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• Physical systems made of many copies of a repeat unit, each of which uses a 
local learning rule to collectively optimize a global cost function defining a task 
to be “computed” physically.  Eg “Contrastive Local Learning Networks”

Analog in-memory training for analog in-memory analog computing for control, metamaterials with 
complex functionality, AI,…

• Boulder School 2024
Lecture 1: learning systems and rules
Lecture 2: electronic realizations
Lecture 3: mechanical realizations

Autonomous Learning Metamaterials
Douglas J. Durian <djdurian@physics.upenn.edu>

University of Pennsylvania, Philadelphia PA
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Contrastive Local Learning Networks
• Can we build edges where all the conductances independently self-adjust using 

the local coupled learning rule so that output voltages evolve to the desired 
function of input voltages?

freedom) according to Eq. (4) with a learning rate of
α ¼ 5 × 10−4. Figure 2(b) shows the change of conduct-
ance of each edge at the first iteration of learning, with blue
(red) signifying positive (negative) conductance changes.

This process constitutes one step of the training process; at
the end of each step, we compute the error function C
[Fig. 2(d)]. The difference between the obtained targets and
the desired ones decreases exponentially by many orders of
magnitude during the training process, reaching machine
precision. This result demonstrates the success of the
coupled learning approach. We see that the magnitude of

the change in the conductance vector, jΔkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jΔk2j
q

,

calculated for each step of the training process, also
decreases exponentially during training [blue dashed line
in Fig. 2(d)]. This result shows that the learning process is
adaptive—it slows down as it approaches good solutions.
The final trained network is displayed in Fig. 2(c), with
edge thicknesses indicating conductance. The pipes of the
trained network have changed considerably compared to
the initial one shown in Fig. 2(a), with some pipes
effectively removed (with conductances near zero).
The results of applying the training protocol to networks

of different sizes, for different initial networks and choices
of the source and target nodes and their pressure values, are
shown in Figs. 2(e) and 2(f), where errors are rescaled by
the initial error for each network. Our learning algorithm is
generally able to train the networks to exhibit the desired
responses, successfully decreasing the initial error by
orders of magnitude. We find that networks of different
size converge on good solutions at different rates, with the
error at a particular chosen time t ¼ 103 scaling roughly as
a power law CðN; tÞ ∼ Nq (with power q in the range
1–2). We note that networks of different sizes may not be
equivalent, as training may depend on idiosyncratic details,
such as particular distances between sources and targets, or
other geometrical features. We leave detailed exploration of
the effects of network size and source-target geometry to
future study.
It is noteworthy that flow networks are linear, so that the

mapping between the sources to targets is always linear
pT ¼ AðkÞPS (A is a MS ×MT matrix that depends on the
conductance values). Networks which contain hundreds of
edges have many more conductance values than compo-
nents of A so that there are far more degrees of freedom
than constraints. While this argument suggests our flow
networks are overparametrized and should always succeed
in learning, we stress that not all linear transformations are
possible; pressure values everywhere in the network are
weighted averages of their neighbors (due to Kirchhoff’s
law). More importantly, the linear transformation is
limited because all conductance values must be non-
negative (see Appendix D). As a result, flow networks
cannot implement any desired linear mapping between the
inputs and outputs, and nonzero errors are expected for
certain tasks after training. It was previously shown that
the likelihood of flow networks to successfully learn a set
of tasks depends on network size [6], even when trained
with gradient descent. Therefore, we expect that training
larger networks for a given task is more likely to succeed

FIG. 2. Training flow networks with coupled learning. (a) An
untrained disordered flow network with uniform conductance at
all pipes ki ¼ 1, as indicated by uniform thicknesses of the green
edges. The ten red and blue nodes correspond to the source and
target nodes with dot sizes indicating the magnitudes of the
source pressures fPSg and desired target pressures fPTg. (b) In
each step, conductance values are modified using Eq. (4),
according to the difference in flow between the free and clamped
states. This process is applied iteratively. (c) After training, the
network conductance values, indicated by the thicknesses of the
green edges, are considerably changed compared to the initial
network shown in (a). (d) During training of a network (N ¼ 512
nodes), the pressure values of the target nodes approach the
desired values, as indicated by the exponentially shrinking error
(black solid line). The desired target values fPTg are reached
when the error is small; the modification of the conductance in
each time step, Δk (blue dashed line), vanishes exponentially as
well. (e) We train multiple networks of different sizes
N ¼ 64–2048, and find that all can be trained successfully with
coupled learning. Error bars indicate the variation with initial
network and choice of sources and targets. In all cases, errors
decay exponentially, yet larger networks converge slower.
(f) Picking a certain time t ¼ 103, we find that the error scales
up with system size as a soft power between 1 and 2.

SUPERVISED LEARNING IN PHYSICAL NETWORKS: FROM … PHYS. REV. X 11, 021045 (2021)

021045-5

• inputs
• outputs

Bottom-up learning of  complex 
functionality using local rules in a  
fully recurrent network 

Example tasks/functions:
(1) Outputs are at {Vj} when inputs are at {Vi}
(2) Outputs are a desired linear combo of inputs
(3) Classification: e.g inputs are grayscale pixel data and 

outputs indicate whether the image is a dog or a cat

3

• Nature has built complex structures without a blueprint or oversight for eons
• Soft/living matter scientists/engineers have done this for decades

Bottom-up/self-assembly of structure

[Wyss Institute, 2016]

nacre
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• Only prior examples are networks found in nature, and they use local rules
Eg vascular network in brain: conductivities self-adjust to redirect blood flow where needed
Eg neural network in brain: connections & conductances self-adjust to learn

Despite being slow and noisy, brains are far more capable and energy-efficient than 
artificial neural networks, which are trained top-down using external CPU and memory.

Bottom-up/self-learning of function

5

Coupled Learning Rule - recap
• Traditional loss function = (desired response  – free response)2   {>0}

• must be squared to guarantee it’s positive, for minimization by gradient descent

• New contrast function = dissipation rate difference, Pclamped  –  Pfree  {>0}
• positive due to optimization of energy functional over physical degrees of freedom for given BCs

Evolve the edge conductances to drive contrast function to zero:
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designed to be 

implemented in the lab

[Stern, Hexner, Rocks, Liu, Phys Rev X 2021]
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Physical Implementation:
• Digital variable resistors are readily available, eg:

– Click up/down by voltage pulse to proper pin

– If resistance rather than conductance is the learning degree of freedom, then the coupled 
learning rule follows from clamped-free difference of sum of P = IV = V2/R as

�̇�! = −𝛾
𝜕
𝜕𝑅!

'
𝑉"#$

𝑅"
−
𝑉"%$

𝑅"
≅
𝛾𝜂
𝑅!$

𝑉!#$ − 𝑉!%$

– Easy enough to buy and connect into a network with chosen architecture

• But how to compare voltage drops of resistor i in free and clamped states and 
update Ri  without memory or central processor?
– My answer: build identical twins…

𝑅 = 𝛿𝑅	× 1, 2, 3, … , 𝑜𝑟	128

7

Twin Network Trick
• Build repeat units (edges) consisting of two variable resistors kept at same 

resistances, with circuitry to change their value in unison on clock signal
• Connect the edges together in some chosen architecture, giving twin networks

• One runs free BCs, the other runs clamped BCs
• Circuitry performs an approximate coupled learning rule

Free Clamped

one self-adjusting
variable-R edge:

DEMONSTRATION OF DECENTRALIZED... PHYS. REV. APPLIED 18, 014040 (2022)

The original (continuous) coupled-learning update rule is,

!Ri = γ

R2
i

(
[!VC

i ]2 − [!VF
i ]2), (2)

where γ is a learning rate and !VC
i and !VF

i are the
voltage drops in edge i of the clamped and free states,
respectively. In our discrete-resistor networks, the two net-
works adjust their (identical) resistances according to an
approximation of the original rule,

!RC
i = !RF

i =
{

+δR if |!VC
i | > |!VF

i |,
−δR otherwise.

