.



430 Chapter 9

0

1

0

0

100

tim
e

fie
ld

chiral

0
0

0

100

tim
e

space

fie
ld

antialigned

0

0

100

tim
e

fie
ld

aligned

Figure 9.18. Space-time density plots of the
field u2(x, t) shown with snapshots of the
fields u1(x, t) and u2(x, t) at the top. In the
chiral phase with a finite phase difference
∆φ, the patterns move at constant velocity, ei-
ther to the left or to the right (spontaneously
breaking parity). In the antialigned case
∆φ= π, the patterns are stationary again.
Image courtesy of Michel Fruchart.

To illustrate the cross-fertilization of the two fields, we will show
below how such transitions can be studied with the methods de-
veloped in chapter 8.

9.8.2 Nonreciprocal pattern formation: A case study

Let us start by considering a classic model of pattern formation
that we already encountered in section 8.2.2, the Swift-Hohenberg
model, as it is the simplest type of spatiotemporal model that ex-
hibits finite wavelength periodic patterns. We generalize to two
fields u1 and u2 obeying a set of two Swift-Hohenberg equations
with nonreciprocal interactions, namely

∂tui = ϵijuj − (1+∇2)2ui − gu3
i , (9.65)

where we have introduced the nonsymmetric coupling matrix
ϵ12 ≠ ϵ21. Unlike the standard Swift-Hohenberg model that can be
derived from a potential, the nonreciprocal ones cannot.

Following the amplitude equations approach developed in the
chapter on pattern formation (see section 8.5), we can write ui(x) =
Ai(x)eikcx + c.c., where kc is the critical wavevector where the in-
stability sets in (here kc = 1). Note that shifting the phase of the
amplitude Ai by δφ (Ai → Aie

iδφ) amounts to a translation of the
periodic one-dimensional pattern ui(x, t) by a distance equal to
δφ/kc (see section 8.5.2.d.) Using the symmetry considerations
discussed in the previous chapter (or a full-length explicit deriva-
tion), the set of nonreciprocal Swift-Hohenberg equations reduces,
just above the instability threshold, to the following set of nonre-
ciprocally coupled amplitude equations:

∂tA1 = ϵ0A1 + ϵ12A2 − g|A1|2A1,

∂tA2 = ϵ0A2 + ϵ21A1 − g|A2|2A2,
(9.66)

where we have introduced the nonsymmetric coupling among the
amplitudes ϵ12 = ϵ+ + ϵ− and ϵ21 = ϵ+ − ϵ−, and ignored the gra-
dient terms.

We now write the two complex amplitudes (that act as order param-
eters in this pattern formation problem) as Ai = aie

iφi (ai = |Ai|)
and assume that the two fields are primarily coupled antisymmet-
rically, so that ϵ0 ≫ ϵ−≫ ϵ+. The

In problem 9.6, you will show explicitly how
the amplitude equations reduce to (9.67)–
(9.68) and derive the explicit expressions
for the coefficientsα= 2[ϵ2

−− ϵ+ϵ0]/ϵ0 and
γ = 2ϵ−. Note also that we have expanded
in these equations the right-hand sides in
∆φ, to bring out the bifurcation structure of
(9.67). The full equations are periodic in ∆φ.
This reflects the fact that when one of the pat-
terns is shifted by one wavelength relative to
the other, the pattern does not change.

amplitude equations reduce to

∂t∆φ=α∆φ− β∆φ3, (β> 0) (9.67)
∂tφ̄= γ∆φ, (9.68)

where ∆φ=φ2 −φ1 and φ̄=φ2 +φ1. The stationary state of the
first equation is ∆φ= 0 if α< 0 and ∆φ=±

√
α/β if α> 0. The

caseα< 0 results in two static patterns that are completely in phase,
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Figure 9.19. The perturbative phase diagram
of the exceptional transition computed in the
main text and problem 9.6 as a function of
the ratios ϵ−/ϵ0 and ϵ+/ϵ0. 35

while the case α> 0 with ∆φ≠ 0 corresponds to two periodic pat-
terns offset by a constant phase difference ∆φ both moving (because
the sum of their phases increases indefinitely) at a speed propor-
tional to γ∆φ, as illustrated in figure 9.18. The resulting phase
diagram from this perturbative analysis is shown in figure 9.19,
while figure 9.20.a shows the full phase diagram. By itself, equation
(9.67) represents a standard pitchfork bifurcation,

