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• Physical systems made of many copies of a repeat unit, each of which uses a 
local learning rule to collectively optimize a global cost function defining a task 
to be “computed” physically.  Eg “Contrastive Local Learning Networks”

Analog in-memory training for analog in-memory analog computing for control, metamaterials with 
complex functionality, AI,…

• Boulder School 2024
Lecture 1: learning systems and rules
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Lecture 3: mechanical realizations
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Contrastive Local Learning Networks
• Can we build edges where all the edges independently self-adjust using the local 

learning rules so that outputs evolve to the desired function of inputs?

freedom) according to Eq. (4) with a learning rate of
α ¼ 5 × 10−4. Figure 2(b) shows the change of conduct-
ance of each edge at the first iteration of learning, with blue
(red) signifying positive (negative) conductance changes.

This process constitutes one step of the training process; at
the end of each step, we compute the error function C
[Fig. 2(d)]. The difference between the obtained targets and
the desired ones decreases exponentially by many orders of
magnitude during the training process, reaching machine
precision. This result demonstrates the success of the
coupled learning approach. We see that the magnitude of

the change in the conductance vector, jΔkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jΔk2j
q

,

calculated for each step of the training process, also
decreases exponentially during training [blue dashed line
in Fig. 2(d)]. This result shows that the learning process is
adaptive—it slows down as it approaches good solutions.
The final trained network is displayed in Fig. 2(c), with
edge thicknesses indicating conductance. The pipes of the
trained network have changed considerably compared to
the initial one shown in Fig. 2(a), with some pipes
effectively removed (with conductances near zero).
The results of applying the training protocol to networks

of different sizes, for different initial networks and choices
of the source and target nodes and their pressure values, are
shown in Figs. 2(e) and 2(f), where errors are rescaled by
the initial error for each network. Our learning algorithm is
generally able to train the networks to exhibit the desired
responses, successfully decreasing the initial error by
orders of magnitude. We find that networks of different
size converge on good solutions at different rates, with the
error at a particular chosen time t ¼ 103 scaling roughly as
a power law CðN; tÞ ∼ Nq (with power q in the range
1–2). We note that networks of different sizes may not be
equivalent, as training may depend on idiosyncratic details,
such as particular distances between sources and targets, or
other geometrical features. We leave detailed exploration of
the effects of network size and source-target geometry to
future study.
It is noteworthy that flow networks are linear, so that the

mapping between the sources to targets is always linear
pT ¼ AðkÞPS (A is a MS ×MT matrix that depends on the
conductance values). Networks which contain hundreds of
edges have many more conductance values than compo-
nents of A so that there are far more degrees of freedom
than constraints. While this argument suggests our flow
networks are overparametrized and should always succeed
in learning, we stress that not all linear transformations are
possible; pressure values everywhere in the network are
weighted averages of their neighbors (due to Kirchhoff’s
law). More importantly, the linear transformation is
limited because all conductance values must be non-
negative (see Appendix D). As a result, flow networks
cannot implement any desired linear mapping between the
inputs and outputs, and nonzero errors are expected for
certain tasks after training. It was previously shown that
the likelihood of flow networks to successfully learn a set
of tasks depends on network size [6], even when trained
with gradient descent. Therefore, we expect that training
larger networks for a given task is more likely to succeed

FIG. 2. Training flow networks with coupled learning. (a) An
untrained disordered flow network with uniform conductance at
all pipes ki ¼ 1, as indicated by uniform thicknesses of the green
edges. The ten red and blue nodes correspond to the source and
target nodes with dot sizes indicating the magnitudes of the
source pressures fPSg and desired target pressures fPTg. (b) In
each step, conductance values are modified using Eq. (4),
according to the difference in flow between the free and clamped
states. This process is applied iteratively. (c) After training, the
network conductance values, indicated by the thicknesses of the
green edges, are considerably changed compared to the initial
network shown in (a). (d) During training of a network (N ¼ 512
nodes), the pressure values of the target nodes approach the
desired values, as indicated by the exponentially shrinking error
(black solid line). The desired target values fPTg are reached
when the error is small; the modification of the conductance in
each time step, Δk (blue dashed line), vanishes exponentially as
well. (e) We train multiple networks of different sizes
N ¼ 64–2048, and find that all can be trained successfully with
coupled learning. Error bars indicate the variation with initial
network and choice of sources and targets. In all cases, errors
decay exponentially, yet larger networks converge slower.
(f) Picking a certain time t ¼ 103, we find that the error scales
up with system size as a soft power between 1 and 2.
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• inputs
• outputs

Example tasks/functions:
(1) Outputs are at {Oj} when inputs are at {Ii}
(2) Outputs are a desired linear combo of inputs
(3) Classification: e.g inputs are grayscale pixel data and 

outputs indicate whether the image is a dog or a cat

Bottom-up learning of  complex 
functionality using local rules in a  
fully recurrent network, giving 
brain-like advantages over ANNs
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• Tune the repeat elements using global knowledge to learn complex functionality
• external memory and computation are inherently required

Eg. two-motion-task with triangular spring network, as metaphor for airplane wing:

Top-down mechanical metamaterials

A R T I F I C I A L  I N T E L L I G E N C E  

Mechanical neural networks: Architected materials that 
learn behaviors 
Ryan H. Lee1†, Erwin A. B. Mulder2, Jonathan B. Hopkins1*† 
Aside from some living tissues, few materials can autonomously learn to exhibit desired behaviors as a conse-
quence of prolonged exposure to unanticipated ambient loading scenarios. Still fewer materials can continue to 
exhibit previously learned behaviors in the midst of changing conditions (e.g., rising levels of internal damage, 
varying fixturing scenarios, and fluctuating external loads) while also acquiring new behaviors best suited for 
the situation at hand. Here, we describe a class of architected materials, called mechanical neural networks 
(MNNs), that achieve such learning capabilities by tuning the stiffness of their constituent beams similar to 
how artificial neural networks (ANNs) tune their weights. An example lattice was fabricated to demonstrate 
its ability to learn multiple mechanical behaviors simultaneously, and a study was conducted to determine 
the effect of lattice size, packing configuration, algorithm type, behavior number, and linear-versus-nonlinear 
stiffness tunability on MNN learning as proposed. Thus, this work lays the foundation for artificial-intelligent (AI) 
materials that can learn behaviors and properties. 
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INTRODUCTION 
Scientists have been inspired by the interconnected network of 
neurons that constitute biological brains and enable complex learn-
ing with unmatched speed and energy efficiency. Consequently, 
many have sought to leverage a variety of interconnected networks 
to mimic natural learning for numerous artificial-intelligent (AI) 
applications (1–3). 

Some of the first networks developed for AI purposes were 
purely mathematical in form. The concepts underlying these math-
ematical networks, called artificial neural networks (ANNs) 
(Fig. 1A), were first introduced by McCulloch and Pitts (4) but 
were later matured by Rosenblatt (5). The mathematical formula-
tion underlying ANNs can be diagrammed using interconnected 
lines, shown in blue in Fig. 1A, that represent scalar values, called 
weights (6), which are multiplied by input numbers that are fed into 
multiple layers of activation functions (6), called neurons, which ul-
timately produce output values. If the ANN is provided with a set of 
known input and output values, then the network can be trained by 
tuning its weights so that it accurately predicts previously unknown 
output values that result for any desired input values. Hornik et al. 
(7) proved the true AI potential of ANNs by demonstrating that, 
with sufficiently large numbers of neurons and layers, ANNs 
could learn to model almost anything by accurately mapping any 
number of inputs to any number of outputs. Tuning the weights 
of sizeable ANNs, however, proved to consume large amounts of 
computational time and energy using traditional digital computers. 

Thus, further inspired by the physical nature of biological brains, 
scientists began developing physical networks to more rapidly tune 
weights (i.e., learn) with higher efficiencies because of their analog 
nature. Most of these physical networks can be classified as electrical 
(8–12) or optical (13–17) networks. Although some physical neural 
networks use the vibrations of mechanical structures to improve the 

speed and efficiency of learning, none yet exists that is purely me-
chanical. Roboticists have learned to leverage the dynamics of me-
chanical bodies as a computational resource for enabling 
mathematical ANNs to be more efficiently trained by restricting 
only the final layer’s weights to be tuned. This approach, called mor-
phological computation (18), is a mechanical version of the concept 
of reservoir computing (19, 20), where the reservoir used to simplify 
the mathematical computation is the structure of the robot itself. 
Networks of springs and point masses (21, 22), tensioned cables 
and rigid bodies (23, 24), and soft bodies (25, 26) have been used 
to demonstrate this approach. The most mechanical instantiation 
of a neural network to date was proposed by Hermans et al. (27). 
This network consists of a vibrating plate that is excited by acoustic 
waves as inputs and outputs. Instead of tuning the mechanical prop-
erties of the plate itself (i.e., its stiffness, damping, or mass proper-
ties) to tune the network’s weights, masking signals of interfering 
acoustic waves were electrically generated to train the network. 
This concept was recently extended by Wright et al. (28) using mul-
tiple layers of vibrating plates to achieve a deep physical 
neural network. 

In this work, a different physical network, called a mechanical 
neural network (MNN), is introduced. MNNs are lattices of inter-
connected tunable beams, shown in blue in Fig. 1B, that join at 
nodes, which are driven by force or displacement inputs and 
outputs. The stiffness values of the interconnected beams are 
tuned as network weights to train the lattice such that it can learn 
desired mechanical behaviors (e.g., shape morphing, acoustic wave 
propagation, and mechanical computation) and bulk properties 
(e.g., Poisson’s ratio, shear and Young’s modulus, and density). 
Thus, this work introduces a class of architected materials (a.k.a., 
mechanical metamaterials) (29) that learn as a consequence of pro-
longed exposure to unanticipated ambient loading conditions. Al-
though others have proposed acoustic metamaterials that can 
perform specific mechanical computations (30, 31), these materials 
are not neural networks and thus cannot learn. Hughes et al. (32) 
proposed an acoustic metamaterial that behaves as a trained neural 
network, but a fabricated version of the proposed design could not 
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(Fig. 1A), were first introduced by McCulloch and Pitts (4) but 
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tion underlying ANNs can be diagrammed using interconnected 
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only the final layer’s weights to be tuned. This approach, called mor-
phological computation (18), is a mechanical version of the concept 
of reservoir computing (19, 20), where the reservoir used to simplify 
the mathematical computation is the structure of the robot itself. 
Networks of springs and point masses (21, 22), tensioned cables 
and rigid bodies (23, 24), and soft bodies (25, 26) have been used 
to demonstrate this approach. The most mechanical instantiation 
of a neural network to date was proposed by Hermans et al. (27). 
This network consists of a vibrating plate that is excited by acoustic 
waves as inputs and outputs. Instead of tuning the mechanical prop-
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ties) to tune the network’s weights, masking signals of interfering 
acoustic waves were electrically generated to train the network. 
This concept was recently extended by Wright et al. (28) using mul-
tiple layers of vibrating plates to achieve a deep physical 
neural network. 

In this work, a different physical network, called a mechanical 
neural network (MNN), is introduced. MNNs are lattices of inter-
connected tunable beams, shown in blue in Fig. 1B, that join at 
nodes, which are driven by force or displacement inputs and 
outputs. The stiffness values of the interconnected beams are 
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desired mechanical behaviors (e.g., shape morphing, acoustic wave 
propagation, and mechanical computation) and bulk properties 
(e.g., Poisson’s ratio, shear and Young’s modulus, and density). 
Thus, this work introduces a class of architected materials (a.k.a., 
mechanical metamaterials) (29) that learn as a consequence of pro-
longed exposure to unanticipated ambient loading conditions. Al-
though others have proposed acoustic metamaterials that can 
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learn new behaviors because training is performed during the 
design process by adjusting the mass within a vibrating plate 
using simulation. Although other mechanical concepts have also 
been proposed and demonstrated using simulation only (33, 34), 
the MNN concept introduced here is physically demonstrated ex-
perimentally. The concept can also be extended into complex 
three-dimensional (3D) lattices, which can occupy volumes of arbi-
trary shape and accommodate desired fixturing requirements for 
practical material applications. In addition, because MNNs inher-
ently have numerous layers of nodes, which are analogous to the 
neurons within ANNs, MNNs behave as deep neural networks 
that can learn many complex behaviors simultaneously. If an 
MNN is damaged, cut to occupy an alternate volume, or fixtured 
differently, then it can relearn previously mastered behaviors and 
acquire new behaviors as needed with exposure to changing 
ambient conditions. An application could include MNN aircraft 
wings (Fig. 1C) that learn to morph their airfoil shape as desired 
in response to certain wind-loading scenarios such that the aircraft 
achieves greater efficiency and maneuverability as it accrues flight 
experience. This work demonstrates the ability of an MNN to 
learn two different shape-morphing behaviors using two different 
algorithms. Experimental and simulated studies were performed 
to determine the effect of lattice size, packing configuration, algo-
rithm type, behavior number, and linear-versus-nonlinear stiffness 
tunability on MNN learning. 

RESULTS 
Learning process 
MNNs mechanically learn behaviors analogously to how ANNs 
mathematically map numerical inputs to outputs. To understand 
the specifics of how MNNs learn, consider the eight-layer-deep 
2D MNN lattice of tunable beams packed in a triangular configura-
tion with eight input and output nodes shown in Fig. 1B. The black 
bars shown at the top and bottom of the lattice represent fixed 
ground. Suppose that when the input nodes are loaded by equal hor-
izontal forces, shown as red arrows in Fig. 1B, it is desired that the 
output nodes respond by moving to target displacements along the 
contour of the red sinusoidal curve shown in Fig. 1B. To learn this 
behavior in the midst of unexpected and changing loading scenar-
ios, each tunable beam in the lattice would be prescribed with a 
random stiffness value. Sensors (e.g., strain gauges on each beam) 
would then determine the displacement of each node in the lattice 
for each loading scenario. Because the beam stiffness values and the 
node displacements are known (i.e., prescribed and measured, re-
spectively), the MNN could determine when the lattice has been 
loaded with the desired behavior’s loading scenario (i.e., the hori-
zontal forces shown in Fig. 1B). Anytime the desired loading scenar-
io occurs, the lattice sensors would measure the resulting 
displacements of the output nodes on the lattice’s right side, and 
the mean squared error (MSE) of these displacements would be cal-
culated by subtracting them from the target displacements and av-
eraging the resulting differences squared. The tunable beams would 
then change their stiffness values according to an optimization al-
gorithm such that when the process of loading, measuring, and cal-
culating the MSE is repeated, the MSE is minimized until a working 
combination of beam stiffness values is identified. One possible 

Fig. 1. Introduction to MNNs and how they learn mechanical behaviors. (A) ANNs mathematically map numerical inputs to outputs by tuning scalar weights within 
layers of neurons consisting of activation functions. (B) MNNs are mechanical analogs to ANNs in that they map force and displacement inputs and outputs using tunable 
beams, which are analogous to weights, and physical nodes, which are analogous to neurons. (C) Example shape-morphing behaviors that could be learned by MNN 
aircraft wings in two different scenarios. (D and E) Two different combinations of beam stiffness values (i.e., solutions) that achieve the same two shape-morphing 
behaviors. 
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• Small-scale realization via spring stiffnesses (positive & negative, using control)
• 21 edges; 2 input nodes & two output nodes

Top-down “airplane wing” example

nodes 1 and 2 displace in the opposite directions (i.e., to the left and 
to the right by 0.5 mm, respectively) as the two input nodes are both 
sheared upward (as shown by the green arrows) with equal magni-
tude. As the MNN attempted to exhibit these two desired behaviors 
according to the learning process, the axial stiffness values of each 
beam were allowed to be tuned between the maximum and 
minimum values of 2.3 and −2 N/mm, respectively, according to 
the limits measured in Fig. 2C. 

Two optimization algorithms—genetic algorithm (GA) (40) and 
partial pattern search (PPS) (41)—were used for learning the two 
behaviors to compare their performance. The details underlying 
each optimization algorithm are provided in Materials and 
Methods, and a video showing the MNN learning is provided in 
the Supplementary Materials (movie S3). The learning results of 
the GA and PPS are provided in Fig. 4 (B and C, respectively). 
The MSE of each algorithm is plotted over time as the MNN 
learns the two desired behaviors simultaneously, and the initial 
and final displacements of nodes 1 and 2, relative to the desired 
target displacements, are also provided for each behavior. A video 
showing how the nodes move from one displacement to the next 
(corresponding to each blue dot in the MSE plots of Fig. 4, B and 
C) is provided in the Supplementary Materials (movie S4). 