(3)

equivalent to taking the sign of Eq. (2) multiplied by
γ = δR. This now Boolean operation is carried out by
integrated circuits housed on each edge of the network;
the entire system is illustrated in Fig. 1(a) (for the details
regarding the implementation of this rule, see Appendix
C). Because the learning process is decentralized, our sys-
tem functions without a central processor and training the
network to perform a task is straightforward. The pro-
cedure is detailed in Fig. 1(b): apply the desired input
voltages to the free and clamped networks, as well as
clamped output voltages V⃗O

C to the clamped network. Edge
updates are triggered by a global clock and no further
instructions to the edges are required, as each edge is
responsible for its own evolution.

To demonstrate the operation of our learning elements,
we train a two-edge network [Fig. 2(a)] as a voltage
divider: we ask the network to produce a single desired
voltage VD at its output (middle) node, while the input
nodes (top and bottom) are held at 5 V and 0 V, respec-
tively. To train, the following algorithm is repeated every
clock cycle:

(1) Update the clamped state output-node voltage, per
Eq. (1).

(2) Every edge updates its own resistance, per Eq. (3).

In machine-learning language, the “supervisor” tells the
network the right answer through the clamped boundary
condition. The network itself decides how to achieve this
answer, as it receives no external instructions about which
edges to push up or down in resistance. That is, shown the
right answer, the network trains itself to produce it. In this
simple example, this distinction may seem trivial, but as
we increase the size of the network, the job of the supervi-
sor does not grow in complexity; it is always given by Eq.
(1). This is in stark contrast to ANNs, where the number of
gradient calculations grows rapidly with network size.

As previously described, edges modify their resistance
to bias the electrical state of the system away from the
free state and toward the clamped state. This results in
the free-state output voltage(s) “following” the clamped

(b)

Impose Inputs

Measure
Outputs

Free Network

ΔRi = +δR if | ΔVC
i | > | ΔVF

i |,
−δR otherwise.
+δR
−δR

Update Both Networks

Impose 
Outputs

Clamped Network

Impose Inputs

10 cm

(a)

FIG. 1. A physics-driven learning machine (a). An image of
the 16-edge circuitry, with the network structure overlaid in blue.
Each breadboard, like the one highlighted in white, houses com-
mensurate edges in the free and the clamped network (for the
circuitry details, see Appendix C). (b) The procedure for training
the learning machine. A supervisor (i) imposes voltages to the
inputs (red) in the free network and (ii) to the inputs and outputs
(purple) in the clamped network. The network (iii) updates its
own resistances and V⃗O

F is “calculated” by physical laws.

state voltages, which in turn move progressively toward
the desired voltage [Fig. 2(b)]. In our voltage divider, the
desired voltage is changed every 100 training steps. At
the start, all edges are initialized at the center of their
resistance ranges (approximately 50 k$). Two phases in
each training are evident. At first, the clamped and free
networks are quite different and the two edges evolve in
opposite directions until the desired voltage is achieved
[Fig. 2(c)]. Once the network has reduced the error suf-
ficiently, noise dominates the signal to the comparators,
resulting in occasional incorrect evaluations when com-
paring voltages differing by less than 0.01 V [as shown
in Appendix C; see also Fig. 7(e)]. These occasional errors
create an error floor but also allow the network to explore
the phase space of valid solutions; the ratio of the two
resistance values [blue line in Fig. 2(c)] remains nearly

014040-3

node

node
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Edge circuitry
• On clock signal, compare voltages and move resistance up or down one d R unit

approximate implementation of the coupled learning rule

DRAFT

gation, this algorithm approximates global gradient descent125

in the limit ÷ π 1 (38), allowing a system to train itself by126

repeating this update process. However, this algorithm is127

not temporally local, in that it requires simultaneous access128

to the response for two distinct sets of boundary conditions129

which, by definition, cannot be imposed simultaneously. It is130

this requirement that makes contrastive learning in physical131

systems so challenging to realize.132

Here we resolve this conundrum by building two identical133

electrical networks to run the free and clamped states. We use134

digital variable resistors (see Methods) on each edge, which135

have 128 possible discrete resistance values. The original136

(continuous) coupled learning update rule,137

�Ri = “
R2

i

!
[�V C

i ]2 ≠ [�V F

i ]2
"

[2]138

where “ is a learning rate and �V C

i , �V F

i are the voltage139

drops in edge i of the clamped and free states respectively. In140

our discrete resistor networks, the two networks adjust their141

(identical) resistances according to an approximation of the142

original rule,143

�RC

i = �RF

i =
;

+”R if |�V C

i | > |�V F

i |,
≠”R otherwise.

[3]144

equivalent to taking the sign of Eq. (2) multiplied by “ = ”R.145

This now Boolean operation is carried out by integrated cir-146

cuits housed on each edge of the network; the entire system is147

pictured in Fig. 1A. For details regarding the implementation148

of this rule, see Materials and Methods. Because the learning149

process is decentralized, our system functions without a cen-150

tral processor, and training the network to perform a task is151

straightforward. The procedure is detailed in Fig. 1B: apply152

the desired input voltages to the free and clamped networks,153

as well as clamped output voltages V̨ O

C to the clamped net-154

work. Edge updates are triggered by a global clock, and no155

further instruction to the edges are required, as each edge is156

responsible for its own evolution.157

Results158

We demonstrate the success and flexibility of our coupled159

learning circuitry by training a 16-edge network (Fig. 1A) to160

perform three types of tasks inspired by biology (allostery),161

mathematics (regression), and computer science (classifica-162

tion), respectively. We show that the network switches be-163

tween these tasks on demand, including adapting to new input164

and output node selections. Because each edge is identical and165

learns on its own, the network also successfully learns after166

su�ering considerable damage.167

Allostery is a common feature of proteins (28), in which168

an input signal, namely strain applied to a local region of the169

protein by binding a regulatory molecule, gives rise to a de-170

sired strain or conformational change elsewhere in the protein,171

enabling or preventing binding of a substrate molecule. In a172

related problem of ‘flow allostery’ (30, 43, 44), a pressure drop173

in one region of a flow network, (e.g. across input arteries in174

the brain vascular network) gives rise to desired pressure drops175

elsewhere in the brain at designated output locations that can176

be quite distant from the input arteries, allowing the vascular177

system to deliver enhanced blood flow and therefore more178

oxygen to active parts of the brain. In the context of electrical179
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Fig. 2. One physical system perform many tasks. (A), Mean-squared error for
each of three outputs and their sum (black) vs training step for an example allostery
task. (B), Mean-squared error for each of two outputs and their sum (black) for a
two-parameter regression task for each output node. Large purple circles indicate
the training steps shown in C. (C), Snapshots of the values for both outputs at three
steps during training for the regression task in B. Lines indicate the desired output
values. Regression involves two parameters, and thus both axes are scaled by V I

1
to project the results into 2 dimensions. (D), Test set classification error for the iris
benchmark dataset (42) vs training step (faded symbols). Smoothing the data with
a window of 30 training steps (solid line) highlights that the final plateau accuracy
is above 95%. Large red circles indicate the training steps shown in E. The desired
voltage for each class is re-measured every epoch, indicated by the gray stars (see
Supplementary Material for details). (E), Snapshots of the classification success of
the test set projected into the 2D space of two of the four inputs (sepal length and
petal width, rescaled to 0-5V). Species of iris is denoted by marker shape. Gray
shapes are correctly classified, red are incorrectly classified.
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Fig. 2. One physical system perform many tasks. (A), Mean-squared error for
each of three outputs and their sum (black) vs training step for an example allostery
task. (B), Mean-squared error for each of two outputs and their sum (black) for a
two-parameter regression task for each output node. Large purple circles indicate
the training steps shown in C. (C), Snapshots of the values for both outputs at three
steps during training for the regression task in B. Lines indicate the desired output
values. Regression involves two parameters, and thus both axes are scaled by V I