See section 8.2.1 for an introduction to the
pitchfork bifurcation.

but in conjunc-
tion with equation (9.68) it forms a system of dynamical equations
that cannot be expressed in terms of the gradient of a potential,
and that describes a class of bifurcations known as parity-breaking
bifurcations or drift instabilities.34

This pattern formation problem exemplifies a transition from a
state described by static order parameters to a non-equilibrium
steady state described by time-varying order parameters.

9.8.3 Exceptional points and parity-breaking
bifurcations

To understand the mechanism underlying the transition, we lin-
earize the above equations about ∆φ= 0 and an arbitrary fixed φ̄,
to obtain See problem 9.10 for an explicit derivation of

these equations. The matrix in (9.69) is called
a Jacobian. Generally, the Jacobian of a vector
field is the matrix of its derivatives.

∂t

(
∆φ
φ̄

)
=

(
α 0
γ 0

)(
∆φ
φ̄

)
. (9.69)

At the transition point α= 0, the matrix on the right-hand side is
not diagonalizable since it has two eigenvalues equal to zero; at
that point

∂t

(
∆φ
φ̄

)
= γ

(
0 0
1 0

)(
∆φ
φ̄

)
. (9.70)

The point where two eigenvalues of a matrix vanish is called an
exceptional point of the matrixes and it is characteristic of non-
reciprocal phase transitions.

While we have derived equations (9.67),
(9.68), and (9.70) in the context of a spe-
cific example, they apply more generally to
non-reciprocal phase transitions in various
systems. For instance, nonreciprocal flocking
can be analyzed in the same way by consid-
ering two Toner-Tu equations (section 9.2.3)
with asymmetric couplings.In the Jacobian matrix above, one eigenvalue always vanishes be-

cause it corresponds to translation invariance of the pattern (and to
rotation invariance of the v⃗i in the flocking model): it is known as
the Goldstone mode of broken translation (or rotation) invariance,
as indicated by the green line in figure 9.20.b. At the bifurcation,
the remaining eigenmode (orange line in the figure) coalesces with
the Goldstone mode (green line) at exceptional points, in red.

The same approach applies to order pa-
rameters associated with conservation laws,
e.g., continuum mechanics models with odd-
elasticity and odd-viscosity that conserve
linear momentum (see previous sections)
and nonreciprocal models of phase separa-
tion that conserve mass, discussed for exam-
ple by You et al., 2020 and Saha et al., 2020.
In all these problems one obtains (nonlin-
ear) diffusion-like equations with additional
diffusion coefficients accounting for nonre-
ciprocal couplings between the components
of the relevant fields as illustrated in (9.51).

In
addition to having the same eigenvalue (zero), the two eigenmodes
become parallel at this point.

The structure of exceptional points leads to a pictorial description
of the phase transition to the chiral phase. Let us represent the
order parameter as a ball constantly kicked by noise at the bottom
of a wine bottle–shaped potential. Because of the nonreciprocal
couplings, there are transverse nonconservative forces in addition
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Figure 9.20. (a) Schematic bifurcation diagram of the exceptional transition for two coupled vector models (9.63), showing the frequency
of the steady state Ωss ≡ ∂tφ̄. Between the static (anti)aligned phases with Ωss = 0, an intermediate chiral phase spontaneously breaks
parity. Two equivalent steady states (clockwise and counterclockwise, corresponding to opposite values of Ωss) are present in this
time-dependent phase. The chiral phase continuously interpolates between the antialigned and aligned phases, both through |Ωss|
and the angle between the order parameters v⃗A and v⃗B. (b) The transition between (anti)aligned and chiral phases occurs through the
coalescence of a damped (orange) and a Goldstone mode (green) at an exceptional point (red dot). Adapted from Fruchart et al., 2021.