The MNN of Fig. 4A was also used to compare learning with 
tunable beams that exhibit linear (e.g., Fig. 2B) versus nonlinear 
force-displacement responses. Specifically, tangent functions (e.g., 
the responses shown in fig. S7 for different Kp values) were used 
for the nonlinear scenario. The MNN’s tunable beams were initially 
set to only exhibit linear force-displacement responses with stiffness 
values that could vary between 2.3 and −2 N/mm according to the 
limits measured in Fig. 2C. Two random but different shape- 
morphing behaviors were generated for the MNN to learn. Each be-
havior was generated by selecting forces with randomly generated x- 
and y-axis components between ±2 N, which cause the MNN’s 
output nodes to move selected displacements with randomly gener-
ated x- and y-axis components between ±0.5 mm when the selected 
forces load the input nodes. The MNN then used the PPS algorithm 
to learn the generated pair of random behaviors simultaneously. 
The MSE of this learning process over time was recorded, similar 
to the example plots shown in Fig. 4 (B and C). Five additional 
random but unique pairs of behaviors were then generated and 
learned independently by the MNN. The six total resulting MSE- 
versus-time plots were averaged to produce the single solid-line 

plot of Fig. 4D (i.e., the plot corresponding to the linear scenario). 
The same six pairs of generated behaviors were then learned by the 
same MNN, but its tunable beams were set to only exhibit tangent 
force-displacement responses (i.e., a nonlinear response) with in-
stantaneous stiffness values that could vary between 2.3 and −2 
N/mm according to the limits measured in Fig. 2C. Note that al-
though 2.3 N/mm was found to be the largest axial stiffness value 
achievable by the tunable beams of this study, that finding is con-
servative and is only true for instantaneous stiffness values (i.e., 
beam stiffness values before deformation). When the beam is de-
formed an appreciable amount, it can be stably controlled with 
larger stiffness values to accommodate the rising tangent function 
profile. The six resulting MSE-versus-time plots were averaged to 
produce the single dotted-line plot of Fig. 4D (i.e., the plot corre-
sponding to the nonlinear scenario). 

Before the successful demonstration of the MNN of Fig. 4, dif-
ferent beam designs (fig. S8, A and B) were fabricated and integrat-
ed within other MNNs (fig. S9, A to C), which did not successfully 
learn desired behaviors (fig. S9D). The reasons they failed are dis-
cussed in the Supplementary Materials to highlight factors impor-
tant to successful MNN learning, such as minimal hysteresis (fig. 
S10), quality sensors, and well-designed flexures. 

Simulation study 
A computational tool, informed by the measured and modeled (fig. 
S11) characteristics of the tunable beam of Fig. 2A, was created and 
used to simulate MNN learning scenarios that the physical MNN of 
Fig. 3B was not designed to attempt. The tool’s assumptions are de-
tailed in the Supplementary Materials, and a discussion about how 
the tool was verified using finite element analysis (FEA) (fig. S12, A 
to E) is provided in Materials and Methods. The computational tool 
was used to generate the example of Fig. 1 (D and E) according to 
the details also provided in Materials and Methods. 

Three simulation studies were conducted using the tool. The 
MNNs of the first simulation study were all configured as triangular 
lattices (e.g., Fig. 1B) with eight input and eight output nodes. Their 
tunable beams were assigned axial stiffness values between 4 and −2 
N/mm. Learning was simulated using different numbers of layers 
and different numbers of random behaviors. Random behaviors 
were generated by selecting input-node forces and output-node dis-
placements with randomly generated x- and y-axis components 
between ±1 N and ± 0.5 mm, respectively. To ensure that each 

Fig. 2. Tunable beams that use closed-loop control to achieve variable axial 
stiffnesses. (A) Voice coil and strain gauges were used as actuators and sensors to 
control the axial stiffness of the beam. (B) Data collected from an Instron testing 
machine as it stretches and compresses the tunable beam while it is actively con-
trolled to achieve linear force-displacement responses using different proportional 
gain values, Kp. (C) Plot demonstrating how well the controller’s prescribed propor-
tional gain corresponds with the beam’s resulting axial stiffness. 

Fig. 3. An MNN. (A) A computer-aided design model and (B) a photo of the MNN 
used to conduct the experimental learning study of this work. 

Lee et al., Sci. Robot. 7, eabq7278 (2022) 19 October 2022                                                                                                                                                        4 of 9  

S C I E N C E  R O B O T I C S | R E S E A R C H  A R T I C L E  

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of Pennsylvania on O

ctober 21, 2022

5

• With a trained mechanical metamaterial
“springtronics”

Top-down speech recognition example
RESEARCH ARTICLE
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In-Sensor Passive Speech Classification with Phononic
Metamaterials

Tena Dubček,* Daniel Moreno-Garcia, Thomas Haag, Parisa Omidvar,
Henrik R. Thomsen, Theodor S. Becker, Lars Gebraad, Christoph Bärlocher,
Fredrik Andersson, Sebastian D. Huber, Dirk-Jan van Manen, Luis Guillermo Villanueva,
Johan O.A. Robertsson, and Marc Serra-Garcia*

Mitigating the energy requirements of artificial intelligence requires novel
physical substrates for computation. Phononic metamaterials have
vanishingly low power dissipation and hence are a prime candidate for green,
always-on computers. However, their use in machine learning applications
has not been explored due to the complexity of their design process. Current
phononic metamaterials are restricted to simple geometries (e.g., periodic
and tapered) and hence do not possess sufficient expressivity to encode
machine learning tasks. A non-periodic phononic metamaterial, directly from
data samples, that can distinguish between pairs of spoken words in the
presence of a simple readout nonlinearity is designed and fabricated, hence
demonstrating that phononic metamaterials are a viable avenue towards
zero-power smart devices.

1. Introduction

The success of deep learning models is based on encoding com-
plex tasks as a combination of large linear transformations and
nonlinear activation functions. A variety of technologies, from
photonics[1 ] to memristor crossbar arrays,[2 ] have been postu-
lated to minimize the energy costs associated with these large
linear transformations. Phononic resonators have energy losses
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that improve on linear passive electronic
systems by several orders of magnitude.
This is reflected in their quality factors,
which quantify the number of periods that
oscillations take to decay. Quality factors of
several thousands are common in phononic
resonators,[3 ] and can reach billions in
specifically optimized devices,[4,5 ] but are in
the tens for electronic circuits.[6 ] This near-
dissipationlessness, combined with the ca-
pability of directly processing mechanical
signals such as spoken commands without
first transducing them into an electronic
or photonic domain, makes phononic res-
onators a prime candidate for zero-power
in-sensor edge computing applications. Al-
though these striking advantages have been

recognized in the context of both classical[7,8 ] and quantum[9,10 ]

computing, and the environmental impact of artificial intelli-
gence is increasingly in the spotlight,[11 ] phononic implementa-
tions of machine learning models remain largely unexplored.

A promising application domain for ultra-low-power artifi-
cial intelligence is in-sensor computing. Recent advancements
in sensor technology allow us to measure a variety of signals,
ranging from pressure,[12 ] magnetic fields,[13 ] rotations,[14 ] or
even pathogens such as Sudden Acute Respiratory Syndrome
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Mitigating the energy requirements of artificial intelligence requires novel
physical substrates for computation. Phononic metamaterials have
vanishingly low power dissipation and hence are a prime candidate for green,
always-on computers. However, their use in machine learning applications
has not been explored due to the complexity of their design process. Current
phononic metamaterials are restricted to simple geometries (e.g., periodic
and tapered) and hence do not possess sufficient expressivity to encode
machine learning tasks. A non-periodic phononic metamaterial, directly from
data samples, that can distinguish between pairs of spoken words in the
presence of a simple readout nonlinearity is designed and fabricated, hence
demonstrating that phononic metamaterials are a viable avenue towards
zero-power smart devices.

1. Introduction

The success of deep learning models is based on encoding com-
plex tasks as a combination of large linear transformations and
nonlinear activation functions. A variety of technologies, from
photonics[1 ] to memristor crossbar arrays,[2 ] have been postu-
lated to minimize the energy costs associated with these large
linear transformations. Phononic resonators have energy losses
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Swiss Epilepsy Center
Clinic Lengg
Zürich 8008, Switzerland

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adfm.202311877

© 2024 The Authors. Advanced Functional Materials published by
Wiley-VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1002/adfm.202311877

that improve on linear passive electronic
systems by several orders of magnitude.
This is reflected in their quality factors,
which quantify the number of periods that
oscillations take to decay. Quality factors of
several thousands are common in phononic
resonators,[3 ] and can reach billions in
specifically optimized devices,[4,5 ] but are in
the tens for electronic circuits.[6 ] This near-
dissipationlessness, combined with the ca-
pability of directly processing mechanical
signals such as spoken commands without
first transducing them into an electronic
or photonic domain, makes phononic res-
onators a prime candidate for zero-power
in-sensor edge computing applications. Al-
though these striking advantages have been

recognized in the context of both classical[7,8 ] and quantum[9,10 ]

computing, and the environmental impact of artificial intelli-
gence is increasingly in the spotlight,[11 ] phononic implementa-
tions of machine learning models remain largely unexplored.

A promising application domain for ultra-low-power artifi-
cial intelligence is in-sensor computing. Recent advancements
in sensor technology allow us to measure a variety of signals,
ranging from pressure,[12 ] magnetic fields,[13 ] rotations,[14 ] or
even pathogens such as Sudden Acute Respiratory Syndrome

T. Dubček
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Figure 1. Passive speech recognition. a) Speech classification by a temporal convolutional network that combines delayed copies of the signal according
to a set of weights and then applies a readout nonlinearity. b) We realize a passive instance of such a network by a lattice metamaterial, whose vibrating
plates (resonators) are connected by beams. Its geometry (beam locations and hole sizes) is optimized to achieve the desired selective response. c)
The structure is modeled as a mass-spring model. Each mass corresponds to a vibration localized at a particular plate. The blue mass corresponds to
the displacement represented by the coloring in panel (b). d) The optimized metamaterial can be interpreted as a network of coupled resonators that
discriminates between two spoken digits.

CoronaVirus-2[15 ] through their photonic signatures.[16 ] How-
ever, significant continuous signal processing is still necessary
to determine whether a particular event has taken place, even
if the event occurs only rarely—a problem known as sparse
event detection.[17 ] In traditional sensing paradigms, information
is transferred to a central location, where the measured quan-
tities are analyzed. This results in continuous bandwidth and
power consumption, and potential privacy concerns. In-sensor
computing[18 ] is an emergent trend aiming to address these band-
width, energy consumption, and privacy issues by processing
information locally at the sensor, following the emergent trend
of edge computing.[19 ] However, implementing in-sensor signal
processing on battery-operated, embedded devices is highly lim-
ited by power constraints. This creates a need for low-power or
ideally passive, forms of computing. For such tasks, phononic
computing is an excellent candidate. While phononic signal pro-
cessing is significantly slower than electric circuits, a large class
of highly relevant signals (e.g., speech commands,[20 ] bioacoustic

signals,[21 ] gas concentrations,[22 ] or intraocular pressure[23 ]) nat-
urally occur at lower frequencies, and for these in-sensor battery-
powered applications, high energetic efficiency is of utmost im-
portance.

However, realizing advanced machine learning functionalities
in a phononic device is challenging, as it requires a careful bal-
ance between complexity and simplicity. On one hand, the struc-
tural design must be expressive enough to encode a complex
task such as speech classification (Figure 1a); on the other hand,
optimizing a mechanical neural network requires simulating a
large number of training iterations over a large dataset—hence,
the design must be simple enough to be simulated and opti-
mized efficiently. In this work, we demonstrate that phononic
metamaterials offer an excellent balance between these two re-
quirements: mode isolation allows for efficient and accurate sim-
ulation (with only one degree of freedom per site in the case
considered in this work [Figure 1b,c]), while the high sensitiv-
ity of metamaterials to the unit cell geometry allows us to cover
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Figure 3. Experimental realization. a) Metamaterial lattice fabricated on a silicon wafer. b) Measured plate vibrations under harmonic excitation at differ-
ent frequencies. The black dot represents the point where the neural network output is taken. c) Experimental setup (photography by Astrid Robertsson).
d) Measurements of the plate vibration at the output point (band-limited to 62.5–74.5 kHz), superimposing the results for the excitation with each of
the spoken three and e) four sound files in the training dataset. The signals corresponding to three present a lower vibration amplitude. f) Classification
accuracy as a function of modulation frequency. g) Transmitted energy distribution for the test set, calculated from the individual curves in (d,e).

synchronized, thickness-mode piezoelectric actua-
tors (Figure 3b). The large number of actuators allows us to
ensure that every boundary site receives a uniform excitation,
as these are the conditions that were assumed during opti-
mization. Although samples can be designed to operate under
diverse excitation conditions (e.g., with waves applied only at a
particular site or boundary), to preserve classification accuracy,
experiments must be performed under the same conditions that
were assumed during design. We measured the vibration of the
output plate using a scanning laser Doppler vibrometer (LDV),
band-limited over the range of 62.5–74.5 kHz to minimize
the influence of higher-order lattice modes (Figure 3c). The
measurements (Figure 3d,e) showed a significantly larger center
plate vibration when the lattice was excited by a four—even
though all excitation signals were normalized to the same mean
energy. The optimal classification accuracy was obtained when
the modulation frequency was shifted by 2.8 kHz (Figure 3f)
with respect to the design value. This deviation can be accounted
by the manufacturing tolerance in the thickness of the wafer,
which is nominally ±10µm, and can be corrected by combining
the theoretical model with physical measurements[48 ] to trim
the sample after fabrication.[49 ] With the optimal modulation
frequency as determined on the training set (Figure 3f), we
measured a test-set classification accuracy of 89.6% (Figure 3g),
close to the simulated value of 91.1%.

4. Interpretation and Generalization

The full phononic metamaterial is interpreted as a single linear
transformation that, when coupled with a nonlinear activation
function, implements a layer of a neural network. The action
of the metamaterial on the input signal can be understood as
a convolution between the speech signal and a kernel encoded
in the impulse response of the lattice. Although the lattice con-
tains only nearest-neighbor interactions, the linear transforma-
tion effected by the lattice is dense in time, with the weights

for long-range temporal interactions determined by integrating
all possible paths that sound waves can take through the lat-
tice with a given signal delay. The effect of the training process
is to optimize the weights associated with each delay. Convo-
lution by an impulse response kernel is equivalent to applying
a frequency filter with the transfer function, the Fourier trans-
form of the impulse response. This provides a direct interpre-
tation to the classification capabilities of the single lattice. Dur-
ing the design process, the lattice learns to maximize its energy
transfer at the frequencies where the difference between words
is maximal (Figure 4a). The quadratic nonlinearity then rectifies
this selectively-transferred signal and computes the mean energy.
This mechanism allows the passive metamaterial to distinguish
between linearly separable word pairs.

Passive mechanical speech classification can be generalized
to word pairs with similar mean spectral contents by assem-
bling deep networks interconnected by nonlinear elements
(Figure 4c–e). These nonlinear elements allow the lattice to dis-
tinguish the temporal ordering of different frequency compo-
nents. We optimize a deep network consisting of two 7 × 7
mass-spring lattices interconnected with the nonlinear mechan-
ical element from ref. [50]. This nonlinear element consists of
two strings connected to a cantilever. Due to geometric nonlin-
earity, the vibration of strings results in a dynamic increase of
their tension. This is because vibrating strings have, on aver-
age, a longer length than stationary strings. The force exerted by
the string on the cantilever has the form Fsc = 𝛾x2

s2, where xs2 is
the second string displacement at the center and 𝛾 is the non-
linear constant. This force causes a deflection of the cantilever
(Figure 4c), that is proportional to the squared mean amplitude
of the string. In turn, the deflection of the cantilever dynami-
cally alters the tension of the first string, shifting its stiffness
by a factor Δks1 = 2𝛾xc where ks1 is the elastic constant of the
first string, and xc is the displacement of the cantilever. This
change in string stiffness Δks1 causes a corresponding shift in
the first string resonance frequency (Figure 4d), which induces a
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Top-down MNIST examples
• Different physical “networks” (nonlin oscillators with info encoded in waves)
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PNNs are particularly well motivated for DNN-like calculations, much 
more so than for digital logic or even other forms of analogue com-
putation. As expected from their robust processing of natural data, 
DNNs and physical processes share numerous structural similarities, 
such as hierarchy, approximate symmetries, noise, redundancy and 
nonlinearity36. As physical systems evolve, they perform transforma-
tions that are effectively equivalent to approximations, variants and/
or combinations of the mathematical operations commonly used in 
DNNs, such as convolutions, nonlinearities and matrix-vector multipli-
cations. Thus, using sequences of controlled physical transformations 
(Fig. 1c), we can realize trainable, hierarchical physical computations, 
that is, deep PNNs (Fig. 1d).