1
to project the results into 2 dimensions. (D), Test set classification error for the iris
benchmark dataset (42) vs training step (faded symbols). Smoothing the data with
a window of 30 training steps (solid line) highlights that the final plateau accuracy
is above 95%. Large red circles indicate the training steps shown in E. The desired
voltage for each class is re-measured every epoch, indicated by the gray stars (see
Supplementary Material for details). (E), Snapshots of the classification success of
the test set projected into the 2D space of two of the four inputs (sepal length and
petal width, rescaled to 0-5V). Species of iris is denoted by marker shape. Gray
shapes are correctly classified, red are incorrectly classified.
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FIG. 7. A single edge of the network. (A) Image of an edge, as constructed on a breadboard. (B) Circuit diagram for
a single edge, which houses circuitry for both both the free and clamped networks. Comparators and an XOR gate compute
the direction of resistance change based on the relative voltage drops across the free and clamped variable resistors (digipots),
and the XOR output is stored in a D-Flop before being fed back into the up/down input of the potentiometers. (C) Global
clock circuitry. The control circuit receives an ascending or descending edge from the data acquisition card (computer) into the
’Trigger’ port. This produces a cascading e↵ect through the debouncer, changing output 1, then 2, then 3, which are fed into
XOR gates. (D) This cascade results in a descending edge in the digipot chip select/D flop clock signal, then a descending
edge in the digipot clock signal, and finally a return to high for both signals. As a result, the XOR output of the edge circuit
shown in B is sampled and stored by the D flop ahead of the digipot clock triggering a change in resistance. This avoids feeding
the potentially fluctuating XOR signal directly into the digipot. (E) Average resistance change as a function of comparator
voltages VC and (VC �VF ). Ideally we would have step functions jumping at (VC �VF ) = 0 V. Noise spreads out the transition,
and in this edge, comparator bias shifts the curves to the right.

clamped electrical states. To this end, we construct two
identical networks for comparison, one running the free
state and one running the clamped state. Corresponding
edges of the free and clamped networks always have the
same resistance, and are housed on the same breadboard
(Fig. 7A).

The absolute value comparison in Eq. (C1) is still non-
trivial to evaluate electronically. A comparator produces
a signed comparison �V C

i
> �V F

i
, but this will yield

the opposite of our desired value if both drops are nega-
tive, which we cannot rule out a priori. We can, however,
assume that the two voltage drops have the same sign.
Empirically, we find this is nearly always the case, espe-
cially for ⌘ ⌧ 1. We can then use a second comparison,
�V C

i
< 0, to determine if �V C

i
> �V F

i
is equivalent to

|�V C

i
| > |�V F

i
| (positive voltage) or its inverse (nega-

tive voltage). Our learning rule can now be written using
only functions of common logical circuit components:

�Ri =

(
+�R if XOR

⇥
�V C

i
> �V F

i
, 0 < �V C

i

⇤

��R otherwise

(C2)
We implement Eq. (C2) with two comparators
(LM339AN), one XOR gate (SN74ALS86N), and one D-
Flop (TI CD74HC73E JK flop plus SN74ALS86N XOR
gate) on every edge (Fig. 7B). On each edge, the out-
put of XOR gate is stored in the D-Flop and fed back
into the up/down input of the digital potentiometers in
both free and clamped networks. During training, the
resistance updates of every variable resistor are triggered
by the descending edge of a global clock signal fed into
the digital potentiometers. A switch debouncer/delay
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Warm-Up with a Voltage Divider
• Toy 2-edge network with continuum of known of solutions (RA/RB = VI/VO–1)

{over-parameterized per ML practice: more learning degrees of freedom (2) than constraints (1)}

• Target output voltage is switched every 100 steps (from 3.75V to 2.5V to 1V to 2.5V)
• Training to target is achieved in O(50) steps
• After learning, bias gives drift at constant RA/RB

3

to equilibrium propagation, this algorithm approximates
global gradient descent in the limit ⌘ ⌧ 1 [34], allowing
a system to train itself by repeating this update process.
However, this algorithm is not temporally local, in that
it requires simultaneous access to the response for two
distinct sets of boundary conditions which, by definition,
cannot be imposed simultaneously. It is this requirement
that makes contrastive learning in physical systems so
challenging to realize.

Here we resolve this conundrum by building two identi-
cal electrical networks to run the free and clamped states.
We use digital variable resistors (see Methods) on each
edge, which have 128 possible discrete resistance values.
The original (continuous) coupled learning update rule,

�Ri =
�

R2
i

�
[�V C

i
]2 � [�V F

i
]2
�

(2)

where � is a learning rate and�V C

i
, �V F

i
are the voltage

drops in edge i of the clamped and free states respectively.
In our discrete resistor networks, the two networks adjust
their (identical) resistances according to an approxima-
tion of the original rule,

�RC

i
= �RF

i
=

(
+�R if |�V C

i
| > |�V F

i
|,

��R otherwise.
(3)

equivalent to taking the sign of Eq. (2) multiplied by
� = �R. This now Boolean operation is carried out by
integrated circuits housed on each edge of the network;
the entire system is pictured in Fig. 1A. For details re-
garding the implementation of this rule, see Appendix C.
Because the learning process is decentralized, our sys-
tem functions without a central processor, and training
the network to perform a task is straightforward. The
procedure is detailed in Fig. 1B: apply the desired in-
put voltages to the free and clamped networks, as well
as clamped output voltages ~V O

C
to the clamped network.

Edge updates are triggered by a global clock, and no fur-
ther instruction to the edges are required, as each edge
is responsible for its own evolution.

To demonstrate operation of our learning elements, we
train a two-edge network (Fig. 2A) as a voltage divider:
We ask the network to produce a single desired voltage
V D at its output (middle) node, while the input nodes
(top and bottom) are held at 5 V and 0 V respectively.
To train, the following algorithm is repeated every clock
cycle:

1. Update the clamped state output node voltage, per
Eq. (1).

2. Every edge updates its own resistance, per Eq. (3).

In machine learning language, the ‘supervisor’ tells the
network the right answer through the clamped bound-
ary condition. The network itself decides how to achieve
this answer, as it receives no external instructions about
which edges to push up or down in resistance. That is,
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FIG. 2. A self-training voltage divider. (A) Diagram
of network structure, as depicted in later figures (left) and
expanded (right) to show both free and clamped networks.
Voltage is imposed on input nodes (red) in both networks,
and on output nodes (purple) only in the clamped network.
The resistance of each edge is identical in both networks. (B)
Output node voltage V O vs training steps for both free (blue)
and clamped (black) networks. The desired voltage V D is
shown as a gray dashed line. Note that the clamped state
e↵ectively guides the free state towards the desired voltage
which is changed every 100 steps, from 3.75 V, to 2.25 V,
to 1 V, and finally to 2.25 V. (C) Resistance values of the
two edges in the network (grays) and their ratio (blue) as a
function of training step. The light blue dashed line represents
the ratio that will produce the desired network output.

shown the right answer, the network trains itself to pro-
duce it. In this simple example, this distinction may
seem trivial, but as we increase the size of the network,
the job of the supervisor does not grow in complexity; it
is always given by Eq. (1). This is in stark contrast to
ANNs, where the number of gradient calculations grows
rapidly with network size.
As previously described, edges modify their resistance

to bias the electrical state of the system away from the
free state and towards the clamped state. This results in
the free state output voltage(s) ‘following’ the clamped
state voltages, which in turn move progressively towards
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to equilibrium propagation, this algorithm approximates
global gradient descent in the limit ⌘ ⌧ 1 [34], allowing
a system to train itself by repeating this update process.
However, this algorithm is not temporally local, in that
it requires simultaneous access to the response for two
distinct sets of boundary conditions which, by definition,
cannot be imposed simultaneously. It is this requirement
that makes contrastive learning in physical systems so
challenging to realize.