vortex antivortex
Figure 9.21. As explained in the text, a
type II instability discussed in section 8.6
occurs near exceptional points. We consider
here nonreciprocal flocking (top left), where
the two velocity vectors rotate at a constant
speed while keeping their relative orienta-
tion fixed. The growth rate of perturbations
(top right) is shown signaling a finite mo-
mentum instability. The middle panel shows
a snapshot of the phase angle of one of
the velocities in two-dimensional hydrody-
namic simulations in the unstable regime:
the resulting chaotic pattern is dominated
by vortices and antivortices (bottom panel).
In time-dependent simulations these are
found to constantly annihilate and unbind.
Adapted from Fruchart et al., 2021.

to the potential energy landscape. When you kick the ball uphill, it
moves perpendicular to the direction of the height gradient along
the bottom of the potential, but a kick in the direction along the
bottom does not drive the ball up the gradient. This arises because
of the non-orthogonality of the eigenmodes of the Jacobian near
the exceptional point. At the exceptional point, the ball moves only
along the bottom of the potential, irrespective of how it is kicked:
this is the onset of the chiral phase.

9.8.4 Exceptional points-induced instabilities

In a spatially extended system, one has to consider gradient terms
in the field theory. These depend on the physical system under
consideration: for instance, there can be convective terms in nonre-
ciprocal flocking, which would be absent in nonreciprocal magnets.
Let us therefore consider the generic equation of motion,

∂t

(
∆φ
φ̄

)
=

[(
0 0
1 0

)
+Mv⃗0 · ∇⃗+N∇2

](
∆φ
φ̄

)
, (9.71)

where M and N are 2 × 2 matrices that are not necessarily sym-
metric. Equation (9.71) is obtained by including gradient terms in
equation (9.66) and repeating the analysis, leading to (9.70).

In problem 9.11, you will take a Fourier transform and diagonal-
ize the matrix equation to obtain the complex growth rates σ(k).
When σ(k)> 0 with a maximum at finite k, a type II instability
is triggered, following the classification scheme introduced in the
previous chapter—compare figure 8.14 to the spectrum in figure
9.21 (top panel, right). Equation (9.71) with M = 0 describes the
soft modes of the Kuramoto-Sivashinsky equation discussed in
section 8.6.36 As the lower panels of figure 9.21 illustrate, in the
case of nonreciprocal flocking the non-equilibrium steady state is
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Figure 9.22. Schematic picture of an active
gel composed of actin filaments and myosin
motors which crosslink these filaments. The
polymerization processes with rate constant
kp and depolarization processes with rate
constant kd are indicated.

characterized by continuous unbinding and annihilation of vor-
tices and antivortices in the vector order parameters, reminiscent
of active nematic turbulence.

9.9 Applications to biological problems

While the study of active matter was initially stimulated by prob-
lems in the life sciences, the field is now increasingly having an im-
pact on these disciplines, as the methods and insights which have
been developed throw new light on biological problems. We close
this chapter by sketching some examples of the avenues which are
opening up. As we shall see, insights from non-equilibrium pattern
formation and active matter often go hand in hand here.

9.9.1 Active gels

An active gel is a material composed of a network of crosslinked
biopolymer filaments and molecular motors, as illustrated in fig-
ure 9.22. These active media are driven out of equilibrium by two
distinct phenomena: the action of the molecular motors on the fila-
ments and the spontaneous polymerization and depolymerization
of the monomers within each filament. Both behaviors are energy
transduction mechanisms which generate mechanical work from
chemical energy. The relevant hydrodynamic theory reflects the
complexity of the system, but in schematic form it can be rational-
ized by putting together key equations we already encountered in
our treatment of (passive) polymer viscoelasticity, polar and active
nematic fluids, and intuitive symmetry-based reasoning.

a. Modeling of active gels

To model active gels at the hydrodynamic level we identify the
relevant conserved quantities: the overall mass, the number of
monomers, the number of motors and momentum. Thus, the hy-
drodynamic equations will describe how the densities of these
conserved quantities evolve. Since the filaments are on average
parallel to each other, we need to include an additional broken-
symmetry variable that describes their local orientation. Depend-
ing on whether there is nematic or polar order, this will be the
director n̂ or the polarization vector p⃗, respectively. The relevant
hydrodynamic equations were already written in section 9.5.1 for
active nematics.

The momentum equation includes a total stress tensor given by

σij = σvis
ij + σel

ij + σa
ij . (9.72)