Although the paradigm of constructing computers by directly 
training physical transformations has ancestry in evolved com-
puting materials18, it is today emerging in various fields, including 
optics14,15,17,20, spintronic nano-oscillators10,37, nanoelectronic devices13,19 
and small-scale quantum computers38. A closely related trend is physi-
cal reservoir computing (PRC)21,22, in which the transformations of 
an untrained physical ‘reservoir’ are linearly combined by a trainable 
output layer. Although PRC harnesses generic physical processes for 
computation, it is unable to realize DNN-like hierarchical computations. 
In contrast, approaches that train the physical transformations13–19 

themselves can, in principle, overcome this limitation. To train physical 
transformations experimentally, researchers have frequently relied 
on gradient-free learning algorithms10,18–20. Gradient-based learning 
algorithms, such as the backpropagation algorithm, are considered 
essential for the efficient training and good generalization of large-scale 
DNNs39. Thus, proposals to realize gradient-based training in physical 
hardware have appeared40–47. These inspiring proposals nonetheless 
make assumptions that exclude many physical systems, such as linear-
ity, dissipation-free evolution or that the system be well described by 
gradient dynamics. The most general proposals13–16 overcome such 
constraints by performing training in silico, that is, learning wholly 
within numerical simulations. Although the universality of in silico 
training is empowering, simulations of nonlinear physical systems are 
rarely accurate enough for models trained in silico to transfer accurately 
to real devices.

Here we demonstrate a universal framework using backpropaga-
tion to directly train arbitrary physical systems to execute DNNs, that 
is, PNNs. Our approach is enabled by a hybrid in situ–in silico algo-
rithm, called physics-aware training (PAT). PAT allows us to execute 
the backpropagation algorithm efficiently and accurately on any 
sequence of physical input–output transformations. We demonstrate 
the universality of this approach by experimentally performing image 
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Fig. 1 | Introduction to PNNs. a, Artificial neural networks contain operational 
units (layers): typically, trainable matrix-vector multiplications followed by 
element-wise nonlinear activation functions. b, DNNs use a sequence of layers 
and can be trained to implement multi-step (hierarchical) transformations  
on input data. c, When physical systems evolve, they perform, in effect, 
computations. We partition their controllable properties into input data  
and control parameters. Changing parameters alters the transformation 
performed on data. We consider three examples. In a mechanical (electronic) 
system, input data and parameters are encoded into time-dependent forces 
(voltages) applied to a metal plate (nonlinear circuit). The controlled 

multimode oscillations (transient voltages) are then measured by a microphone 
(oscilloscope). In a nonlinear optical system, pulses pass through a χ (2)  
crystal, producing nonlinearly mixed outputs. Input data and parameters  
are encoded in the input pulses’ spectra, and outputs are obtained from the 
frequency-doubled pulses’ spectra. d, Like DNNs constructed from sequences 
of trainable nonlinear mathematical functions, we construct deep PNNs with 
sequences of trainable physical transformations. In PNNs, each physical layer 
implements a controllable physical function, which does need to be 
mathematically isomorphic to a conventional DNN layer.
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and Technology database) handwritten digit classification task, based 
on three distinct physical systems. For each physical system, we also 
demonstrate a different PNN architecture, illustrating the variety of 
physical networks possible. In all cases, models were constructed and 
trained using PyTorch54.

In the mechanical PNN (Fig.  4a–d), a metal plate is driven by 
time-varying forces, which encode both input data and trainable 
parameters. The plate’s multimode oscillations enact controllable 

convolutions on the input data (Supplementary Figs. 16, 17). Using 
the plate’s trainable transformation sequentially three times, we clas-
sify 28-by-28 (784 pixel) images that are input as an unrolled time 
series. To control the transformations of each physical layer, we train 
element-wise rescaling of the forces applied to the plate (Fig. 4b, 
Methods). PAT trains the three-layer mechanical PNN to 87% accuracy, 
close to a digital linear classifier55. When the mechanical computa-
tions are replaced by identity operations, and only the digital rescaling 
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Fig. 4 | Image classification with diverse physical systems. We trained  
PNNs based on three physical systems (mechanics, electronics and optics) to 
classify images of handwritten digits. a, The mechanical PNN: the multimode 
oscillations of a metal plate are driven by time-dependent forces that encode 
the input image data and parameters. b, The mechanical PNN multilayer 
architecture. c, The validation classification accuracy versus training epoch for 
the mechanical PNN trained using PAT. The same curves are shown also for a 

reference model where the physical transformations implemented by the 
speaker are replaced by identity operations. d, Confusion matrix for the 
mechanical PNN after training. e–h, The same as a–d, respectively, but for a 
nonlinear analogue-electronic PNN. i–l, The same as a–d, respectively, for a 
hybrid physical–digital PNN based on broadband optical SHG. The final test 
accuracy is 87%, 93% and 97% for the mechanical, electronic and optics-based 
PNNs, respectively.
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the blue output spectrum is summed using a digital computer into 
seven spectral bins (Fig. 2b, d, Supplementary Figs. 21, 22). The pre-
dicted vowel is identified by the bin with the maximum energy (Fig. 2c). 
In each layer, the output spectrum is digitally renormalized before 
being passed to the next layer (via the pulse shaper), along with a train-
able digital rescaling. Mathematically, this transformation is given by 
x y

y
b= +l a[ +1]

max( )

l

l

[ ]

[ ] , where x[l] and y[l] are the inputs and outputs of the 
[l]th layer, respectively, and a and b are scalar parameters of the trans-
formation.  Thus, the SHG-PNN’s computations are carried out almost 
entirely by the trained optical transformations, without digital activa-
tion functions or output layers.

Deep PNNs essentially combine the computational philosophy of 
techniques such as PRC21,22 with the trained hierarchical computations 
and gradient-based training of deep learning. In PRC, a physical sys-
tem, often with recurrent dynamics, is used as an untrained feature 
map and a trained linear output layer (typically on a digital computer) 
combines these features to approximate desired functions. In PNNs, 
the backpropagation algorithm is used to adjust physical parameters 
so that a sequence of physical systems performs desired computations 
physically, without needing an output layer. For additional details, see 
Supplementary Section 3.

Physics-aware training
To train the PNNs’ parameters using backpropagation, we use PAT 
(Fig. 3). In the backpropagation algorithm, automatic differentiation 
determines the gradient of a loss function with respect to trainable 
parameters. This makes the algorithm N-times more efficient than 
finite-difference methods for gradient estimation (where N is the num-
ber of parameters). The key component of PAT is the use of mismatched 
forward and backward passes in executing the backpropagation 

algorithm. This technique is well known in neuromorphic com-
puting48–53, appearing recently in direct feedback alignment52 and 
quantization-aware training48, which inspired PAT. PAT generalizes 
these strategies to encompass arbitrary physical layers, arbitrary 
physical network architectures and, more broadly, to differentially 
programmable physical devices.

PAT proceeds as follows (Fig. 3). First, training input data (for example,  
an image) are input to the physical system, along with trainable param-
eters. Second, in the forward pass, the physical system applies its trans-
formation to produce an output. Third, the physical output is compared 
with the intended output to compute the error. Fourth, using a differenti-
able digital model, the gradient of the loss is estimated with respect to the 
controllable parameters. Finally, the parameters are updated according 
to the inferred gradient. This process is repeated, iterating over training 
examples, to reduce the error. See Methods for the intuition behind why 
PAT works and the general multilayer algorithm.

The essential advantages of PAT stem from the forward pass being 
executed by the actual physical hardware, rather than by a simulation. 
Our digital model for SHG is very accurate (Supplementary Fig. 20) 
and includes an accurate noise model (Supplementary Figs. 18, 19). 
However, as evidenced by Fig. 3b, in silico training with this model still 
fails, reaching a maximum vowel-classification accuracy of about 40%. 
In contrast, PAT succeeds, accurately training the SHG-PNN, even when 
additional layers are added (Fig. 3b, c).

Diverse PNNs for image classification
PNNs can learn to accurately perform more complex tasks, can be 
realized with virtually any physical system and can be designed with 
a variety of physical network architectures. In Fig. 4, we present three 
PNN classifiers for the MNIST (Modified National Institute of Standards 
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validation accuracy versus training epoch with PAT and in silico training, for the 
experimental SHG-PNN depicted in Fig. 2b. c, Final experimental test accuracy 
for PAT and in silico training for SHG-PNNs with increasing numbers of physical 
layers. The length of error bars represent two standard errors.

7

• Tune the repeat elements using local learning rules, e.g coupled learning
– eliminate inherent need for external memory or CPU…
– eliminate “reality gap” between physical system and in-silico model used for training…

Bottom-up mechanical metamaterials

8
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• Elastic energy of a spring is u = ½ k(x-L)2 à  {k,L} are learning parameters

• Contrast function UClamped  –  UFree is physically positive
Drive it to zero by gradient descent on either spring constants or rest lengths
For motion tasks:

Coupled Learning for Spring Networks
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• First attempt – motion tasks
edge = adjustable turnbuckle in series with spring (under tension)
hand-adjust edges using local rules:

Mechanical Learning Metamaterials

[Altman, Stern, Liu, Durian, arXiv:2311.00170]

Lauren
Altman
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• Edge energy is set by [(node-node distance, s) – (rest + turnbuckle lengths)]2

• Do gradient descent on (clamped energy – free energy) contrast function:

Coupled learning rule for turnbuckles

2

[27]. Arinze et al. used autonomous softening of hinges
to train thin elastic sheets to fold in desired ways in re-
sponse to force patterns [28] based on a local supervised
learning rule that softens elements only when they fold
correctly [29].

In this paper, we tune each edge’s rest length, rather
than its sti↵ness. Using rest length as the learning de-
gree of freedom requires special consideration, as each
iterative learning step will alter the equilibrium state of
the network. Additionally, unlike bond sti↵nesses that
are directly analogous to conductances in flow networks,
the rest length has no direct analogy and is unique to
mechanical systems. In our approach, a turnbuckle is
connected to a Hookean spring at its end, and by ad-
justing the length of the turnbuckle, the e↵ective rest
length of combination spring-turnbuckle edge is altered.
Since updates are not automated but rather made man-
ually, it is imperative to choose architectures that min-
imize the number of tunable edges while still exhibit-
ing a diversity of tunable behaviors. Here we provide
two laboratory demonstrations of experimental mechan-
ical systems that can train using coupled learning with
adjustable rest length components, and we compare with
simulation. Our systems can optimize for a generic task
without the use of a computer, placing them among the
first supervised local learning demonstrations in physi-
cal mechanical systems. The two minimal architectures
presented in this study have been shown to e↵ectively
span the range of possible states to achieve the desired
behavior quickly, smoothly, and e↵ectively. Further, our
experimental demonstrations exhibit successful learning
behaviors that are not accounted for by simulation, thus
lending credence to the robustness of our algorithm. The
success of these initial experiments shows promise for
scalable learning networks in more complex systems.

II. COUPLED LEARNING FOR

SPRING-TURNBUCKLE SYSTEMS

We construct a mechanical network such as the one
depicted in Fig. 1(a). Each ith edge of this network is
an extension spring with the same sti↵ness k and rest
length l connected to a rigid turnbuckle with adjustable
length Li, as drawn schematically in the inset of Fig. 1(a).
The total node-node separation of the edge, including the
length of the rigid part, is si, such that the spring’s ex-
tension past its rest length is si�(l+Li). The mechanical
energy associated with this edge is given by Hooke’s law
as

ui =
1

2
k [si � (l + Li)]

2 . (1)

The total mechanical energy in the network is the sum
of the elastic energies of all edges,

U =
X

j

uj , (2)

and serves as the “physical cost function” which the
system automatically minimizes subject to the imposed
boundary conditions.
We wish to train this network to achieve some desired

behavior in the positions of its nodes. This is what is
referred to as a “motion task.” We select certain nodes
to be “inputs” and “outputs” for our task, depicted in
Fig. 1(a) as blue and red filled circles, respectively. When
the input node is at position xI , we want the output
node’s position xO to be at some desired value, xD.
We train for this behavior by iteratively adjusting the

turnbuckle lengths at each edge according to the coupled
learning algorithm [16]. Here, the positions of each node
in the system serve as the “physical degrees of freedom,”
which equilibrate so that there is no net force on each
edge, while the adjustable rest lengths act as the “learn-
ing degrees of freedom” to be adjusted during training.
In the free state, Fig. 1(a), we apply the input boundary
condition to the network by fixing the position of the in-
put node, xI , and allowing all other physical degrees of
freedom to equilibrate. The output node’s position xO is
measured, along with the extensions of each edge in the
network, sF

i
. In the clamped state, Fig. 1(b), we once

again apply the input boundary condition, but now we
also enforce a fixed value for the position of the output
node by “nudging” it towards the desired position xD.
The clamped output value xC generally takes the form

xC = xF + ⌘(xD � xF ), (3)

where the “nudge factor” 0 < ⌘  1 is a hyperparameter
of the training scheme. In all experiments below, we take
a full nudge of ⌘ = 1 so the output node is clamped at
the desired position at each learning step. The lengths
sC
i

of each edge in this state are also recorded.
In coupled learning, the system evolves by comparing

the mechanical energy of the network in the free and
clamped states. Learning is achieved when the energy in
the clamped state UC is equal to the energy in the free
state UF . In the absence of nonlinear mechanical e↵ects
like buckling, the di↵erence between these energies, which
we refer to as the “learning contrast function”, is always
non-negative because the clamped state is more strongly
constrained than the free state, UC�UF � 0. Analogous
to the machine-learning approach of minimizing a loss
function like mean-squared error (MSE), the rest lengths
evolve by descending along the gradient of the contrast
function:

dLi

dt
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Since the learning contrast function was not squared, the
partial derivative in Eq. (4) picks out only the j = i term,
which is readily simplified to Eq. (6) using Eq. (1). Thus,
we arrive at the following general discrete learning rule
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sponse to force patterns [28] based on a local supervised
learning rule that softens elements only when they fold
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In this paper, we tune each edge’s rest length, rather
than its sti↵ness. Using rest length as the learning de-
gree of freedom requires special consideration, as each
iterative learning step will alter the equilibrium state of
the network. Additionally, unlike bond sti↵nesses that
are directly analogous to conductances in flow networks,
the rest length has no direct analogy and is unique to
mechanical systems. In our approach, a turnbuckle is
connected to a Hookean spring at its end, and by ad-
justing the length of the turnbuckle, the e↵ective rest
length of combination spring-turnbuckle edge is altered.
Since updates are not automated but rather made man-
ually, it is imperative to choose architectures that min-
imize the number of tunable edges while still exhibit-
ing a diversity of tunable behaviors. Here we provide
two laboratory demonstrations of experimental mechan-
ical systems that can train using coupled learning with
adjustable rest length components, and we compare with
simulation. Our systems can optimize for a generic task
without the use of a computer, placing them among the
first supervised local learning demonstrations in physi-
cal mechanical systems. The two minimal architectures
presented in this study have been shown to e↵ectively
span the range of possible states to achieve the desired
behavior quickly, smoothly, and e↵ectively. Further, our
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behaviors that are not accounted for by simulation, thus
lending credence to the robustness of our algorithm. The
success of these initial experiments shows promise for
scalable learning networks in more complex systems.
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We construct a mechanical network such as the one
depicted in Fig. 1(a). Each ith edge of this network is
an extension spring with the same sti↵ness k and rest
length l connected to a rigid turnbuckle with adjustable
length Li, as drawn schematically in the inset of Fig. 1(a).
The total node-node separation of the edge, including the
length of the rigid part, is si, such that the spring’s ex-
tension past its rest length is si�(l+Li). The mechanical
energy associated with this edge is given by Hooke’s law
as
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The total mechanical energy in the network is the sum
of the elastic energies of all edges,
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and serves as the “physical cost function” which the
system automatically minimizes subject to the imposed
boundary conditions.
We wish to train this network to achieve some desired