Here we resolve this conundrum by building two identi-
cal electrical networks to run the free and clamped states.
We use digital variable resistors (see Methods) on each
edge, which have 128 possible discrete resistance values.
The original (continuous) coupled learning update rule,
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drops in edge i of the clamped and free states respectively.
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tion of the original rule,

�RC

i
= �RF

i
=

(
+�R if |�V C

i
| > |�V F

i
|,

��R otherwise.
(3)

equivalent to taking the sign of Eq. (2) multiplied by
� = �R. This now Boolean operation is carried out by
integrated circuits housed on each edge of the network;
the entire system is pictured in Fig. 1A. For details re-
garding the implementation of this rule, see Appendix C.
Because the learning process is decentralized, our sys-
tem functions without a central processor, and training
the network to perform a task is straightforward. The
procedure is detailed in Fig. 1B: apply the desired in-
put voltages to the free and clamped networks, as well
as clamped output voltages ~V O

C
to the clamped network.

Edge updates are triggered by a global clock, and no fur-
ther instruction to the edges are required, as each edge
is responsible for its own evolution.

To demonstrate operation of our learning elements, we
train a two-edge network (Fig. 2A) as a voltage divider:
We ask the network to produce a single desired voltage
V D at its output (middle) node, while the input nodes
(top and bottom) are held at 5 V and 0 V respectively.
To train, the following algorithm is repeated every clock
cycle:

1. Update the clamped state output node voltage, per
Eq. (1).

2. Every edge updates its own resistance, per Eq. (3).

In machine learning language, the ‘supervisor’ tells the
network the right answer through the clamped bound-
ary condition. The network itself decides how to achieve
this answer, as it receives no external instructions about
which edges to push up or down in resistance. That is,
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FIG. 2. A self-training voltage divider. (A) Diagram
of network structure, as depicted in later figures (left) and
expanded (right) to show both free and clamped networks.
Voltage is imposed on input nodes (red) in both networks,
and on output nodes (purple) only in the clamped network.
The resistance of each edge is identical in both networks. (B)
Output node voltage V O vs training steps for both free (blue)
and clamped (black) networks. The desired voltage V D is
shown as a gray dashed line. Note that the clamped state
e↵ectively guides the free state towards the desired voltage
which is changed every 100 steps, from 3.75 V, to 2.25 V,
to 1 V, and finally to 2.25 V. (C) Resistance values of the
two edges in the network (grays) and their ratio (blue) as a
function of training step. The light blue dashed line represents
the ratio that will produce the desired network output.

shown the right answer, the network trains itself to pro-
duce it. In this simple example, this distinction may
seem trivial, but as we increase the size of the network,
the job of the supervisor does not grow in complexity; it
is always given by Eq. (1). This is in stark contrast to
ANNs, where the number of gradient calculations grows
rapidly with network size.
As previously described, edges modify their resistance

to bias the electrical state of the system away from the
free state and towards the clamped state. This results in
the free state output voltage(s) ‘following’ the clamped
state voltages, which in turn move progressively towards
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to equilibrium propagation, this algorithm approximates
global gradient descent in the limit ⌘ ⌧ 1 [34], allowing
a system to train itself by repeating this update process.
However, this algorithm is not temporally local, in that
it requires simultaneous access to the response for two
distinct sets of boundary conditions which, by definition,
cannot be imposed simultaneously. It is this requirement
that makes contrastive learning in physical systems so
challenging to realize.

Here we resolve this conundrum by building two identi-
cal electrical networks to run the free and clamped states.
We use digital variable resistors (see Methods) on each
edge, which have 128 possible discrete resistance values.
The original (continuous) coupled learning update rule,
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where � is a learning rate and�V C
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drops in edge i of the clamped and free states respectively.
In our discrete resistor networks, the two networks adjust
their (identical) resistances according to an approxima-
tion of the original rule,
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��R otherwise.
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equivalent to taking the sign of Eq. (2) multiplied by
� = �R. This now Boolean operation is carried out by
integrated circuits housed on each edge of the network;
the entire system is pictured in Fig. 1A. For details re-
garding the implementation of this rule, see Appendix C.
Because the learning process is decentralized, our sys-
tem functions without a central processor, and training
the network to perform a task is straightforward. The
procedure is detailed in Fig. 1B: apply the desired in-
put voltages to the free and clamped networks, as well
as clamped output voltages ~V O

C
to the clamped network.

Edge updates are triggered by a global clock, and no fur-
ther instruction to the edges are required, as each edge
is responsible for its own evolution.

To demonstrate operation of our learning elements, we
train a two-edge network (Fig. 2A) as a voltage divider:
We ask the network to produce a single desired voltage
V D at its output (middle) node, while the input nodes
(top and bottom) are held at 5 V and 0 V respectively.
To train, the following algorithm is repeated every clock
cycle:

1. Update the clamped state output node voltage, per
Eq. (1).

2. Every edge updates its own resistance, per Eq. (3).

In machine learning language, the ‘supervisor’ tells the
network the right answer through the clamped bound-
ary condition. The network itself decides how to achieve
this answer, as it receives no external instructions about
which edges to push up or down in resistance. That is,
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FIG. 2. A self-training voltage divider. (A) Diagram
of network structure, as depicted in later figures (left) and
expanded (right) to show both free and clamped networks.
Voltage is imposed on input nodes (red) in both networks,
and on output nodes (purple) only in the clamped network.
The resistance of each edge is identical in both networks. (B)
Output node voltage V O vs training steps for both free (blue)
and clamped (black) networks. The desired voltage V D is
shown as a gray dashed line. Note that the clamped state
e↵ectively guides the free state towards the desired voltage
which is changed every 100 steps, from 3.75 V, to 2.25 V,
to 1 V, and finally to 2.25 V. (C) Resistance values of the
two edges in the network (grays) and their ratio (blue) as a
function of training step. The light blue dashed line represents
the ratio that will produce the desired network output.

shown the right answer, the network trains itself to pro-
duce it. In this simple example, this distinction may
seem trivial, but as we increase the size of the network,
the job of the supervisor does not grow in complexity; it
is always given by Eq. (1). This is in stark contrast to
ANNs, where the number of gradient calculations grows
rapidly with network size.
As previously described, edges modify their resistance

to bias the electrical state of the system away from the
free state and towards the clamped state. This results in
the free state output voltage(s) ‘following’ the clamped
state voltages, which in turn move progressively towards
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to equilibrium propagation, this algorithm approximates
global gradient descent in the limit ⌘ ⌧ 1 [34], allowing
a system to train itself by repeating this update process.
However, this algorithm is not temporally local, in that
it requires simultaneous access to the response for two
distinct sets of boundary conditions which, by definition,
cannot be imposed simultaneously. It is this requirement
that makes contrastive learning in physical systems so
challenging to realize.

Here we resolve this conundrum by building two identi-
cal electrical networks to run the free and clamped states.
We use digital variable resistors (see Methods) on each
edge, which have 128 possible discrete resistance values.
The original (continuous) coupled learning update rule,
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equivalent to taking the sign of Eq. (2) multiplied by
� = �R. This now Boolean operation is carried out by
integrated circuits housed on each edge of the network;
the entire system is pictured in Fig. 1A. For details re-
garding the implementation of this rule, see Appendix C.
Because the learning process is decentralized, our sys-
tem functions without a central processor, and training
the network to perform a task is straightforward. The
procedure is detailed in Fig. 1B: apply the desired in-
put voltages to the free and clamped networks, as well
as clamped output voltages ~V O

C
to the clamped network.

Edge updates are triggered by a global clock, and no fur-
ther instruction to the edges are required, as each edge
is responsible for its own evolution.

