

Eg. two-motion-task with triangular spring network, as metaphor for airplane wing:

Bottom-up mechanical metamaterials

- Tune the repeat elements using local learning rules, e.g coupled learning
 - eliminate inherent need for external memory or CPU...
 - eliminate "reality gap" between physical system and in-silico model used for training...

Solution Solution Series of a spring is
$$u = \frac{1}{2} k(x-L)^2 \rightarrow \{k,L\}$$
 are learning parameters
• Elastic energy of a spring is $u = \frac{1}{2} k(x-L)^2 \rightarrow \{k,L\}$ are learning parameters
• Contrast function $U^{Clamped} - U^{Free}$ is physically positive
Drive it to zero by gradient descent on either spring constants or rest lengths
For motion tasks:
 $\dot{k}_j = -\frac{\partial}{\partial k_j} \sum_{j=1}^{j} k_i (x_i^C - L_i)^2 - \frac{1}{2} k_i (x_i^F - L_i)^2 = [L_j - (x_j^C + x_j^F)/2](x_j^C - x_j^F)$
 $\dot{L}_j = -\frac{\partial}{\partial L_j} \sum_{j=1}^{j} k_i (x_i^C - L_i)^2 - \frac{1}{2} k_i (x_i^F - L_i)^2 = k_j (x_j^C - x_j^F)$