behavior in the positions of its nodes. This is what is
referred to as a “motion task.” We select certain nodes
to be “inputs” and “outputs” for our task, depicted in
Fig. 1(a) as blue and red filled circles, respectively. When
the input node is at position xI , we want the output
node’s position xO to be at some desired value, xD.
We train for this behavior by iteratively adjusting the

turnbuckle lengths at each edge according to the coupled
learning algorithm [16]. Here, the positions of each node
in the system serve as the “physical degrees of freedom,”
which equilibrate so that there is no net force on each
edge, while the adjustable rest lengths act as the “learn-
ing degrees of freedom” to be adjusted during training.
In the free state, Fig. 1(a), we apply the input boundary
condition to the network by fixing the position of the in-
put node, xI , and allowing all other physical degrees of
freedom to equilibrate. The output node’s position xO is
measured, along with the extensions of each edge in the
network, sF
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. In the clamped state, Fig. 1(b), we once

again apply the input boundary condition, but now we
also enforce a fixed value for the position of the output
node by “nudging” it towards the desired position xD.
The clamped output value xC generally takes the form

xC = xF + ⌘(xD � xF ), (3)

where the “nudge factor” 0 < ⌘  1 is a hyperparameter
of the training scheme. In all experiments below, we take
a full nudge of ⌘ = 1 so the output node is clamped at
the desired position at each learning step. The lengths
sC
i

of each edge in this state are also recorded.
In coupled learning, the system evolves by comparing

the mechanical energy of the network in the free and
clamped states. Learning is achieved when the energy in
the clamped state UC is equal to the energy in the free
state UF . In the absence of nonlinear mechanical e↵ects
like buckling, the di↵erence between these energies, which
we refer to as the “learning contrast function”, is always
non-negative because the clamped state is more strongly
constrained than the free state, UC�UF � 0. Analogous
to the machine-learning approach of minimizing a loss
function like mean-squared error (MSE), the rest lengths
evolve by descending along the gradient of the contrast
function:
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Since the learning contrast function was not squared, the
partial derivative in Eq. (4) picks out only the j = i term,
which is readily simplified to Eq. (6) using Eq. (1). Thus,
we arrive at the following general discrete learning rule
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FIG. 1. Schematic detailing the coupled learning algorithm for an arbitrary elastic network. A mechanical network is constructed
such that each ith edge consists of a spring with sti↵ness k connected to a turnbuckle with adjustable rest length Li. The springs
act as the edges of the network, and their connection points are nodes. Specific nodes are chosen as “inputs” and “outputs” for
the network to learn a desired task. Some nodes (gray) are fixed to prevent translation and rotation of the entire network, and
the remaining nodes move in response to imposed boundary conditions. (a) In the free state, the position of the input node x

I

is enforced, and the position of the output node is measured x
O. Each ith edge has length (i.e. node-node separation) sFi . (b)

In the clamped state, the input node’s position is still fixed at x
I and the output node is “clamped” to position x

C . Each ith

has length sCi . (c) By locally comparing the lengths of each edge, the update rule in Eq. (7) determines how Li evolves.

for how to update each edge at each training step for any
network of identical spring-turnbuckle edges:

�Li = ↵(sC
i
� sF

i
) (7)

where ↵ is a per-step learning rate that we shall set in
experiment, and (sC

i
� sF

i
) is the di↵erence in clamped

and free lengths of the edge being updated. This simple
rule is purely local: each edge is updates according only
to it’s behavior, irrespective of how other edges change
upon clamping. As discussed below, we train with di↵er-
ent learning rate parameters in the range 0.1 < ↵  1. It-
erative updates should drive the global learning contrast
function to zero in order to achieve the desired motion
function.

While our Eq. (7) update rule is spatially local, it is
not temporally local because the learning rule requires si-
multaneous information about the system in two states.
The experimental implementation in an electrical resistor
network [22] was able to circumvent this issue by build-
ing identical twin networks to run the free and clamped
states simultaneously. By contrast, the mechanical net-
work is embedded in space, posing di�culties for con-
structing twin 2-dimensional networks side-by-side, and
an impossibility entirely for 3-dimensional implementa-
tions. Therefore, our approach must rely on temporal
memory of the spring extensions between the free and
clamped states.

III. MOTION DIVIDER

Analogous to the voltage divider in the electrical net-
work case, our first demonstration is a “motion divider”

network, or two tunable-rest length springs connected in
series. A photograph of the network is shown in Fig. 2(a).
We construct the network so it is hanging vertically un-
der gravity from a fixed point, thereby restricting the
motion to be along the axis of gravity. We define the
one-dimensional position y = 0 to be at the fixed hang-
ing point, and y > 0 measures position downwards from
this origin. The first spring is connected to the y = 0
fixed point via a turnbuckle of length L1, terminating at
position y1. The second turnbuckle of length L2 then
connects to the second spring, which terminates at posi-
tion y2. We choose y2 to be the input node of our system
and y1 to be the output node. Both springs have equal
sti↵nesses k and natural rest lengths l, so that the Eq. (7)
learning rule applies. The forces acting on springs in se-
ries are equal, so k(y1 � l � L1) = k(y2 � y1 � l � L2)
holds and can be solved for the output node position as

y1 =
1

2
y2 + a (8)

where a = 1
2 (L1�L2). Choosing some desired numerical

value for a defines a trainable task for our system. This is
equivalent to a machine-learning linear regression prob-
lem with one variable coe�cient [30]. Note that there is
no unique solution for L1 and L2; only their di↵erence
is trained for. Like typical machine learning algorithms,
our system is over-parameterized and thus has multiple
solutions.

A. Apparatus

Each unit cell of our network consists of an extension
spring coupled to a turnbuckle in series, as shown dia-

is a local update rule!
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FIG. 1. Schematic detailing the coupled learning algorithm for an arbitrary elastic network. A mechanical network is constructed
such that each ith edge consists of a spring with sti↵ness k connected to a turnbuckle with adjustable rest length Li. The springs
act as the edges of the network, and their connection points are nodes. Specific nodes are chosen as “inputs” and “outputs” for
the network to learn a desired task. Some nodes (gray) are fixed to prevent translation and rotation of the entire network, and
the remaining nodes move in response to imposed boundary conditions. (a) In the free state, the position of the input node x

I

is enforced, and the position of the output node is measured x
O. Each ith edge has length (i.e. node-node separation) sFi . (b)

In the clamped state, the input node’s position is still fixed at x
I and the output node is “clamped” to position x

C . Each ith

has length sCi . (c) By locally comparing the lengths of each edge, the update rule in Eq. (7) determines how Li evolves.

In coupled learning, the system evolves by comparing
the mechanical energy of the network in the free and
clamped states. Learning is achieved when the energy in
the clamped state UC is equal to the energy in the free
state UF . In the absence of nonlinear mechanical e↵ects
like buckling, the di↵erence between these energies, which
we refer to as the “learning contrast function”, is always
non-negative because the clamped state is more strongly
constrained than the free state, UC�UF � 0. Analogous
to the machine-learning approach of minimizing a loss
function like mean-squared error (MSE), the rest lengths
evolve by descending along the gradient of the contrast
function:
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Since the learning contrast function was not squared, the
partial derivative in Eq. (4) picks out only the j = i
term, which is readily simplified to Eq. (6) using Eq. (1).
Thus, we arrive at the following general discrete learning
rule for each edge’s update over a learning step for any
network of identical spring-turnbuckle edges:

�Li = ↵(sC
i
� sF

i
) (7)

where ↵ is a per-step learning rate that we shall set in
experiment, and (sC

i
� sF

i
) is the di↵erence in clamped

and free lengths of the edge being updated. This simple
rule is purely local: each edge is updates according only
to its behavior, irrespective of how other edges change

upon clamping. In the experiments presented below, we
train with di↵erent learning rate parameters in the range
0.1 < ↵  1. Iterative updates should drive the global
learning contrast function to zero in order to achieve the
desired motion function. Appendix D details the condi-
tions under which the local and global update rules align.
While our Eq. (7) update rule is spatially local, it is

not temporally local because the learning rule requires si-
multaneous information about the system in two states.
The experimental implementation in an electrical resistor
network [14] was able to circumvent this issue by build-
ing identical twin networks to run the free and clamped
states simultaneously. By contrast, the mechanical net-
work is embedded in space, posing di�culties for con-
structing twin 2-dimensional networks side-by-side, and
an impossibility entirely for 3-dimensional implementa-
tions. Therefore, our approach must rely on temporal
memory of the spring extensions between the free and
clamped states.

III. MOTION DIVIDER

Analogous to the voltage divider in the electrical net-
work case, our first demonstration is a “motion divider”
network, or two tunable-rest length springs connected in
series. A photograph of the network is shown in Fig. 2(a).
We construct the network so it is hanging vertically un-
der gravity from a fixed point, thereby restricting the
motion to be along the axis of gravity. We define the
one-dimensional position y = 0 to be at the fixed hang-
ing point, and y > 0 measures position downwards from
this origin. The first spring is connected to the y = 0

Adjust turnbuckle
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FIG. 1. Schematic detailing the coupled learning algorithm for an arbitrary elastic network. A mechanical network is constructed
such that each ith edge consists of a spring with sti↵ness k connected to a turnbuckle with adjustable rest length Li. The springs
act as the edges of the network, and their connection points are nodes. Specific nodes are chosen as “inputs” and “outputs” for
the network to learn a desired task. Some nodes (gray) are fixed to prevent translation and rotation of the entire network, and
the remaining nodes move in response to imposed boundary conditions. (a) In the free state, the position of the input node x

I

is enforced, and the position of the output node is measured x
O. Each ith edge has length (i.e. node-node separation) sFi . (b)

In the clamped state, the input node’s position is still fixed at x
I and the output node is “clamped” to position x

C . Each ith

has length sCi . (c) By locally comparing the lengths of each edge, the update rule in Eq. (7) determines how Li evolves.

for how to update each edge at each training step for any
network of identical spring-turnbuckle edges:

�Li = ↵(sC
i
� sF

i
) (7)

where ↵ is a per-step learning rate that we shall set in
experiment, and (sC

i
� sF

i
) is the di↵erence in clamped

and free lengths of the edge being updated. This simple
rule is purely local: each edge is updates according only
to it’s behavior, irrespective of how other edges change
upon clamping. As discussed below, we train with di↵er-
ent learning rate parameters in the range 0.1 < ↵  1. It-
erative updates should drive the global learning contrast
function to zero in order to achieve the desired motion
function.

While our Eq. (7) update rule is spatially local, it is
not temporally local because the learning rule requires si-
multaneous information about the system in two states.
The experimental implementation in an electrical resistor
network [22] was able to circumvent this issue by build-
ing identical twin networks to run the free and clamped
states simultaneously. By contrast, the mechanical net-
work is embedded in space, posing di�culties for con-
structing twin 2-dimensional networks side-by-side, and
an impossibility entirely for 3-dimensional implementa-
tions. Therefore, our approach must rely on temporal
memory of the spring extensions between the free and
clamped states.

III. MOTION DIVIDER

Analogous to the voltage divider in the electrical net-
work case, our first demonstration is a “motion divider”

network, or two tunable-rest length springs connected in
series. A photograph of the network is shown in Fig. 2(a).
We construct the network so it is hanging vertically un-
der gravity from a fixed point, thereby restricting the
motion to be along the axis of gravity. We define the
one-dimensional position y = 0 to be at the fixed hang-
ing point, and y > 0 measures position downwards from
this origin. The first spring is connected to the y = 0
fixed point via a turnbuckle of length L1, terminating at
position y1. The second turnbuckle of length L2 then
connects to the second spring, which terminates at posi-
tion y2. We choose y2 to be the input node of our system
and y1 to be the output node. Both springs have equal
sti↵nesses k and natural rest lengths l, so that the Eq. (7)
learning rule applies. The forces acting on springs in se-
ries are equal, so k(y1 � l � L1) = k(y2 � y1 � l � L2)
holds and can be solved for the output node position as

y1 =
1

2
y2 + a (8)

where a = 1
2 (L1�L2). Choosing some desired numerical

value for a defines a trainable task for our system. This is
equivalent to a machine-learning linear regression prob-
lem with one variable coe�cient [30]. Note that there is
no unique solution for L1 and L2; only their di↵erence
is trained for. Like typical machine learning algorithms,
our system is over-parameterized and thus has multiple
solutions.

A. Apparatus

Each unit cell of our network consists of an extension
spring coupled to a turnbuckle in series, as shown dia-
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• Identical springs in series: move free end (y2) and learn a desired motion of 
middle node (y1) by adjusting turnbuckle lengths {L1, L2}

• Range of motion tasks that can be learned:

Force balance:

Solution:

• Overparameterized: {L1, L2} can evolve to a multitude of
    of final values giving the desired value of 𝑎

Example-1: Motion divider 4

FIG. 2. Training a mechanical motion divider to obtain de-
sired behavior in the form of an additive constant a. (a)
Photograph of the experimental apparatus. Two springs in
series are hung vertically from a fixed point. The positions
of the two nodes relative to the fixed point, y1 and y2, serve
as the target and source for the training task, respectively.
The learning degrees of freedom, L1, L2, determine the rela-
tionship between the node positions. (b) Results of training
the network four consecutive times. Di↵erent goal values for
a (dashed gray line) and learning rates ↵ were used for each
consecutive training. (c) Evolution of the learning degrees
of freedom over the course of training. L1 (orange) evolves
inversely to L2 (green) as the network approaches the goal
state. Rest lengths were not reset to their initial values after
each successful training.

grammatically in Fig. 1 and photographically in Fig. 2(a).
The spring has a sti↵ness of k = 13N/cm and a rest
length of l = 5.5 cm (Grainger 5108N536), while the turn-
buckle has a range of lengths between Lmin = 12 cm and
Lmax = 16 cm (eoocvt M4 Stainless Steel 304). Up-
dates are made on the system via turns of the turn-
buckle, where each half-turn results in a change in length
of �L/turn = 0.079 cm. The total e↵ective rest length
of the unit cell object is therefore l + Li. These unit
cells are connected together using keyrings, which serve
functionally as the nodes of our network. The system is
clamped at the nodes manually by inserting a small rod
through the keyrings and fixing its position up or down
using a clamp on a vertical pole. Measurements were
made manually by the experimenter using a ruler.

B. Results

Fig. 2(b) shows the evolution of the node couplings
over the course of training. The network is trained mul-
tiple times to achieve di↵erent values for the goal state,
a. The turnbuckle lengths were not reset after each train-
ing; instead, the network was able to re-learn a new task

Trial True a [cm] Fit a [cm] True ↵ Fit ↵
(a) 2.00 2.25 0.16 0.13
(b) -1.00 -1.11 0.32 0.37
(c) 0.70 0.73 0.48 0.56
(d) -1.20 -1.23 0.40 0.49

FIG. 3. Comparison of motion divider learning dynamics with
theoretical prediction. The time-evolution of the physical be-
havior for each of the four trials from Fig. 2(b) are separately
fit to an exponential form and values for the goal state a and
the learning rate ↵ are obtained. The table (bottom) com-
pares these fitted values with the true experimental values for
a and ↵ for each of the four trials.

without initialization. The evolution of the learning de-
grees of freedom, L1, L2 is shown in Fig. 2(c). Each time
we change the training task a, we also choose a di↵erent
learning rate to demonstrate that the network may be
trained in di↵erent time frames.

Training time required to reach the desired state is
determined both by the learning rate and the distance
in parameter space between the network’s initial and fi-
nal states. The physical and learning degrees of freedom
are expected to evolve exponentially and asymptotically
approach their desired values over the course of train-
ing. For a full derivation of the learning dynamics, see
Supplemental Information, Sec. A. Fig. 3 presents each
of the four trials of training separately. Each of these
is fit to the derived time-evolution Eq. (A13), where ⌫t
has been replaced by ↵n, with n being the number of
training steps. The fits are overlaid on the data in red.
The table below compares the true values for a and ↵
with those obtained from the exponential fit, and finds
good agreement, with an average error of 12%. By com-
paring fitted values for a with the true values, we may
also obtain an estimate of the measurement error, where
✏ ⇠ h�ai = 0.1 cm.
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fixed point via a turnbuckle of length L1, terminating at
position y1. The second turnbuckle of length L2 then
connects to the second spring, which terminates at posi-
tion y2. We choose y2 to be the input node of our system
and y1 to be the output node. Both springs have equal
sti↵nesses k and natural rest lengths l, so that the Eq. (7)
learning rule applies. The forces acting on springs in se-
ries are equal, so k(y1 � l � L1) = k(y2 � y1 � l � L2)
holds and can be solved for the output node position as

y1 =
1

2
y2 + a (8)

where a = 1
2 (L1 � L2). Choosing some desired fixed

value for a defines a trainable task for our system. This
is equivalent to a machine-learning linear regression prob-
lem with one variable coe�cient [34]. Note that there is
no unique solution for L1 and L2; only their di↵erence
is trained for. Like typical machine learning algorithms,
our system is over-parameterized and thus has multiple
solutions.