To demonstrate operation of our learning elements, we
train a two-edge network (Fig. 2A) as a voltage divider:
We ask the network to produce a single desired voltage
V D at its output (middle) node, while the input nodes
(top and bottom) are held at 5 V and 0 V respectively.
To train, the following algorithm is repeated every clock
cycle:

1. Update the clamped state output node voltage, per
Eq. (1).

2. Every edge updates its own resistance, per Eq. (3).

In machine learning language, the ‘supervisor’ tells the
network the right answer through the clamped bound-
ary condition. The network itself decides how to achieve
this answer, as it receives no external instructions about
which edges to push up or down in resistance. That is,
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FIG. 2. A self-training voltage divider. (A) Diagram
of network structure, as depicted in later figures (left) and
expanded (right) to show both free and clamped networks.
Voltage is imposed on input nodes (red) in both networks,
and on output nodes (purple) only in the clamped network.
The resistance of each edge is identical in both networks. (B)
Output node voltage V O vs training steps for both free (blue)
and clamped (black) networks. The desired voltage V D is
shown as a gray dashed line. Note that the clamped state
e↵ectively guides the free state towards the desired voltage
which is changed every 100 steps, from 3.75 V, to 2.25 V,
to 1 V, and finally to 2.25 V. (C) Resistance values of the
two edges in the network (grays) and their ratio (blue) as a
function of training step. The light blue dashed line represents
the ratio that will produce the desired network output.

shown the right answer, the network trains itself to pro-
duce it. In this simple example, this distinction may
seem trivial, but as we increase the size of the network,
the job of the supervisor does not grow in complexity; it
is always given by Eq. (1). This is in stark contrast to
ANNs, where the number of gradient calculations grows
rapidly with network size.
As previously described, edges modify their resistance

to bias the electrical state of the system away from the
free state and towards the clamped state. This results in
the free state output voltage(s) ‘following’ the clamped
state voltages, which in turn move progressively towards
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to equilibrium propagation, this algorithm approximates
global gradient descent in the limit ⌘ ⌧ 1 [34], allowing
a system to train itself by repeating this update process.
However, this algorithm is not temporally local, in that
it requires simultaneous access to the response for two
distinct sets of boundary conditions which, by definition,
cannot be imposed simultaneously. It is this requirement
that makes contrastive learning in physical systems so
challenging to realize.

Here we resolve this conundrum by building two identi-
cal electrical networks to run the free and clamped states.
We use digital variable resistors (see Methods) on each
edge, which have 128 possible discrete resistance values.
The original (continuous) coupled learning update rule,
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�
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i
]2 � [�V F

i
]2
�

(2)

where � is a learning rate and�V C

i
, �V F

i
are the voltage

drops in edge i of the clamped and free states respectively.
In our discrete resistor networks, the two networks adjust
their (identical) resistances according to an approxima-
tion of the original rule,

�RC

i
= �RF

i
=

(
+�R if |�V C

i
| > |�V F

i
|,

��R otherwise.
(3)

equivalent to taking the sign of Eq. (2) multiplied by
� = �R. This now Boolean operation is carried out by
integrated circuits housed on each edge of the network;
the entire system is pictured in Fig. 1A. For details re-
garding the implementation of this rule, see Appendix C.
Because the learning process is decentralized, our sys-
tem functions without a central processor, and training
the network to perform a task is straightforward. The
procedure is detailed in Fig. 1B: apply the desired in-
put voltages to the free and clamped networks, as well
as clamped output voltages ~V O

C
to the clamped network.

Edge updates are triggered by a global clock, and no fur-
ther instruction to the edges are required, as each edge
is responsible for its own evolution.

To demonstrate operation of our learning elements, we
train a two-edge network (Fig. 2A) as a voltage divider:
We ask the network to produce a single desired voltage
V D at its output (middle) node, while the input nodes
(top and bottom) are held at 5 V and 0 V respectively.
To train, the following algorithm is repeated every clock
cycle:

1. Update the clamped state output node voltage, per
Eq. (1).

2. Every edge updates its own resistance, per Eq. (3).

In machine learning language, the ‘supervisor’ tells the
network the right answer through the clamped bound-
ary condition. The network itself decides how to achieve
this answer, as it receives no external instructions about
which edges to push up or down in resistance. That is,
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function of training step. The light blue dashed line represents
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duce it. In this simple example, this distinction may
seem trivial, but as we increase the size of the network,
the job of the supervisor does not grow in complexity; it
is always given by Eq. (1). This is in stark contrast to
ANNs, where the number of gradient calculations grows
rapidly with network size.
As previously described, edges modify their resistance

to bias the electrical state of the system away from the
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state voltages, which in turn move progressively towards
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process is decentralized, our system functions without a
central processor, and training the network to perform
a task is straightforward. The procedure is detailed in
Fig. 1B: apply the desired input voltages to the free and
clamped networks, as well as clamped output voltages
~V O

C
to the clamped network. Edge updates are triggered

by a global clock, and no further instruction to the edges
are required, as each edge is responsible for its own evo-
lution.

RESULTS

We demonstrate the flexibility of our coupled learning
circuitry by training a 16-edge network (Fig. 1A) to per-
form three types of tasks inspired by biology (allostery),
mathematics (regression), and computer science (classifi-
cation), respectively. We show that the network switches
between these tasks on demand, including adapting to
new input and output node selections. It also learns af-
ter considerable damage to the network.

Allostery is a common feature of proteins [27], in which
an input signal, namely strain applied to a local region
of the protein by binding a regulatory molecule, gives
rise to a desired strain or conformational change else-
where in the protein, enabling or preventing binding of
a substrate molecule. In a related problem of ‘flow al-
lostery’ [29, 42, 43], a pressure drop in one region of a flow
network, (e.g. across input arteries in the brain vascular
network) gives rise to desired pressure drops elsewhere
in the brain at designated output locations that can be
quite distant from the input arteries, allowing the vascu-
lar system to deliver enhanced blood flow and therefore
more oxygen to active parts of the brain. In the context
of electrical networks, allostery corresponds to producing
specified output voltages in response to given input volt-
ages. This functionality can be useful for tasks such as
allocating power to various connected devices.

We choose a three-input, three-output allosteric task
as an example (Fig. 2A inset). Using a nudge of ⌘ =
0.5, the network successfully learns to deliver 3 V at all
output nodes, in response to three simultaneous input
node voltages of 5, 1, and 0 V. The mean-squared error
for this task drops during the learning process by over
four orders of magnitude (Fig. 2A).

Regression is a more di�cult test because the desired
output voltages are not constants but rather functions
of the input voltages. We ask the network to solve two
equations for two unknowns, choosing the two equations

V D

1 = 0.15V I

1 + 0.20V I

2 V D

2 = 0.25V I

1 + 0.10V I

2 (3)

We generate a data set of 420 randomly chosen input
pair values between 1 and 5 V, and calculate the desired
voltage for each input pair using the above equations.
We set an additional input node at 0 V to remove the
freedom for a global shift in voltage, resulting in three
input and two output nodes (Fig. 2B inset). We divide
the data into a training set (400 elements) and a test set
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FIG. 2. One learning machine can be trained for many
tasks. (A), Mean-squared error for each of three outputs and
their sum (black) vs training step for an example allostery
task. (B), Mean-squared error for each of two outputs and
their sum (black) for a two-parameter regression task for each
output node. Large purple circles indicate the training steps
shown in C. (C), Snapshots of the values for both outputs at
three steps during training for the regression task in B. Lines
indicate the desired output values. Regression involves two
parameters, and thus both axes are scaled by V I

1 to project
the results into 2 dimensions. (D), Test set classification er-
ror for the iris benchmark dataset [41] vs training step (faded
symbols). Smoothing the data with a window of 30 training
steps (solid line) highlights that the final plateau accuracy
is above 95%. Large red circles indicate the training steps
shown in E. The desired voltage for each class is re-measured
every epoch, indicated by the gray stars (see Supplementary
Material for details). (E), Snapshots of the classification suc-
cess of the test set projected into the 2D space of two of the
four inputs (sepal length and petal width, rescaled to 0-5V).
Species of iris is denoted by marker shape. Gray shapes are
correctly classified, red are incorrectly classified.
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process is decentralized, our system functions without a
central processor, and training the network to perform
a task is straightforward. The procedure is detailed in
Fig. 1B: apply the desired input voltages to the free and
clamped networks, as well as clamped output voltages
~V O

C
to the clamped network. Edge updates are triggered

by a global clock, and no further instruction to the edges
are required, as each edge is responsible for its own evo-
lution.