A. Apparatus

Each unit cell of our network consists of an extension
spring coupled to a turnbuckle in series, as shown dia-
grammatically in Fig. 1 and photographically in Fig. 2(a).
The spring has a sti↵ness of k = 13N/cm and a rest
length of l = 5.5 cm (Grainger 5108N536), while the turn-
buckle has a range of lengths between Lmin = 12 cm and
Lmax = 16 cm (eoocvt M4 Stainless Steel 304). Up-
dates are made on the system via turns of the turn-
buckle, where each half-turn results in a change in length
of �L/turn = 0.079 cm. The total e↵ective rest length
of the unit cell object is therefore l + Li. These unit
cells are connected together using keyrings, which serve
functionally as the nodes of our network. The system is
clamped at the nodes manually by inserting a small rod
through the keyrings and fixing its position up or down
using a clamp on a vertical pole. Measurements were
made manually by the experimenter using a ruler.

B. Results

Fig. 2(b) shows the evolution of the node couplings
over the course of training. The network is trained mul-
tiple times to achieve di↵erent values for the goal state,
a. The turnbuckle lengths were not reset after each train-
ing; instead, the network was able to re-learn a new task
without initialization. The evolution of the learning de-
grees of freedom, L1, L2 is shown in Fig. 2(c). Each time
we change the training task a, we also choose a di↵erent
learning rate to demonstrate that the network may be
trained at di↵erent time scales.

Training time required to reach the desired state is
determined both by the learning rate and the distance

FIG. 2. Training a mechanical motion divider to obtain de-
sired behavior in the form of an additive constant a. (a)
Photograph of the experimental apparatus. Two springs in
series are hung vertically from a fixed point. The positions
of the two nodes relative to the fixed point, y1 and y2, serve
as the target and source for the training task, respectively.
The learning degrees of freedom, L1, L2, determine the rela-
tionship between the node positions. (b) Results of training
the network four consecutive times. Di↵erent goal values for
a (dashed gray line) and learning rates ↵ were used for each
consecutive training. (c) Evolution of the learning degrees
of freedom over the course of training. L1 (orange) evolves
inversely to L2 (green) as the network approaches the goal
state. Rest lengths were not reset to their initial values after
each successful training.

in parameter space between the network’s initial and fi-
nal states. The physical and learning degrees of freedom
are expected to evolve exponentially and asymptotically
approach their desired values over the course of train-
ing. For a full derivation of the learning dynamics, see
Appendix A. Fig. 3 presents each of the four trials of
training separately. Each of these is fit to the derived
time-evolution Eq. (A13), where ⌫t has been replaced by
↵n, with n being the number of training steps. The fits
are overlaid on the data in red. The table below com-
pares the true values for a and ↵ with those obtained
from the exponential fit, and finds good agreement, with
an average error of 12%. By comparing fitted values for
a with the true values, we may also obtain an estimate
of the measurement error, where ✏ ⇠ h�ai = 0.1 cm.

IV. SYMMETRY NETWORK

We further demonstrate our system’s ability to learn
more complex tasks by constructing a two-dimensional
network within a frame. The network is shown schemat-
ically and photographically in Fig. 4(a-b). Four of the
edges are fixed to rigid a 45 cm⇥40 cm frame constructed
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an average error of 12%. By comparing fitted values for
a with the true values, we may also obtain an estimate
of the measurement error, where ✏ ⇠ h�ai = 0.1 cm.

IV. SYMMETRY NETWORK

We further demonstrate our system’s ability to learn
more complex tasks by constructing a two-dimensional
network within a frame. The network is shown schemat-
ically and photographically in Fig. 4(a-b). Four of the
edges are fixed to rigid a 45 cm⇥40 cm frame constructed

12



7

• Task

• Update rule

– Converges to desired task in
    all four cases!

Different “a” tasks and learning rates

4

fixed point via a turnbuckle of length L1, terminating at
position y1. The second turnbuckle of length L2 then
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The spring has a sti↵ness of k = 13N/cm and a rest
length of l = 5.5 cm (Grainger 5108N536), while the turn-
buckle has a range of lengths between Lmin = 12 cm and
Lmax = 16 cm (eoocvt M4 Stainless Steel 304). Up-
dates are made on the system via turns of the turn-
buckle, where each half-turn results in a change in length
of �L/turn = 0.079 cm. The total e↵ective rest length
of the unit cell object is therefore l + Li. These unit
cells are connected together using keyrings, which serve
functionally as the nodes of our network. The system is
clamped at the nodes manually by inserting a small rod
through the keyrings and fixing its position up or down
using a clamp on a vertical pole. Measurements were
made manually by the experimenter using a ruler.

B. Results

Fig. 2(b) shows the evolution of the node couplings
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tiple times to achieve di↵erent values for the goal state,
a. The turnbuckle lengths were not reset after each train-
ing; instead, the network was able to re-learn a new task
without initialization. The evolution of the learning de-
grees of freedom, L1, L2 is shown in Fig. 2(c). Each time
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learning rate to demonstrate that the network may be
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from the exponential fit, and finds good agreement, with
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FIG. 1. Schematic detailing the coupled learning algorithm for an arbitrary elastic network. A mechanical network is constructed
such that each ith edge consists of a spring with sti↵ness k connected to a turnbuckle with adjustable rest length Li. The springs
act as the edges of the network, and their connection points are nodes. Specific nodes are chosen as “inputs” and “outputs” for
the network to learn a desired task. Some nodes (gray) are fixed to prevent translation and rotation of the entire network, and
the remaining nodes move in response to imposed boundary conditions. (a) In the free state, the position of the input node x

I

is enforced, and the position of the output node is measured x
O. Each ith edge has length (i.e. node-node separation) sFi . (b)

In the clamped state, the input node’s position is still fixed at x
I and the output node is “clamped” to position x

C . Each ith

has length sCi . (c) By locally comparing the lengths of each edge, the update rule in Eq. (7) determines how Li evolves.

In coupled learning, the system evolves by comparing
the mechanical energy of the network in the free and
clamped states. Learning is achieved when the energy in
the clamped state UC is equal to the energy in the free
state UF . In the absence of nonlinear mechanical e↵ects
like buckling, the di↵erence between these energies, which
we refer to as the “learning contrast function”, is always
non-negative because the clamped state is more strongly
constrained than the free state, UC�UF � 0. Analogous
to the machine-learning approach of minimizing a loss
function like mean-squared error (MSE), the rest lengths
evolve by descending along the gradient of the contrast
function:
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Since the learning contrast function was not squared, the
partial derivative in Eq. (4) picks out only the j = i
term, which is readily simplified to Eq. (6) using Eq. (1).
Thus, we arrive at the following general discrete learning
rule for each edge’s update over a learning step for any
network of identical spring-turnbuckle edges:

�Li = ↵(sC
i
� sF

i
) (7)

where ↵ is a per-step learning rate that we shall set in
experiment, and (sC

i
� sF

i
) is the di↵erence in clamped

and free lengths of the edge being updated. This simple
rule is purely local: each edge is updates according only
to its behavior, irrespective of how other edges change

upon clamping. In the experiments presented below, we
train with di↵erent learning rate parameters in the range
0.1 < ↵  1. Iterative updates should drive the global
learning contrast function to zero in order to achieve the
desired motion function. Appendix D details the condi-
tions under which the local and global update rules align.
While our Eq. (7) update rule is spatially local, it is

not temporally local because the learning rule requires si-
multaneous information about the system in two states.
The experimental implementation in an electrical resistor
network [14] was able to circumvent this issue by build-
ing identical twin networks to run the free and clamped
states simultaneously. By contrast, the mechanical net-
work is embedded in space, posing di�culties for con-
structing twin 2-dimensional networks side-by-side, and
an impossibility entirely for 3-dimensional implementa-
tions. Therefore, our approach must rely on temporal
memory of the spring extensions between the free and
clamped states.

III. MOTION DIVIDER

Analogous to the voltage divider in the electrical net-
work case, our first demonstration is a “motion divider”
network, or two tunable-rest length springs connected in
series. A photograph of the network is shown in Fig. 2(a).
We construct the network so it is hanging vertically un-
der gravity from a fixed point, thereby restricting the
motion to be along the axis of gravity. We define the
one-dimensional position y = 0 to be at the fixed hang-
ing point, and y > 0 measures position downwards from
this origin. The first spring is connected to the y = 0

4

FIG. 2. Training a mechanical motion divider to obtain de-
sired behavior in the form of an additive constant a. (a)
Photograph of the experimental apparatus. Two springs in
series are hung vertically from a fixed point. The positions
of the two nodes relative to the fixed point, y1 and y2, serve
as the target and source for the training task, respectively.
The learning degrees of freedom, L1, L2, determine the rela-
tionship between the node positions. (b) Results of training
the network four consecutive times. Di↵erent goal values for
a (dashed gray line) and learning rates ↵ were used for each
consecutive training. (c) Evolution of the learning degrees
of freedom over the course of training. L1 (orange) evolves
inversely to L2 (green) as the network approaches the goal
state. Rest lengths were not reset to their initial values after
each successful training.

grammatically in Fig. 1 and photographically in Fig. 2(a).
The spring has a sti↵ness of k = 13N/cm and a rest
length of l = 5.5 cm (Grainger 5108N536), while the turn-
buckle has a range of lengths between Lmin = 12 cm and
Lmax = 16 cm (eoocvt M4 Stainless Steel 304). Up-
dates are made on the system via turns of the turn-
buckle, where each half-turn results in a change in length
of �L/turn = 0.079 cm. The total e↵ective rest length
of the unit cell object is therefore l + Li. These unit
cells are connected together using keyrings, which serve
functionally as the nodes of our network. The system is
clamped at the nodes manually by inserting a small rod
through the keyrings and fixing its position up or down
using a clamp on a vertical pole. Measurements were
made manually by the experimenter using a ruler.

B. Results

Fig. 2(b) shows the evolution of the node couplings
over the course of training. The network is trained mul-
tiple times to achieve di↵erent values for the goal state,
a. The turnbuckle lengths were not reset after each train-
ing; instead, the network was able to re-learn a new task

Trial True a [cm] Fit a [cm] True ↵ Fit ↵
(a) 2.00 2.25 0.16 0.13
(b) -1.00 -1.11 0.32 0.37
(c) 0.70 0.73 0.48 0.56
(d) -1.20 -1.23 0.40 0.49

FIG. 3. Comparison of motion divider learning dynamics with
theoretical prediction. The time-evolution of the physical be-
havior for each of the four trials from Fig. 2(b) are separately
fit to an exponential form and values for the goal state a and
the learning rate ↵ are obtained. The table (bottom) com-
pares these fitted values with the true experimental values for
a and ↵ for each of the four trials.

without initialization. The evolution of the learning de-
grees of freedom, L1, L2 is shown in Fig. 2(c). Each time
we change the training task a, we also choose a di↵erent
learning rate to demonstrate that the network may be
trained in di↵erent time frames.

Training time required to reach the desired state is
determined both by the learning rate and the distance
in parameter space between the network’s initial and fi-
nal states. The physical and learning degrees of freedom
are expected to evolve exponentially and asymptotically
approach their desired values over the course of train-
ing. For a full derivation of the learning dynamics, see
Supplemental Information, Sec. A. Fig. 3 presents each
of the four trials of training separately. Each of these
is fit to the derived time-evolution Eq. (A13), where ⌫t
has been replaced by ↵n, with n being the number of
training steps. The fits are overlaid on the data in red.
The table below compares the true values for a and ↵
with those obtained from the exponential fit, and finds
good agreement, with an average error of 12%. By com-
paring fitted values for a with the true values, we may
also obtain an estimate of the measurement error, where
✏ ⇠ h�ai = 0.1 cm.
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• Clamping
• Gives

• Thus, we take full h=1 nudge in experiments

• Turn this into ODEs and solve:

where nt = a x number of training steps

à exponential convergence, matches data

Learning Dynamics of                        ? 5

Trial True a [cm] Fit a [cm] True ↵ Fit ↵
(a) 2.00 2.25 0.16 0.13
(b) -1.00 -1.11 0.32 0.37
(c) 0.70 0.73 0.48 0.56
(d) -1.20 -1.23 0.40 0.49

FIG. 3. Comparison of motion divider learning dynamics with
theoretical prediction. The time-evolution of the physical be-
havior for each of the four trials from Fig. 2(b) are separately
fit to an exponential form and values for the goal state a and
the learning rate ↵ are obtained. The table (bottom) com-
pares these fitted values with the true experimental values for
a and ↵ for each of the four trials.

from 80/20, with the fifth central edge connecting the
two internal nodes of the system. Edges are typically
stretched past their rest length value by about 6 cm to
prevent buckling. Edges are labeled by number and
nodes are denoted as source (blue) and target (red).

The goal is to train this network to become left-right
symmetric, which occurs when L1 = L2 and L4 = L5.
This task may be encoded in the physical degrees of free-
dom (node positions) of the network with the condition:

xtarget = xsource = 0 for any ysource value,

where x = 0 is defined to be the midline between the fixed
nodes on either side. This choice of task is not unique:
other tasks can be “solved” by the desired symmetric
state, see Appendix C. We may then train the network
for this one-input, two-output task using a single data
point.

A. Experiment

The symmetry network was constructed using the same
unit cell design as in the motion divider in Section III.
The springs used here have a natural rest length of l =
5.5cm and a sti↵ness of 27.8N/cm (Grainger 1NAA2).

The external frame of the network was constructed from
80/20 parts and eyeholes screwed into the rail serve as
the fixed nodes.
Training this network requires only one input-output

pair. Both outputs, xsource and xtarget, have desired val-
ues that are directly central in the frame. Since training
can occur for any choice of the input value, ysource, we
choose the equilibrium position of this node in its initial
state for simplicity.
It is important to note that the physical degrees of

freedom of a single node are mixed: the “source” node
acts as an input in the y-direction and as an output in
the x-direction. The coupled learning algorithm allows
for this seemingly strange coupling, and the network is
still trainable under this scheme. The mixing of degrees
of freedom was achieved experimentally by aligning the
nodes along 80/20 tracks, as can be seen in the photos
in Fig. 4(a-b). In the free state, we fix the input value
for the training task, ysource, by attaching the node to
a slide-in nylon tool hanger which slots into a horizon-
tal 80/20 track so its vertical position is fixed. The node
may still move along the horizontal direction with a small
coe�cient of static friction µ ⇡ 0.1 for nylon on dry alu-
minum. The target node is left unconstrained so both its
degrees of freedom can freely equilibrate. In the clamped
state, we fix both degrees of freedom of the bottom node,
{ysource, xsource}, by placing stoppers along the horizon-
tal track described previously. The horizontal position
of the top node, xtarget is restricted by placing it on a
vertical track using the same tool hanger as above, while
its vertical position ytarget is allowed to equilibrate freely.
Since this network requires measurements in two di-

mensions, we automate the measurement process using
a digital camera. As can be seen in the photographs in
Fig. 4(a-b), we attach pink markers to all 6 nodes, as well
as to the 5 points of connection between the turnbuckles
and springs. The camera captures a three-channel color
image of the entire network, where we choose a beneficial
white balance (2500K) and tint (M6.0) to maximize the
contrast between the markers and the remainder of the
image. We then split the color channels and subtract the
green channel from the red, leaving us with a one-channel
image with high intensity values at the pixels associated
with markers and low intensity everywhere else. The im-
age is then binarized using a threshold intensity value
of 100, which is in between the well-separated high and
low intensity values. The pixel values that have been
identified after binarization are then clustered into 11
clusters using a k-means algorithm [35]. The centroid of
each cluster is determined to be the (x, y) position of the
associated marker. This allows us to track all node posi-
tions, spring extensions, and turnbuckle lengths at every
stage of the experiment. For a given photograph with
11 markers such as the ones in Fig. 4, the full process-
ing and tracking takes approximately 0.7 s on a standard
Macbook Pro.
The results of training the physical network are shown

in Fig. 4(c-d). The learning degrees of freedom evolve

11

Appendix A: Motion Divider Learning Dynamics

For the motion divider, we can explicitly write out and
solve for the learning dynamics. In this task, we choose
an input value, y2, for the position of the end node. The
system is stretched and y2 is held fixed for both the free
and clamped states during the entire course of training.
The position of the middle node, y1, serves as the output.
It will change over the course of training, both between
free and clamped states and between training steps as L1

and L2 evolve. In the free state, force balance gives the
position of the middle node as

yF1 =
1

2
y2 +

1

2
(L1 � L2). (A1)

Before training, this di↵ers from the desired output value
given by

yD1 =
1

2
y2 + a. (A2)

for whatever value the user has chosen for a. During
training, the goal is to adjust the turnbuckle lengths so
that yF1 ! yD1 , which happens when (L1 � L2)/2 ! a.
The update rule to achieve this is based on comparing the
free state to the clamped state, where the output node
is clamped by nudge factor 0 < ⌘  1 toward the desired
position

yC1 = ⌘yD1 + (1� ⌘)yF1 . (A3)

The general discrete update rule, Eq. (7), may now be
evaluated by computing the node-node separations of
each edge in free and clamped states using the above
expressions. This gives

�L1 = ↵⌘

✓
a� L1 � L2

2

◆
(A4)

�L2 = ��L1 (A5)

Note that these updates are equal and opposite, and van-
ish when learning is achieved. Also note that the nudge
factor ⌘ and update factor ↵ equivalently a↵ect the rate
of learning. Thus, in experiment, we take ⌘ = 1 and
vary ↵ without loss of generality. It should be empha-
sized that in the lab we use only Eq. (7) to make the
updates based on measurement of node-node separations
in free and clamped states. In the lab, physics “com-
putes” yF1 automatically, whereas here in the appendix
we additionally bring force balance to bear in order to
predict learning dynamics.

To obtain di↵erential equations from the predicted
discrete update rules, one might guess that the time-
derivatives of L1 and L2 should be proportional to the
right-hand sides of Eqs. (A4)-(A5). This turns out to
be true. To see, recall that the elastic energy in the
clamped state must be greater than that in the free state
and the di↵erence serves as the coupled learning contrast

function. For the motion divider, it can be explicitly
computed using the above positions and simplifies to

C = UC � UF (A6)

= k⌘2
✓
a� L1 � L2

2

◆2

, (A7)

Not only is this intrinsically positive, it is proportional
to the loss function L = (yD1 �yF1 )

2. See Appendix D for
more details about when this proportionality is expected.
Therefore, gradient descent on C is perfectly aligned with
gradient descent on L. The resulting coupled learning
dynamical equations, dLi/dt = ��dC/dLi, simplify to

@L1

@t
= ⌫

✓
a� L1 � L2

2

◆
, (A8)

@L2

@t
= �@L1

@t
. (A9)

where ⌫ = �k⌘2 is a rate constant with units of 1/time.
These are in agreement with intuition from the discrete
version above.
The time-evolution equations, Eqs. (A8)-(A9) may be

directly integrated to obtain

L1(t) = e�⌫t

✓
L0
1

2
� L0

2

2
� a

◆
+ a+

L0
1

2
+

L0
2

2
, (A10)

L2(t) = e�⌫t

✓
a� L0

1

2
+

L0
2

2

◆
� a+

L0
1

2
+

L0
2

2
, (A11)

where L0
1 and L0

2 are the initial rest lengths of the two
edges, respectively. The network stops evolving when

����
L1 � L2

2
� a

����  ✏, (A12)

where ✏ is the desired training accuracy. Note that the
analytic solutions imply that the training error

L1(t)� L2(t)

2
� a = e�⌫t


L0
1 � L0

2

2
� a

�
. (A13)

decreases exponentially in time. Thus, the required du-
ration is set by the training rate ⌫, as well as the initial
conditions and the desired accuracy.

Appendix B: Relative and Absolute Node Positions

In each demonstration presented in this work, we train
using inputs and outputs node positions in an external
reference frame, rather than relative to their own equi-
librium positions. This is a necessary choice for success-
ful training in an elastic system using rest length as the
learning degree of freedom. One way to see this is to note
that training in coupled learning generally only requires
reference to the network under two sets of boundary con-
ditions, the free state and the clamped state, while this
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where ✏ is the desired training accuracy. Note that the
analytic solutions imply that the training error
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decreases exponentially in time. Thus, the required du-
ration is set by the training rate ⌫, as well as the initial
conditions and the desired accuracy.
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reference frame, rather than relative to their own equi-
librium positions. This is a necessary choice for success-
ful training in an elastic system using rest length as the
learning degree of freedom. One way to see this is to note
that training in coupled learning generally only requires
reference to the network under two sets of boundary con-
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FIG. 1. Schematic detailing the coupled learning algorithm for an arbitrary elastic network. A mechanical network is constructed
such that each ith edge consists of a spring with sti↵ness k connected to a turnbuckle with adjustable rest length Li. The springs
act as the edges of the network, and their connection points are nodes. Specific nodes are chosen as “inputs” and “outputs” for
the network to learn a desired task. Some nodes (gray) are fixed to prevent translation and rotation of the entire network, and
the remaining nodes move in response to imposed boundary conditions. (a) In the free state, the position of the input node x

I

is enforced, and the position of the output node is measured x
O. Each ith edge has length (i.e. node-node separation) sFi . (b)

In the clamped state, the input node’s position is still fixed at x
I and the output node is “clamped” to position x

C . Each ith

has length sCi . (c) By locally comparing the lengths of each edge, the update rule in Eq. (7) determines how Li evolves.

In coupled learning, the system evolves by comparing
the mechanical energy of the network in the free and
clamped states. Learning is achieved when the energy in
the clamped state UC is equal to the energy in the free
state UF . In the absence of nonlinear mechanical e↵ects
like buckling, the di↵erence between these energies, which
we refer to as the “learning contrast function”, is always
non-negative because the clamped state is more strongly
constrained than the free state, UC�UF � 0. Analogous
to the machine-learning approach of minimizing a loss
function like mean-squared error (MSE), the rest lengths
evolve by descending along the gradient of the contrast
function:

dLi

dt
/ � @

@Li

hX
uC

j
� uF

j

i
(4)

= � @

@Li

(uC

i
� uF

i
) (5)

= k(sC
i
� sF

i
) (6)

Since the learning contrast function was not squared, the
partial derivative in Eq. (4) picks out only the j = i
term, which is readily simplified to Eq. (6) using Eq. (1).
Thus, we arrive at the following general discrete learning
rule for each edge’s update over a learning step for any
network of identical spring-turnbuckle edges:

�Li = ↵(sC
i
� sF

i
) (7)

where ↵ is a per-step learning rate that we shall set in
experiment, and (sC

i
� sF

i
) is the di↵erence in clamped

and free lengths of the edge being updated. This simple
rule is purely local: each edge is updates according only
to its behavior, irrespective of how other edges change

upon clamping. In the experiments presented below, we
train with di↵erent learning rate parameters in the range
0.1 < ↵  1. Iterative updates should drive the global
learning contrast function to zero in order to achieve the
desired motion function. Appendix D details the condi-
tions under which the local and global update rules align.
While our Eq. (7) update rule is spatially local, it is

not temporally local because the learning rule requires si-
multaneous information about the system in two states.
The experimental implementation in an electrical resistor
network [14] was able to circumvent this issue by build-
ing identical twin networks to run the free and clamped
states simultaneously. By contrast, the mechanical net-
work is embedded in space, posing di�culties for con-
structing twin 2-dimensional networks side-by-side, and
an impossibility entirely for 3-dimensional implementa-
tions. Therefore, our approach must rely on temporal
memory of the spring extensions between the free and
clamped states.

III. MOTION DIVIDER

Analogous to the voltage divider in the electrical net-
work case, our first demonstration is a “motion divider”
network, or two tunable-rest length springs connected in
series. A photograph of the network is shown in Fig. 2(a).
We construct the network so it is hanging vertically un-
der gravity from a fixed point, thereby restricting the
motion to be along the axis of gravity. We define the
one-dimensional position y = 0 to be at the fixed hang-
ing point, and y > 0 measures position downwards from
this origin. The first spring is connected to the y = 0

14
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• Train to become left-right symmetrical by 
adjusting the five turnbuckle lengths.
Two-input / one output:  Tug source to center line at 
different heights and ask target to be on centerline

Multitude of solutions that could be learned: 
   {L1=L2 & L4=L5}; note that L3 plays no role

Example-2: Symmetrization
6

FIG. 4. Training a two-dimensional network for symmetry. (a-b) Schematics and photographs of the free and clamped states of
the network for a given initial configuration. Edges are labeled by number (a, top). Photographs of the experimental apparatus
show marker tracking system and clamping mechanism. (c-d) Experimental training results. Rest lengths (c) converge to the
symmetric state within experimental precision. The cost C = UC � UF (d) decreases by three orders of magnitude. (e-f)
Simulation training results. The rest lengths (e) evolve such that L1 = L2 and L4 = L5. Cost (f) decreases exponentially by
five orders of magnitude.

such that L1 comes to meet L2 and L4 meets L5 within
measurement error of 0.28cm in only 5 training steps.
The time evolution of these rest lengths follows a similar
trend as in the motion divider, where the largest adjust-
ments happen in the early training steps and updates
become asymptotically small as the network approaches
the learned state. See Appendix A for more information
about learning dynamics. The success of training may
also be measured by the cost function, C = UC � UF .
Fig. 4(d) shows that the cost decreases exponentially
from its initial value by about three orders of magnitude
overbthe course of training.

The middle edge L3 does not exhibit exponential time-
evolution behavior, but rather drifts upward over the
course of training by a total of 1.5 cm, or 37.5% of the
range of values. This linear evolution suggests some sys-
tematic experimental bias within the system, which may
be a result of friction or mechanical instability. Since
L3 has no bearing on the desired state, the network can
learn the task for any value of L3.

B. Simulation

There are many di↵erent ways to train for symmetry
in our two-dimensional network. Our goal for this task is
a specified internal state of the network, but the coupled
learning scheme requires that we specify a behavior in
the nodes that is satisfied by this internal state, of which
there are multiple options. We therefore use simulation

support to explore the di↵erent iterations of our task and
examine their behavioral dynamics. We may also use
simulation to modify the aspect ratio of the frame, as
the angles of the edges at the internal nodes contributes
to the coupling strength of the learning signal. Having
done this, we chose the training task and geometry that
allowed for the most e�cient evolution to the learned
state for our experimental demonstration.
We simulated training on this network using the FIRE

optimization algorithm to determine the network’s node
positions when boundary conditions are applied [36].
Here, each edge was allowed to vary between 0.5 and
1.0 length units, and all edge sti↵nesses were fixed at
the same value, 1. Initial edge lengths were selected at
random with validation that the network was su�ciently
detuned from its goal state.
The behavior that was used to train the network is a

one-input / two-output task, but we could have alterna-
tively defined a one-input, one-output task that is equally
satisfied by the symmetric state of the network. Training
on the one-input, one-output task was successful in sim-
ulation, but required very long training times that were
unfeasible for an experiment with manual operation. In
this case, L4 and L5 evolve quickly to their desired values
due to their strong coupling to the target node. L1 and
L2, however, are only connected directly to the source
node, which does not move in position very much be-
tween the free and clamped states, and therefore evolve
very slowly. For more information, see Appendix C. The
two-output task allows for a strong learning signal for all
of the edges in the network.

5

Trial True a [cm] Fit a [cm] True ↵ Fit ↵
(a) 2.00 2.25 0.16 0.13
(b) -1.00 -1.11 0.32 0.37
(c) 0.70 0.73 0.48 0.56
(d) -1.20 -1.23 0.40 0.49

FIG. 3. Comparison of motion divider learning dynamics with
theoretical prediction. The time-evolution of the physical be-
havior for each of the four trials from Fig. 2(b) are separately
fit to an exponential form and values for the goal state a and
the learning rate ↵ are obtained. The table (bottom) com-
pares these fitted values with the true experimental values for
a and ↵ for each of the four trials.

from 80/20, with the fifth central edge connecting the
two internal nodes of the system. Edges are typically
stretched past their rest length value by about 6 cm to
prevent buckling. Edges are labeled by number and
nodes are denoted as source (blue) and target (red).

The goal is to train this network to become left-right
symmetric, which occurs when L1 = L2 and L4 = L5.
This task may be encoded in the physical degrees of free-
dom (node positions) of the network with the condition:

xtarget = xsource = 0 for any ysource value,

where x = 0 is defined to be the midline between the fixed
nodes on either side. This choice of task is not unique:
other tasks can be “solved” by the desired symmetric
state, see Appendix C. We may then train the network
for this one-input, two-output task using a single data
point.

A. Experiment

The symmetry network was constructed using the same
unit cell design as in the motion divider in Section III.
The springs used here have a natural rest length of l =
5.5cm and a sti↵ness of 27.8N/cm (Grainger 1NAA2).

The external frame of the network was constructed from
80/20 parts and eyeholes screwed into the rail serve as
the fixed nodes.
Training this network requires only one input-output

pair. Both outputs, xsource and xtarget, have desired val-
ues that are directly central in the frame. Since training
can occur for any choice of the input value, ysource, we
choose the equilibrium position of this node in its initial
state for simplicity.
It is important to note that the physical degrees of

freedom of a single node are mixed: the “source” node
acts as an input in the y-direction and as an output in
the x-direction. The coupled learning algorithm allows
for this seemingly strange coupling, and the network is
still trainable under this scheme. The mixing of degrees
of freedom was achieved experimentally by aligning the
nodes along 80/20 tracks, as can be seen in the photos
in Fig. 4(a-b). In the free state, we fix the input value
for the training task, ysource, by attaching the node to
a slide-in nylon tool hanger which slots into a horizon-
tal 80/20 track so its vertical position is fixed. The node
may still move along the horizontal direction with a small
coe�cient of static friction µ ⇡ 0.1 for nylon on dry alu-
minum. The target node is left unconstrained so both its
degrees of freedom can freely equilibrate. In the clamped
state, we fix both degrees of freedom of the bottom node,
{ysource, xsource}, by placing stoppers along the horizon-
tal track described previously. The horizontal position
of the top node, xtarget is restricted by placing it on a
vertical track using the same tool hanger as above, while
its vertical position ytarget is allowed to equilibrate freely.
Since this network requires measurements in two di-

mensions, we automate the measurement process using
a digital camera. As can be seen in the photographs in
Fig. 4(a-b), we attach pink markers to all 6 nodes, as well
as to the 5 points of connection between the turnbuckles
and springs. The camera captures a three-channel color
image of the entire network, where we choose a beneficial
white balance (2500K) and tint (M6.0) to maximize the
contrast between the markers and the remainder of the
image. We then split the color channels and subtract the
green channel from the red, leaving us with a one-channel
image with high intensity values at the pixels associated
with markers and low intensity everywhere else. The im-
age is then binarized using a threshold intensity value
of 100, which is in between the well-separated high and
low intensity values. The pixel values that have been
identified after binarization are then clustered into 11
clusters using a k-means algorithm [35]. The centroid of
each cluster is determined to be the (x, y) position of the
associated marker. This allows us to track all node posi-
tions, spring extensions, and turnbuckle lengths at every
stage of the experiment. For a given photograph with
11 markers such as the ones in Fig. 4, the full process-
ing and tracking takes approximately 0.7 s on a standard
Macbook Pro.
The results of training the physical network are shown

in Fig. 4(c-d). The learning degrees of freedom evolve
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• Achieves {L1=L2 & L4=L5} quickly while 
contrast C=Uclamped-Ufree decreases 
exponentially

• Note that L3 becomes constant in 
simulation, but drifts up in experiment

{toward lower total energy}

Learning dynamics 6

FIG. 4. Training a two-dimensional network for symmetry. (a-b) Schematics and photographs of the free and clamped states of
the network for a given initial configuration. Edges are labeled by number (a, top). Photographs of the experimental apparatus
show marker tracking system and clamping mechanism. (c-d) Experimental training results. Rest lengths (c) converge to the
symmetric state within experimental precision. The cost C = UC � UF (d) decreases by three orders of magnitude. (e-f)
Simulation training results. The rest lengths (e) evolve such that L1 = L2 and L4 = L5. Cost (f) decreases exponentially by
five orders of magnitude.

such that L1 comes to meet L2 and L4 meets L5 within
measurement error of 0.28cm in only 5 training steps.
The time evolution of these rest lengths follows a similar
trend as in the motion divider, where the largest adjust-
ments happen in the early training steps and updates
become asymptotically small as the network approaches
the learned state. See Appendix A for more information
about learning dynamics. The success of training may
also be measured by the cost function, C = UC � UF .
Fig. 4(d) shows that the cost decreases exponentially
from its initial value by about three orders of magnitude
overbthe course of training.