RESULTS

We demonstrate the flexibility of our coupled learning
circuitry by training a 16-edge network (Fig. 1A) to per-
form three types of tasks inspired by biology (allostery),
mathematics (regression), and computer science (classifi-
cation), respectively. We show that the network switches
between these tasks on demand, including adapting to
new input and output node selections. It also learns af-
ter considerable damage to the network.

Allostery is a common feature of proteins [27], in which
an input signal, namely strain applied to a local region
of the protein by binding a regulatory molecule, gives
rise to a desired strain or conformational change else-
where in the protein, enabling or preventing binding of
a substrate molecule. In a related problem of ‘flow al-
lostery’ [29, 42, 43], a pressure drop in one region of a flow
network, (e.g. across input arteries in the brain vascular
network) gives rise to desired pressure drops elsewhere
in the brain at designated output locations that can be
quite distant from the input arteries, allowing the vascu-
lar system to deliver enhanced blood flow and therefore
more oxygen to active parts of the brain. In the context
of electrical networks, allostery corresponds to producing
specified output voltages in response to given input volt-
ages. This functionality can be useful for tasks such as
allocating power to various connected devices.

We choose a three-input, three-output allosteric task
as an example (Fig. 2A inset). Using a nudge of ⌘ =
0.5, the network successfully learns to deliver 3 V at all
output nodes, in response to three simultaneous input
node voltages of 5, 1, and 0 V. The mean-squared error
for this task drops during the learning process by over
four orders of magnitude (Fig. 2A).

Regression is a more di�cult test because the desired
output voltages are not constants but rather functions
of the input voltages. We ask the network to solve two
equations for two unknowns, choosing the two equations
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We generate a data set of 420 randomly chosen input
pair values between 1 and 5 V, and calculate the desired
voltage for each input pair using the above equations.
We set an additional input node at 0 V to remove the
freedom for a global shift in voltage, resulting in three
input and two output nodes (Fig. 2B inset). We divide
the data into a training set (400 elements) and a test set
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FIG. 2. One learning machine can be trained for many
tasks. (A), Mean-squared error for each of three outputs and
their sum (black) vs training step for an example allostery
task. (B), Mean-squared error for each of two outputs and
their sum (black) for a two-parameter regression task for each
output node. Large purple circles indicate the training steps
shown in C. (C), Snapshots of the values for both outputs at
three steps during training for the regression task in B. Lines
indicate the desired output values. Regression involves two
parameters, and thus both axes are scaled by V I

1 to project
the results into 2 dimensions. (D), Test set classification er-
ror for the iris benchmark dataset [41] vs training step (faded
symbols). Smoothing the data with a window of 30 training
steps (solid line) highlights that the final plateau accuracy
is above 95%. Large red circles indicate the training steps
shown in E. The desired voltage for each class is re-measured
every epoch, indicated by the gray stars (see Supplementary
Material for details). (E), Snapshots of the classification suc-
cess of the test set projected into the 2D space of two of the
four inputs (sepal length and petal width, rescaled to 0-5V).
Species of iris is denoted by marker shape. Gray shapes are
correctly classified, red are incorrectly classified.
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process is decentralized, our system functions without a
central processor, and training the network to perform
a task is straightforward. The procedure is detailed in
Fig. 1B: apply the desired input voltages to the free and
clamped networks, as well as clamped output voltages
~V O

C
to the clamped network. Edge updates are triggered

by a global clock, and no further instruction to the edges
are required, as each edge is responsible for its own evo-
lution.

RESULTS

We demonstrate the flexibility of our coupled learning
circuitry by training a 16-edge network (Fig. 1A) to per-
form three types of tasks inspired by biology (allostery),
mathematics (regression), and computer science (classifi-
cation), respectively. We show that the network switches
between these tasks on demand, including adapting to
new input and output node selections. It also learns af-
ter considerable damage to the network.

Allostery is a common feature of proteins [27], in which
an input signal, namely strain applied to a local region
of the protein by binding a regulatory molecule, gives
rise to a desired strain or conformational change else-
where in the protein, enabling or preventing binding of
a substrate molecule. In a related problem of ‘flow al-
lostery’ [29, 42, 43], a pressure drop in one region of a flow
network, (e.g. across input arteries in the brain vascular
network) gives rise to desired pressure drops elsewhere
in the brain at designated output locations that can be
quite distant from the input arteries, allowing the vascu-
lar system to deliver enhanced blood flow and therefore
more oxygen to active parts of the brain. In the context
of electrical networks, allostery corresponds to producing
specified output voltages in response to given input volt-
ages. This functionality can be useful for tasks such as
allocating power to various connected devices.

We choose a three-input, three-output allosteric task
as an example (Fig. 2A inset). Using a nudge of ⌘ =
0.5, the network successfully learns to deliver 3 V at all
output nodes, in response to three simultaneous input
node voltages of 5, 1, and 0 V. The mean-squared error
for this task drops during the learning process by over
four orders of magnitude (Fig. 2A).

Regression is a more di�cult test because the desired
output voltages are not constants but rather functions
of the input voltages. We ask the network to solve two
equations for two unknowns, choosing the two equations
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We generate a data set of 420 randomly chosen input
pair values between 1 and 5 V, and calculate the desired
voltage for each input pair using the above equations.
We set an additional input node at 0 V to remove the
freedom for a global shift in voltage, resulting in three
input and two output nodes (Fig. 2B inset). We divide
the data into a training set (400 elements) and a test set
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FIG. 2. One learning machine can be trained for many
tasks. (A), Mean-squared error for each of three outputs and
their sum (black) vs training step for an example allostery
task. (B), Mean-squared error for each of two outputs and
their sum (black) for a two-parameter regression task for each
output node. Large purple circles indicate the training steps
shown in C. (C), Snapshots of the values for both outputs at
three steps during training for the regression task in B. Lines
indicate the desired output values. Regression involves two
parameters, and thus both axes are scaled by V I

1 to project
the results into 2 dimensions. (D), Test set classification er-
ror for the iris benchmark dataset [41] vs training step (faded
symbols). Smoothing the data with a window of 30 training
steps (solid line) highlights that the final plateau accuracy
is above 95%. Large red circles indicate the training steps
shown in E. The desired voltage for each class is re-measured
every epoch, indicated by the gray stars (see Supplementary
Material for details). (E), Snapshots of the classification suc-
cess of the test set projected into the 2D space of two of the
four inputs (sepal length and petal width, rescaled to 0-5V).
Species of iris is denoted by marker shape. Gray shapes are
correctly classified, red are incorrectly classified.
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process is decentralized, our system functions without a
central processor, and training the network to perform
a task is straightforward. The procedure is detailed in
Fig. 1B: apply the desired input voltages to the free and
clamped networks, as well as clamped output voltages
~V O

C
to the clamped network. Edge updates are triggered

by a global clock, and no further instruction to the edges
are required, as each edge is responsible for its own evo-
lution.

RESULTS

We demonstrate the flexibility of our coupled learning
circuitry by training a 16-edge network (Fig. 1A) to per-
form three types of tasks inspired by biology (allostery),
mathematics (regression), and computer science (classifi-
cation), respectively. We show that the network switches
between these tasks on demand, including adapting to
new input and output node selections. It also learns af-
ter considerable damage to the network.

Allostery is a common feature of proteins [27], in which
an input signal, namely strain applied to a local region
of the protein by binding a regulatory molecule, gives
rise to a desired strain or conformational change else-
where in the protein, enabling or preventing binding of
a substrate molecule. In a related problem of ‘flow al-
lostery’ [29, 42, 43], a pressure drop in one region of a flow
network, (e.g. across input arteries in the brain vascular
network) gives rise to desired pressure drops elsewhere
in the brain at designated output locations that can be
quite distant from the input arteries, allowing the vascu-
lar system to deliver enhanced blood flow and therefore
more oxygen to active parts of the brain. In the context
of electrical networks, allostery corresponds to producing
specified output voltages in response to given input volt-
ages. This functionality can be useful for tasks such as
allocating power to various connected devices.

We choose a three-input, three-output allosteric task
as an example (Fig. 2A inset). Using a nudge of ⌘ =
0.5, the network successfully learns to deliver 3 V at all
output nodes, in response to three simultaneous input
node voltages of 5, 1, and 0 V. The mean-squared error
for this task drops during the learning process by over
four orders of magnitude (Fig. 2A).

Regression is a more di�cult test because the desired
output voltages are not constants but rather functions
of the input voltages. We ask the network to solve two
equations for two unknowns, choosing the two equations

V D

1 = 0.15V I

1 + 0.20V I

2 V D

2 = 0.25V I

1 + 0.10V I

2 (3)

We generate a data set of 420 randomly chosen input
pair values between 1 and 5 V, and calculate the desired
voltage for each input pair using the above equations.
We set an additional input node at 0 V to remove the
freedom for a global shift in voltage, resulting in three
input and two output nodes (Fig. 2B inset). We divide
the data into a training set (400 elements) and a test set
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FIG. 2. One learning machine can be trained for many
tasks. (A), Mean-squared error for each of three outputs and
their sum (black) vs training step for an example allostery
task. (B), Mean-squared error for each of two outputs and
their sum (black) for a two-parameter regression task for each
output node. Large purple circles indicate the training steps
shown in C. (C), Snapshots of the values for both outputs at
three steps during training for the regression task in B. Lines
indicate the desired output values. Regression involves two
parameters, and thus both axes are scaled by V I

1 to project
the results into 2 dimensions. (D), Test set classification er-
ror for the iris benchmark dataset [41] vs training step (faded
symbols). Smoothing the data with a window of 30 training
steps (solid line) highlights that the final plateau accuracy
is above 95%. Large red circles indicate the training steps
shown in E. The desired voltage for each class is re-measured
every epoch, indicated by the gray stars (see Supplementary
Material for details). (E), Snapshots of the classification suc-
cess of the test set projected into the 2D space of two of the
four inputs (sepal length and petal width, rescaled to 0-5V).
Species of iris is denoted by marker shape. Gray shapes are
correctly classified, red are incorrectly classified.

{training data: 400 inputs/outputs; test data: 20 inputs/outputs}

{training data = test data}
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Classification of 3 Species of Iris
• Dataset: 4 measurements x 50 flowers x 3 species

{10 of each species for training + 40 of each species for testing}

• Five input nodes: these four measurement plus one ground
• Three target nodes:  L2 norm of outputs from <input> for each species

{reset target every epoch = 30 training steps}

Better than 95% 
classification accuracy

13

• One task after another, with different input/output node selections:

Flexible and retrainable
DILLAVOU, STERN, LIU, and DURIAN PHYS. REV. APPLIED 18, 014040 (2022)
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FIG. 4. The learning machine is flexible and retrainable. (a) The network structure, with the input (solid red) and output (purple
outlined) nodes indicated for seven distinct tasks (further details for each task are given in Appendix A). (b) The classification error
(task i) and mean-squared error (tasks ii–vii) versus training steps. The data are smoothed over a window of 30 training steps, with raw
data shown faded in the background. The network performs tasks i–vii in order, then tasks ii, iii, and ii again. (c) Left, the resistance
values of five numbered edges over the entire training process; right, the network structure with these five numbered edges highlighted.

(regularization), as well as the restrictions to resistance val-
ues, namely that they are chosen from a set of positive dis-
crete values, which limits adjustments to the hypersurfaces
separating the classes of data. The two-dimensional projec-
tion of the four-dimensional input data [Fig. 3(e)] shows
that incorrectly classified flowers lie along overlapping
edges of class clusters.

We now highlight some features of the system. The first
is the ability to learn new tasks. Unlike simulated net-
works, a physical learning machine must be physically
manufactured. Therefore, a given network is far more use-
ful if it can switch from one task to another on demand.
For our system, there is no imposed direction of informa-
tion travel as in a feed-forward neural network, so any node
can be used as an input node, output node, or hidden node.
We demonstrate this flexibility by training our network to
perform seven distinct tasks in succession, using different
input-output configurations [Fig. 4(a)]. In this sequence,
our 16-edge network performs one classification task (i),
four allosteric tasks with numbers of output nodes rang-
ing from 1 to 4 V (ii–v), and two two-parameter linear
regression tasks (vi–vii). The network successfully learns
each task in turn, as indicated by the reductions in the
mean-squared error [Fig. 4(b)]. The edges are not reset

between tasks but simply find new values as the network
adjusts to its new task and training examples [Fig. 4(c)].
Because of this ability to retrain using any input-output
combination, a network does not need to be designed
specifically to perform certain tasks—it can be trained on
any task that can be framed in terms of input and output
voltages. This flexibility stems, in part, from the abil-
ity of the system to “solve” a problem in multiple ways.
In this sequence of tasks, our 16-edge network performs
task ii, an allosteric task with one output, three different
times. Each time, the solution involves different values of
edge resistances R⃗ and, furthermore, explores this space
of approximately equally valid solutions that lie within
the noise floor [Fig. 4(c)]. We purposefully bias this drift
of resistor values to increase on average (see Appendix
C), which pushes the network to avoid high-power solu-
tions that may strain or damage hardware or waste energy.
By linearly biasing our update rule, given in Eq. (C2),
we effectively implement “lasso” regularization in our
network [50], which is known to promote test-set gener-
alization for the price of small increases in the error floor.
The network quickly erases memory of previous tasks, as
is typical in linear networks [42,51], as seen by the simi-
lar initial error in performing task ii each time [Fig. 4(b)].

014040-6
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Variation: Asynchronous Learning
• Resistors in our original network adjust simultaneously, on clock signal

Unlike neurons in brain

• Train by updating only a fraction x of edges, randomly chosen, each clock cycle:Research Article 3

A C

B D F

E

FIG. 3. Desynchronization Improves Discrete Network Solutions in Experiment and Simulation. (A) Test error vs training steps scaled
by update probability x in experiment for allostery. One typical curve raw (grayed) and smoothed (color) is shown for three values of x . (B)
Three resistor values vs training steps scaled by update probability from the experiments shown in (A). (C) Mean squared error averaged over
6? allosteric tasks as a function of x . (D) Mean squared test error averaged over 6? regression tasks as a function of x . (E) Mean squared
test error in simulation averaged over 10? regression tasks, normalized by error for x = 1. The same 143 edge network from Fig 1(B) is used
along with the discrete update rule (eq 5). (F) Distance in discrete resistor space from, synchronized solutions for the simulations in (E). A
single discrete step of one edge is distance 1, and each of the 143 edges has 128 total steps (to mimic the experiment).

this work we implement this learning rule19 but incorporate a
probabilistic element, such that with probability x each edge
updates according to eq (4), and with probability 1� x does
not update its resistance value. Thus, we are able to tune the
system continuously from entirely synchronous x = 1 to en-
tirely desynchronous x ⌧ 1. We implement this functionality
via a separate circuit housed on each edge of the network,
shown in Fig 2(a-b), that, when triggered, compares the cur-
rent value of an oscillating signal to a global ‘bias’ voltage, as
shown in Fig 2(c). As the resistor values are not identical, the
oscillators on each edge quickly become desynchronized from
each other, and thus the correlation between update probabil-
ities between edges vanishes. By changing the bias value, we
can select x for our experimental system.

As with the continuous version of coupled learning, desyn-
chronization does not prohibit the discrete, experimental sys-
tem from learning. In fact, desynchronized learning performs
better on average than synchronous learning for allosteric
(fixed input and output) tasks, as apparent in even typical
error curves as shown in Fig 3(a). Why does this stochas-
ticity improve results only when using the discrete learning
rule? Randomness allows the network to explore resistance
space. Edges continually evolve when x < 1 (desynchronous),
whereas for x = 1 (synchronous), the system may find a lo-
cal minimum and remain there indefinitely, as shown in Fig
4(b). This flexibility to avoid minima improves as the net-
work becomes more desynchronized, leading to a monotonic
trend in error as a function of x for allosteric tasks in exper-
iment, as shown in 3(c). As tasks become more difficult, the
beneficial effects of desynchronization are diminished. For
a two-target, two-source regression task, our 16 edge experi-
mental network shows no benefit from desynchronization, as
shown in Fig 3(d). However, as we now show in simulation,

increasing the size of the network brings learning back into a
regime where desynchronization confers an advantage.