The middle edge L3 does not exhibit exponential time-
evolution behavior, but rather drifts upward over the
course of training by a total of 1.5 cm, or 37.5% of the
range of values. This linear evolution suggests some sys-
tematic experimental bias within the system, which may
be a result of friction or mechanical instability. Since
L3 has no bearing on the desired state, the network can
learn the task for any value of L3.

B. Simulation

There are many di↵erent ways to train for symmetry
in our two-dimensional network. Our goal for this task is
a specified internal state of the network, but the coupled
learning scheme requires that we specify a behavior in
the nodes that is satisfied by this internal state, of which
there are multiple options. We therefore use simulation

support to explore the di↵erent iterations of our task and
examine their behavioral dynamics. We may also use
simulation to modify the aspect ratio of the frame, as
the angles of the edges at the internal nodes contributes
to the coupling strength of the learning signal. Having
done this, we chose the training task and geometry that
allowed for the most e�cient evolution to the learned
state for our experimental demonstration.
We simulated training on this network using the FIRE

optimization algorithm to determine the network’s node
positions when boundary conditions are applied [36].
Here, each edge was allowed to vary between 0.5 and
1.0 length units, and all edge sti↵nesses were fixed at
the same value, 1. Initial edge lengths were selected at
random with validation that the network was su�ciently
detuned from its goal state.
The behavior that was used to train the network is a

one-input / two-output task, but we could have alterna-
tively defined a one-input, one-output task that is equally
satisfied by the symmetric state of the network. Training
on the one-input, one-output task was successful in sim-
ulation, but required very long training times that were
unfeasible for an experiment with manual operation. In
this case, L4 and L5 evolve quickly to their desired values
due to their strong coupling to the target node. L1 and
L2, however, are only connected directly to the source
node, which does not move in position very much be-
tween the free and clamped states, and therefore evolve
very slowly. For more information, see Appendix C. The
two-output task allows for a strong learning signal for all
of the edges in the network.

6

FIG. 4. Training a two-dimensional network for symmetry. (a-b) Schematics and photographs of the free and clamped states of
the network for a given initial configuration. Edges are labeled by number (a, top). Photographs of the experimental apparatus
show marker tracking system and clamping mechanism. (c-d) Experimental training results. Rest lengths (c) converge to the
symmetric state within experimental precision. The cost C = UC � UF (d) decreases by three orders of magnitude. (e-f)
Simulation training results. The rest lengths (e) evolve such that L1 = L2 and L4 = L5. Cost (f) decreases exponentially by
five orders of magnitude.

such that L1 comes to meet L2 and L4 meets L5 within
measurement error of 0.28cm in only 5 training steps.
The time evolution of these rest lengths follows a similar
trend as in the motion divider, where the largest adjust-
ments happen in the early training steps and updates
become asymptotically small as the network approaches
the learned state. See Appendix A for more information
about learning dynamics. The success of training may
also be measured by the cost function, C = UC � UF .
Fig. 4(d) shows that the cost decreases exponentially
from its initial value by about three orders of magnitude
overbthe course of training.

The middle edge L3 does not exhibit exponential time-
evolution behavior, but rather drifts upward over the
course of training by a total of 1.5 cm, or 37.5% of the
range of values. This linear evolution suggests some sys-
tematic experimental bias within the system, which may
be a result of friction or mechanical instability. Since
L3 has no bearing on the desired state, the network can
learn the task for any value of L3.

B. Simulation

There are many di↵erent ways to train for symmetry
in our two-dimensional network. Our goal for this task is
a specified internal state of the network, but the coupled
learning scheme requires that we specify a behavior in
the nodes that is satisfied by this internal state, of which
there are multiple options. We therefore use simulation

support to explore the di↵erent iterations of our task and
examine their behavioral dynamics. We may also use
simulation to modify the aspect ratio of the frame, as
the angles of the edges at the internal nodes contributes
to the coupling strength of the learning signal. Having
done this, we chose the training task and geometry that
allowed for the most e�cient evolution to the learned
state for our experimental demonstration.
We simulated training on this network using the FIRE

optimization algorithm to determine the network’s node
positions when boundary conditions are applied [36].
Here, each edge was allowed to vary between 0.5 and
1.0 length units, and all edge sti↵nesses were fixed at
the same value, 1. Initial edge lengths were selected at
random with validation that the network was su�ciently
detuned from its goal state.
The behavior that was used to train the network is a

one-input / two-output task, but we could have alterna-
tively defined a one-input, one-output task that is equally
satisfied by the symmetric state of the network. Training
on the one-input, one-output task was successful in sim-
ulation, but required very long training times that were
unfeasible for an experiment with manual operation. In
this case, L4 and L5 evolve quickly to their desired values
due to their strong coupling to the target node. L1 and
L2, however, are only connected directly to the source
node, which does not move in position very much be-
tween the free and clamped states, and therefore evolve
very slowly. For more information, see Appendix C. The
two-output task allows for a strong learning signal for all
of the edges in the network.
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9

• 39 nodes and 59 edges, 8 of which have adjustable turnbuckles
– A variety of stiffnesses and rest lengths; some are nonlinear; some are torsion; some go 

slack and buckle (to avoid compression).  Would be quite hard to simulate, and maybe not 
possible to train in silico

• Train for two simultaneous tasks

Example-3: random nonlinear network
8

FIG. 5. Training of a nonlinear elastic network for node allostery tasks. (a) Schematic of the network. There are 39 nodes
and 59 edges, 8 of which have tunable rest length, labeled L1-L8. Nonlinear mechanical elements are included, such as the one
highlighted in yellow which has a cubic force-displacement relationship. The input nodes for task 1 and 2 are labeled in blue
and orange, and the shared output node is labeled in red. (b) Error in position of the output node over training. The network
is trained for both allostery tasks simultaneously in three separate trials. In each trial, the network is initalized to a di↵erent
configuration. Error in task 1 (blue) is reduced to a greater degree than task 2 (orange), indicating that the network can more
readily learn this task. (c) Learning rule updates over training for each tunable edge. Edges with larger initial updates are
more important for learning the task, and can be correlated with proximity to the output node.

VI. CONCLUSION

We have demonstrated that laboratory realizations of
mechanical networks can be trained for desired behav-
iors using the contrastive coupled learning algorithm.
Through three di↵erent spring network architectures, we
have shown that learning is achievable despite clear dif-
ferences in the learning dynamics between simulation and
experiment, or when a simulation of the physical system
would be infeasible. While functionality is limited due to
their small size, these initial experiments are su�cient to
demonstrate the promise of contrastive local learning in
larger scale physical materials.

The choice of a spring-turnbuckle implementation has
limitations, however, and also highlights the pitfalls of
our implementation. These edges require manual tun-
ing, which limits the size of the network due to the labor
required by the supervisor. Further, the requirement of

a supervisor undercuts the local, decentralized nature of
the learning scheme, and lessens the benefits associated
with locality, such as scalability and compute time. An-
other key limitation to our approach is that each of our
elastic edges is only capable of tensile forces. As a result,
under certain boundary conditions on the network, some
edges can undergo mechanical instabilities such as buck-
ling when compressed, e↵ectively decoupling from the
network, but still updating under the contrastive learning
rule. Each of our experiments were therefore performed
under tension, with most edges stretched noticeably be-
yond their rest length.

The choice of rest length as the learning degree of free-
dom also poses limitations, especially when coupled with
an apparatus that can only impart force under tension.
The presence of a nonzero rest length introduces nonlin-
earity in the force-displacement relation, a feature that
is not present in resistive or flow networks. However, this
nonlinearity is most prevalent when the spring is near its
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• Trials starting from three different initial conditions:

Learning dynamics

8

FIG. 5. Training of a nonlinear elastic network for node allostery tasks. (a) Schematic of the network. There are 39 nodes
and 59 edges, 8 of which have tunable rest length, labeled L1-L8. Nonlinear mechanical elements are included, such as the one
highlighted in yellow which has a cubic force-displacement relationship. The input nodes for task 1 and 2 are labeled in blue
and orange, and the shared output node is labeled in red. (b) Error in position of the output node over training. The network
is trained for both allostery tasks simultaneously in three separate trials. In each trial, the network is initalized to a di↵erent
configuration. Error in task 1 (blue) is reduced to a greater degree than task 2 (orange), indicating that the network can more
readily learn this task. (c) Learning rule updates over training for each tunable edge. Edges with larger initial updates are
more important for learning the task, and can be correlated with proximity to the output node.

VI. CONCLUSION

We have demonstrated that laboratory realizations of
mechanical networks can be trained for desired behav-
iors using the contrastive coupled learning algorithm.
Through three di↵erent spring network architectures, we
have shown that learning is achievable despite clear dif-
ferences in the learning dynamics between simulation and
experiment, or when a simulation of the physical system
would be infeasible. While functionality is limited due to
their small size, these initial experiments are su�cient to
demonstrate the promise of contrastive local learning in
larger scale physical materials.

The choice of a spring-turnbuckle implementation has
limitations, however, and also highlights the pitfalls of
our implementation. These edges require manual tun-
ing, which limits the size of the network due to the labor
required by the supervisor. Further, the requirement of

a supervisor undercuts the local, decentralized nature of
the learning scheme, and lessens the benefits associated
with locality, such as scalability and compute time. An-
other key limitation to our approach is that each of our
elastic edges is only capable of tensile forces. As a result,
under certain boundary conditions on the network, some
edges can undergo mechanical instabilities such as buck-
ling when compressed, e↵ectively decoupling from the
network, but still updating under the contrastive learning
rule. Each of our experiments were therefore performed
under tension, with most edges stretched noticeably be-
yond their rest length.

The choice of rest length as the learning degree of free-
dom also poses limitations, especially when coupled with
an apparatus that can only impart force under tension.
The presence of a nonzero rest length introduces nonlin-
earity in the force-displacement relation, a feature that
is not present in resistive or flow networks. However, this
nonlinearity is most prevalent when the spring is near its

3

FIG. 1. Schematic detailing the coupled learning algorithm for an arbitrary elastic network. A mechanical network is constructed
such that each ith edge consists of a spring with sti↵ness k connected to a turnbuckle with adjustable rest length Li. The springs
act as the edges of the network, and their connection points are nodes. Specific nodes are chosen as “inputs” and “outputs” for
the network to learn a desired task. Some nodes (gray) are fixed to prevent translation and rotation of the entire network, and
the remaining nodes move in response to imposed boundary conditions. (a) In the free state, the position of the input node x

I

is enforced, and the position of the output node is measured x
O. Each ith edge has length (i.e. node-node separation) sFi . (b)

In the clamped state, the input node’s position is still fixed at x
I and the output node is “clamped” to position x

C . Each ith

has length sCi . (c) By locally comparing the lengths of each edge, the update rule in Eq. (7) determines how Li evolves.

In coupled learning, the system evolves by comparing
the mechanical energy of the network in the free and
clamped states. Learning is achieved when the energy in
the clamped state UC is equal to the energy in the free
state UF . In the absence of nonlinear mechanical e↵ects
like buckling, the di↵erence between these energies, which
we refer to as the “learning contrast function”, is always
non-negative because the clamped state is more strongly
constrained than the free state, UC�UF � 0. Analogous
to the machine-learning approach of minimizing a loss
function like mean-squared error (MSE), the rest lengths
evolve by descending along the gradient of the contrast
function:
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Since the learning contrast function was not squared, the
partial derivative in Eq. (4) picks out only the j = i
term, which is readily simplified to Eq. (6) using Eq. (1).
Thus, we arrive at the following general discrete learning
rule for each edge’s update over a learning step for any
network of identical spring-turnbuckle edges:

�Li = ↵(sC
i
� sF

i
) (7)

where ↵ is a per-step learning rate that we shall set in
experiment, and (sC

i
� sF

i
) is the di↵erence in clamped

and free lengths of the edge being updated. This simple
rule is purely local: each edge is updates according only
to its behavior, irrespective of how other edges change

upon clamping. In the experiments presented below, we
train with di↵erent learning rate parameters in the range
0.1 < ↵  1. Iterative updates should drive the global
learning contrast function to zero in order to achieve the
desired motion function. Appendix D details the condi-
tions under which the local and global update rules align.
While our Eq. (7) update rule is spatially local, it is

not temporally local because the learning rule requires si-
multaneous information about the system in two states.
The experimental implementation in an electrical resistor
network [14] was able to circumvent this issue by build-
ing identical twin networks to run the free and clamped
states simultaneously. By contrast, the mechanical net-
work is embedded in space, posing di�culties for con-
structing twin 2-dimensional networks side-by-side, and
an impossibility entirely for 3-dimensional implementa-
tions. Therefore, our approach must rely on temporal
memory of the spring extensions between the free and
clamped states.

III. MOTION DIVIDER

Analogous to the voltage divider in the electrical net-
work case, our first demonstration is a “motion divider”
network, or two tunable-rest length springs connected in
series. A photograph of the network is shown in Fig. 2(a).
We construct the network so it is hanging vertically un-
der gravity from a fixed point, thereby restricting the
motion to be along the axis of gravity. We define the
one-dimensional position y = 0 to be at the fixed hang-
ing point, and y > 0 measures position downwards from
this origin. The first spring is connected to the y = 0

with a=0.8

8

FIG. 5. Training of a nonlinear elastic network for node allostery tasks. (a) Schematic of the network. There are 39 nodes
and 59 edges, 8 of which have tunable rest length, labeled L1-L8. Nonlinear mechanical elements are included, such as the one
highlighted in yellow which has a cubic force-displacement relationship. The input nodes for task 1 and 2 are labeled in blue
and orange, and the shared output node is labeled in red. (b) Error in position of the output node over training. The network
is trained for both allostery tasks simultaneously in three separate trials. In each trial, the network is initalized to a di↵erent
configuration. Error in task 1 (blue) is reduced to a greater degree than task 2 (orange), indicating that the network can more
readily learn this task. (c) Learning rule updates over training for each tunable edge. Edges with larger initial updates are
more important for learning the task, and can be correlated with proximity to the output node.

VI. CONCLUSION

We have demonstrated that laboratory realizations of
mechanical networks can be trained for desired behav-
iors using the contrastive coupled learning algorithm.
Through three di↵erent spring network architectures, we
have shown that learning is achievable despite clear dif-
ferences in the learning dynamics between simulation and
experiment, or when a simulation of the physical system
would be infeasible. While functionality is limited due to
their small size, these initial experiments are su�cient to
demonstrate the promise of contrastive local learning in
larger scale physical materials.

The choice of a spring-turnbuckle implementation has
limitations, however, and also highlights the pitfalls of
our implementation. These edges require manual tun-
ing, which limits the size of the network due to the labor
required by the supervisor. Further, the requirement of

a supervisor undercuts the local, decentralized nature of
the learning scheme, and lessens the benefits associated
with locality, such as scalability and compute time. An-
other key limitation to our approach is that each of our
elastic edges is only capable of tensile forces. As a result,
under certain boundary conditions on the network, some
edges can undergo mechanical instabilities such as buck-
ling when compressed, e↵ectively decoupling from the
network, but still updating under the contrastive learning
rule. Each of our experiments were therefore performed
under tension, with most edges stretched noticeably be-
yond their rest length.

The choice of rest length as the learning degree of free-
dom also poses limitations, especially when coupled with
an apparatus that can only impart force under tension.
The presence of a nonzero rest length introduces nonlin-
earity in the force-displacement relation, a feature that
is not present in resistive or flow networks. However, this
nonlinearity is most prevalent when the spring is near its
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10

• Autonomous updates?
– Need in situ mechanisms to sense change in edge length in free vs clamped conditions and 

to adjust learning DOF accordingly

• Force tasks?
– Need ability to tune the spring stiffness, since u = F2/(2k) is independent of rest length

What about…
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• Perhaps-surprisingly hard to make, and harder to miniaturize!
two examples, both under active control:

Variable-stiffness springs

10/28/22, 10:38 AMwheel-made-of-odd-matter-spontaneously-rolls-uphill-20220615

Page 11 of 13https://www.quantamagazine.org/print

Odd interactions between adjacent robotic modules can also be utilized to construct
an odd wall.

Courtesy of Corentin Coulais

It’s hard to pin down why the wheel’s uphill locomotion is so robust,
precisely because its limit cycle is an emergent phenomenon, not seen
when you scrutinize any individual module. Nick Gravish, a roboticist at
the University of California, San Diego, suspects that the limit-cycle
oscillations of each pair of motors greatly restrict the possible collective
motions of the wheel. He noted that the emergence of collective motion
from low-level oscillations has parallels in biology: “Animals are lots of
interconnected oscillatory components that have to work together.”

Coulais and Vitelli also explored the effects of odd couplings on collisions.
They showed that an odd ball — a projectile assembled from odd modules
— would always bounce off in a specific direction when launched without

nodes 1 and 2 displace in the opposite directions (i.e., to the left and 
to the right by 0.5 mm, respectively) as the two input nodes are both 
sheared upward (as shown by the green arrows) with equal magni-
tude. As the MNN attempted to exhibit these two desired behaviors 
according to the learning process, the axial stiffness values of each 
beam were allowed to be tuned between the maximum and 
minimum values of 2.3 and −2 N/mm, respectively, according to 
the limits measured in Fig. 2C. 

Two optimization algorithms—genetic algorithm (GA) (40) and 
partial pattern search (PPS) (41)—were used for learning the two 
behaviors to compare their performance. The details underlying 
each optimization algorithm are provided in Materials and 
Methods, and a video showing the MNN learning is provided in 
the Supplementary Materials (movie S3). The learning results of 
the GA and PPS are provided in Fig. 4 (B and C, respectively). 
The MSE of each algorithm is plotted over time as the MNN 
learns the two desired behaviors simultaneously, and the initial 
and final displacements of nodes 1 and 2, relative to the desired 
target displacements, are also provided for each behavior. A video 
showing how the nodes move from one displacement to the next 
(corresponding to each blue dot in the MSE plots of Fig. 4, B and 
C) is provided in the Supplementary Materials (movie S4). 

The MNN of Fig. 4A was also used to compare learning with 
tunable beams that exhibit linear (e.g., Fig. 2B) versus nonlinear 
force-displacement responses. Specifically, tangent functions (e.g., 
the responses shown in fig. S7 for different Kp values) were used 
for the nonlinear scenario. The MNN’s tunable beams were initially 
set to only exhibit linear force-displacement responses with stiffness 
values that could vary between 2.3 and −2 N/mm according to the 
limits measured in Fig. 2C. Two random but different shape- 
morphing behaviors were generated for the MNN to learn. Each be-
havior was generated by selecting forces with randomly generated x- 
and y-axis components between ±2 N, which cause the MNN’s 
output nodes to move selected displacements with randomly gener-
ated x- and y-axis components between ±0.5 mm when the selected 
forces load the input nodes. The MNN then used the PPS algorithm 
to learn the generated pair of random behaviors simultaneously. 
The MSE of this learning process over time was recorded, similar 
to the example plots shown in Fig. 4 (B and C). Five additional 
random but unique pairs of behaviors were then generated and 
learned independently by the MNN. The six total resulting MSE- 
versus-time plots were averaged to produce the single solid-line 

plot of Fig. 4D (i.e., the plot corresponding to the linear scenario). 
The same six pairs of generated behaviors were then learned by the 
same MNN, but its tunable beams were set to only exhibit tangent 
force-displacement responses (i.e., a nonlinear response) with in-
stantaneous stiffness values that could vary between 2.3 and −2 
N/mm according to the limits measured in Fig. 2C. Note that al-
though 2.3 N/mm was found to be the largest axial stiffness value 
achievable by the tunable beams of this study, that finding is con-
servative and is only true for instantaneous stiffness values (i.e., 
beam stiffness values before deformation). When the beam is de-
formed an appreciable amount, it can be stably controlled with 
larger stiffness values to accommodate the rising tangent function 
profile. The six resulting MSE-versus-time plots were averaged to 
produce the single dotted-line plot of Fig. 4D (i.e., the plot corre-
sponding to the nonlinear scenario). 

Before the successful demonstration of the MNN of Fig. 4, dif-
ferent beam designs (fig. S8, A and B) were fabricated and integrat-
ed within other MNNs (fig. S9, A to C), which did not successfully 
learn desired behaviors (fig. S9D). The reasons they failed are dis-
cussed in the Supplementary Materials to highlight factors impor-
tant to successful MNN learning, such as minimal hysteresis (fig. 
S10), quality sensors, and well-designed flexures. 

Simulation study 
A computational tool, informed by the measured and modeled (fig. 
S11) characteristics of the tunable beam of Fig. 2A, was created and 
used to simulate MNN learning scenarios that the physical MNN of 
Fig. 3B was not designed to attempt. The tool’s assumptions are de-
tailed in the Supplementary Materials, and a discussion about how 
the tool was verified using finite element analysis (FEA) (fig. S12, A 
to E) is provided in Materials and Methods. The computational tool 
was used to generate the example of Fig. 1 (D and E) according to 
the details also provided in Materials and Methods. 

Three simulation studies were conducted using the tool. The 
MNNs of the first simulation study were all configured as triangular 
lattices (e.g., Fig. 1B) with eight input and eight output nodes. Their 
tunable beams were assigned axial stiffness values between 4 and −2 
N/mm. Learning was simulated using different numbers of layers 
and different numbers of random behaviors. Random behaviors 
were generated by selecting input-node forces and output-node dis-
placements with randomly generated x- and y-axis components 
between ±1 N and ± 0.5 mm, respectively. To ensure that each 

Fig. 2. Tunable beams that use closed-loop control to achieve variable axial 
stiffnesses. (A) Voice coil and strain gauges were used as actuators and sensors to 
control the axial stiffness of the beam. (B) Data collected from an Instron testing 
machine as it stretches and compresses the tunable beam while it is actively con-
trolled to achieve linear force-displacement responses using different proportional 
gain values, Kp. (C) Plot demonstrating how well the controller’s prescribed propor-
tional gain corresponds with the beam’s resulting axial stiffness. 

Fig. 3. An MNN. (A) A computer-aided design model and (B) a photo of the MNN 
used to conduct the experimental learning study of this work. 
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Mechanical neural networks: Architected materials that 
learn behaviors 
Ryan H. Lee1†, Erwin A. B. Mulder2, Jonathan B. Hopkins1*† 
Aside from some living tissues, few materials can autonomously learn to exhibit desired behaviors as a conse-
quence of prolonged exposure to unanticipated ambient loading scenarios. Still fewer materials can continue to 
exhibit previously learned behaviors in the midst of changing conditions (e.g., rising levels of internal damage, 
varying fixturing scenarios, and fluctuating external loads) while also acquiring new behaviors best suited for 
the situation at hand. Here, we describe a class of architected materials, called mechanical neural networks 
(MNNs), that achieve such learning capabilities by tuning the stiffness of their constituent beams similar to 
how artificial neural networks (ANNs) tune their weights. An example lattice was fabricated to demonstrate 
its ability to learn multiple mechanical behaviors simultaneously, and a study was conducted to determine 
the effect of lattice size, packing configuration, algorithm type, behavior number, and linear-versus-nonlinear 
stiffness tunability on MNN learning as proposed. Thus, this work lays the foundation for artificial-intelligent (AI) 
materials that can learn behaviors and properties. 
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INTRODUCTION 
Scientists have been inspired by the interconnected network of 
neurons that constitute biological brains and enable complex learn-
ing with unmatched speed and energy efficiency. Consequently, 
many have sought to leverage a variety of interconnected networks 
to mimic natural learning for numerous artificial-intelligent (AI) 
applications (1–3). 

Some of the first networks developed for AI purposes were 
purely mathematical in form. The concepts underlying these math-
ematical networks, called artificial neural networks (ANNs) 
(Fig. 1A), were first introduced by McCulloch and Pitts (4) but 
were later matured by Rosenblatt (5). The mathematical formula-
tion underlying ANNs can be diagrammed using interconnected 
lines, shown in blue in Fig. 1A, that represent scalar values, called 
weights (6), which are multiplied by input numbers that are fed into 
multiple layers of activation functions (6), called neurons, which ul-
timately produce output values. If the ANN is provided with a set of 
known input and output values, then the network can be trained by 
tuning its weights so that it accurately predicts previously unknown 
output values that result for any desired input values. Hornik et al. 
(7) proved the true AI potential of ANNs by demonstrating that, 
with sufficiently large numbers of neurons and layers, ANNs 
could learn to model almost anything by accurately mapping any 
number of inputs to any number of outputs. Tuning the weights 
of sizeable ANNs, however, proved to consume large amounts of 
computational time and energy using traditional digital computers. 

Thus, further inspired by the physical nature of biological brains, 
scientists began developing physical networks to more rapidly tune 
weights (i.e., learn) with higher efficiencies because of their analog 
nature. Most of these physical networks can be classified as electrical 
(8–12) or optical (13–17) networks. Although some physical neural 
networks use the vibrations of mechanical structures to improve the 

speed and efficiency of learning, none yet exists that is purely me-
chanical. Roboticists have learned to leverage the dynamics of me-
chanical bodies as a computational resource for enabling 
mathematical ANNs to be more efficiently trained by restricting 
only the final layer’s weights to be tuned. This approach, called mor-
phological computation (18), is a mechanical version of the concept 
of reservoir computing (19, 20), where the reservoir used to simplify 
the mathematical computation is the structure of the robot itself. 
Networks of springs and point masses (21, 22), tensioned cables 
and rigid bodies (23, 24), and soft bodies (25, 26) have been used 
to demonstrate this approach. The most mechanical instantiation 
of a neural network to date was proposed by Hermans et al. (27). 
This network consists of a vibrating plate that is excited by acoustic 
waves as inputs and outputs. Instead of tuning the mechanical prop-
erties of the plate itself (i.e., its stiffness, damping, or mass proper-
ties) to tune the network’s weights, masking signals of interfering 
acoustic waves were electrically generated to train the network. 
This concept was recently extended by Wright et al. (28) using mul-
tiple layers of vibrating plates to achieve a deep physical 
neural network. 

In this work, a different physical network, called a mechanical 
neural network (MNN), is introduced. MNNs are lattices of inter-
connected tunable beams, shown in blue in Fig. 1B, that join at 
nodes, which are driven by force or displacement inputs and 
outputs. The stiffness values of the interconnected beams are 
tuned as network weights to train the lattice such that it can learn 
desired mechanical behaviors (e.g., shape morphing, acoustic wave 
propagation, and mechanical computation) and bulk properties 
(e.g., Poisson’s ratio, shear and Young’s modulus, and density). 
Thus, this work introduces a class of architected materials (a.k.a., 
mechanical metamaterials) (29) that learn as a consequence of pro-
longed exposure to unanticipated ambient loading conditions. Al-
though others have proposed acoustic metamaterials that can 
perform specific mechanical computations (30, 31), these materials 
are not neural networks and thus cannot learn. Hughes et al. (32) 
proposed an acoustic metamaterial that behaves as a trained neural 
network, but a fabricated version of the proposed design could not 
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• The trick of Shivangi Misra, in Cynthia Sung’s lab at UPenn Mech Eng:
• vary the thickness of a coil of plastic strip, for a robotics application

Variable-stiffness springs

Misra, S., Mitchell, M., Chen, R., & Sung, C. (2023). Design 
and Control of a Tunable-Stiffness Coiled-Spring Actuator.

21

• One edge = piezo strain gauge on coil of variable thickness 

Automation – in progress

[Lauren Altman, Maggie Miller, Shivangi Misra, Cynthia Sung, DJD (in progress)]
22
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Manual clamping: Binary update rule:
Supervisor performs 
clamping and global clock 
(switch learning mode)

Motion Divider with Tunable Stiffneses

23

Free states

Motion Divider with Tunable Stiffneses

24



13

Others?

● Dynamical 
Behavior

● Material 
properties

Shivangi Misra, C. Sung

Robotic Actuator Tower

Robotic Gripper

25

More-complex tasks – in progress

25

Contrastive Local Learning Networks
• Yes, we can build edges where the edges independently self-adjust using 

coupled learning so that outputs evolve to the desired function of inputs --  
electrically and mechanically!

freedom) according to Eq. (4) with a learning rate of
α ¼ 5 × 10−4. Figure 2(b) shows the change of conduct-
ance of each edge at the first iteration of learning, with blue
(red) signifying positive (negative) conductance changes.

This process constitutes one step of the training process; at
the end of each step, we compute the error function C
[Fig. 2(d)]. The difference between the obtained targets and
the desired ones decreases exponentially by many orders of
magnitude during the training process, reaching machine
precision. This result demonstrates the success of the
coupled learning approach. We see that the magnitude of

the change in the conductance vector, jΔkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jΔk2j
q

,

calculated for each step of the training process, also
decreases exponentially during training [blue dashed line
in Fig. 2(d)]. This result shows that the learning process is
adaptive—it slows down as it approaches good solutions.
The final trained network is displayed in Fig. 2(c), with
edge thicknesses indicating conductance. The pipes of the
trained network have changed considerably compared to
the initial one shown in Fig. 2(a), with some pipes
effectively removed (with conductances near zero).
The results of applying the training protocol to networks

of different sizes, for different initial networks and choices
of the source and target nodes and their pressure values, are
shown in Figs. 2(e) and 2(f), where errors are rescaled by
the initial error for each network. Our learning algorithm is
generally able to train the networks to exhibit the desired
responses, successfully decreasing the initial error by
orders of magnitude. We find that networks of different
size converge on good solutions at different rates, with the
error at a particular chosen time t ¼ 103 scaling roughly as
a power law CðN; tÞ ∼ Nq (with power q in the range
1–2). We note that networks of different sizes may not be
equivalent, as training may depend on idiosyncratic details,
such as particular distances between sources and targets, or
other geometrical features. We leave detailed exploration of
the effects of network size and source-target geometry to
future study.
It is noteworthy that flow networks are linear, so that the

mapping between the sources to targets is always linear
pT ¼ AðkÞPS (A is a MS ×MT matrix that depends on the
conductance values). Networks which contain hundreds of
edges have many more conductance values than compo-
nents of A so that there are far more degrees of freedom
than constraints. While this argument suggests our flow
networks are overparametrized and should always succeed
in learning, we stress that not all linear transformations are
possible; pressure values everywhere in the network are
weighted averages of their neighbors (due to Kirchhoff’s
law). More importantly, the linear transformation is
limited because all conductance values must be non-
negative (see Appendix D). As a result, flow networks
cannot implement any desired linear mapping between the
inputs and outputs, and nonzero errors are expected for
certain tasks after training. It was previously shown that
the likelihood of flow networks to successfully learn a set
of tasks depends on network size [6], even when trained
with gradient descent. Therefore, we expect that training
larger networks for a given task is more likely to succeed

FIG. 2. Training flow networks with coupled learning. (a) An
untrained disordered flow network with uniform conductance at
all pipes ki ¼ 1, as indicated by uniform thicknesses of the green
edges. The ten red and blue nodes correspond to the source and
target nodes with dot sizes indicating the magnitudes of the
source pressures fPSg and desired target pressures fPTg. (b) In
each step, conductance values are modified using Eq. (4),
according to the difference in flow between the free and clamped
states. This process is applied iteratively. (c) After training, the
network conductance values, indicated by the thicknesses of the
green edges, are considerably changed compared to the initial
network shown in (a). (d) During training of a network (N ¼ 512
nodes), the pressure values of the target nodes approach the
desired values, as indicated by the exponentially shrinking error
(black solid line). The desired target values fPTg are reached
when the error is small; the modification of the conductance in
each time step, Δk (blue dashed line), vanishes exponentially as
well. (e) We train multiple networks of different sizes
N ¼ 64–2048, and find that all can be trained successfully with
coupled learning. Error bars indicate the variation with initial
network and choice of sources and targets. In all cases, errors
decay exponentially, yet larger networks converge slower.
(f) Picking a certain time t ¼ 103, we find that the error scales
up with system size as a soft power between 1 and 2.

SUPERVISED LEARNING IN PHYSICAL NETWORKS: FROM … PHYS. REV. X 11, 021045 (2021)

021045-5

• inputs
• outputs

Bottom-up learning of  complex 
functionality using local rules in a  
fully recurrent network, giving 
brain-like advantages over ANNs

Example tasks/functions:
(1) Outputs are at {Oj} when inputs are at {Ii}
(2) Outputs are a desired linear combo of inputs
(3) Classification: e.g inputs are grayscale pixel data and 

outputs indicate whether the image is a dog or a cat

26
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