To test the advantages of desynchronous learning for future
larger realizations, we perform a simulation tailored to match
our experimental system but with more edges. We use the dis-
crete update rule (eq 4 with probability x ), limit our resistance
values to 128 linearly spaced values and, to mimic compara-
tor error as measured for our experimental system15, add a
uniformly sampled random noise term between 0 and 0.05V
(s ) to the update rule, that is,

DRi =
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with probability (1�x ) = 0

(5)
The addition of s leads to a tendency for the resistor values to
drift upwards, just like in the experiment, finding lower power
solutions, and putting the resistors in a regime where they can
take smaller steps relative to their magnitude. From simula-
tions of a 143 edge discrete network, we find that the final er-
ror once again improves as the network becomes more desyn-
chronized, scaling approximately as (1� x )�1, as shown in
Fig 3(e). We note that we can eliminate the error scaling by
increasing the complexity of the task, that is greatly increas-
ing the number of sources and targets. We believe our exper-
imental network is in this regime for two-target two-source
regression using 16 edges, and why we must resort to a dis-
crete simulation of a larger network.

Linear tasks like allostery and linear regression do not have
local minima20 when the resistors are free to change contin-
uously. However, the discretization of resistor space creates
many local minima, trapping the synchronous solution and
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test error in simulation averaged over 10? regression tasks, normalized by error for x = 1. The same 143 edge network from Fig 1(B) is used
along with the discrete update rule (eq 5). (F) Distance in discrete resistor space from, synchronized solutions for the simulations in (E). A
single discrete step of one edge is distance 1, and each of the 143 edges has 128 total steps (to mimic the experiment).

this work we implement this learning rule19 but incorporate a
probabilistic element, such that with probability x each edge
updates according to eq (4), and with probability 1� x does
not update its resistance value. Thus, we are able to tune the
system continuously from entirely synchronous x = 1 to en-
tirely desynchronous x ⌧ 1. We implement this functionality
via a separate circuit housed on each edge of the network,
shown in Fig 2(a-b), that, when triggered, compares the cur-
rent value of an oscillating signal to a global ‘bias’ voltage, as
shown in Fig 2(c). As the resistor values are not identical, the
oscillators on each edge quickly become desynchronized from
each other, and thus the correlation between update probabil-
ities between edges vanishes. By changing the bias value, we
can select x for our experimental system.

As with the continuous version of coupled learning, desyn-
chronization does not prohibit the discrete, experimental sys-
tem from learning. In fact, desynchronized learning performs
better on average than synchronous learning for allosteric
(fixed input and output) tasks, as apparent in even typical
error curves as shown in Fig 3(a). Why does this stochas-
ticity improve results only when using the discrete learning
rule? Randomness allows the network to explore resistance
space. Edges continually evolve when x < 1 (desynchronous),
whereas for x = 1 (synchronous), the system may find a lo-
cal minimum and remain there indefinitely, as shown in Fig
4(b). This flexibility to avoid minima improves as the net-
work becomes more desynchronized, leading to a monotonic
trend in error as a function of x for allosteric tasks in exper-
iment, as shown in 3(c). As tasks become more difficult, the
beneficial effects of desynchronization are diminished. For
a two-target, two-source regression task, our 16 edge experi-
mental network shows no benefit from desynchronization, as
shown in Fig 3(d). However, as we now show in simulation,

increasing the size of the network brings learning back into a
regime where desynchronization confers an advantage.

To test the advantages of desynchronous learning for future
larger realizations, we perform a simulation tailored to match
our experimental system but with more edges. We use the dis-
crete update rule (eq 4 with probability x ), limit our resistance
values to 128 linearly spaced values and, to mimic compara-
tor error as measured for our experimental system15, add a
uniformly sampled random noise term between 0 and 0.05V
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tions of a 143 edge discrete network, we find that the final er-
ror once again improves as the network becomes more desyn-
chronized, scaling approximately as (1� x )�1, as shown in
Fig 3(e). We note that we can eliminate the error scaling by
increasing the complexity of the task, that is greatly increas-
ing the number of sources and targets. We believe our exper-
imental network is in this regime for two-target two-source
regression using 16 edges, and why we must resort to a dis-
crete simulation of a larger network.

Linear tasks like allostery and linear regression do not have
local minima20 when the resistors are free to change contin-
uously. However, the discretization of resistor space creates
many local minima, trapping the synchronous solution and
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this work we implement this learning rule19 but incorporate a
probabilistic element, such that with probability x each edge
updates according to eq (4), and with probability 1� x does
not update its resistance value. Thus, we are able to tune the
system continuously from entirely synchronous x = 1 to en-
tirely desynchronous x ⌧ 1. We implement this functionality
via a separate circuit housed on each edge of the network,
shown in Fig 2(a-b), that, when triggered, compares the cur-
rent value of an oscillating signal to a global ‘bias’ voltage, as
shown in Fig 2(c). As the resistor values are not identical, the
oscillators on each edge quickly become desynchronized from
each other, and thus the correlation between update probabil-
ities between edges vanishes. By changing the bias value, we
can select x for our experimental system.

As with the continuous version of coupled learning, desyn-
chronization does not prohibit the discrete, experimental sys-
tem from learning. In fact, desynchronized learning performs
better on average than synchronous learning for allosteric
(fixed input and output) tasks, as apparent in even typical
error curves as shown in Fig 3(a). Why does this stochas-
ticity improve results only when using the discrete learning
rule? Randomness allows the network to explore resistance
space. Edges continually evolve when x < 1 (desynchronous),
whereas for x = 1 (synchronous), the system may find a lo-
cal minimum and remain there indefinitely, as shown in Fig
4(b). This flexibility to avoid minima improves as the net-
work becomes more desynchronized, leading to a monotonic
trend in error as a function of x for allosteric tasks in exper-
iment, as shown in 3(c). As tasks become more difficult, the
beneficial effects of desynchronization are diminished. For
a two-target, two-source regression task, our 16 edge experi-
mental network shows no benefit from desynchronization, as
shown in Fig 3(d). However, as we now show in simulation,

increasing the size of the network brings learning back into a
regime where desynchronization confers an advantage.

To test the advantages of desynchronous learning for future
larger realizations, we perform a simulation tailored to match
our experimental system but with more edges. We use the dis-
crete update rule (eq 4 with probability x ), limit our resistance
values to 128 linearly spaced values and, to mimic compara-
tor error as measured for our experimental system15, add a
uniformly sampled random noise term between 0 and 0.05V
(s ) to the update rule, that is,
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The addition of s leads to a tendency for the resistor values to
drift upwards, just like in the experiment, finding lower power
solutions, and putting the resistors in a regime where they can
take smaller steps relative to their magnitude. From simula-
tions of a 143 edge discrete network, we find that the final er-
ror once again improves as the network becomes more desyn-
chronized, scaling approximately as (1� x )�1, as shown in
Fig 3(e). We note that we can eliminate the error scaling by
increasing the complexity of the task, that is greatly increas-
ing the number of sources and targets. We believe our exper-
imental network is in this regime for two-target two-source
regression using 16 edges, and why we must resort to a dis-
crete simulation of a larger network.

Linear tasks like allostery and linear regression do not have
local minima20 when the resistors are free to change contin-
uously. However, the discretization of resistor space creates
many local minima, trapping the synchronous solution and

[Wycoff, Dillavou, Stern, Liu, Durian (J Chem Phys 2022)]

Jacob Wycoff

Desynchronization 
improves performance!

(cf stochastic grad. desc.)
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Variation: Out-of-Equilibrium Learning
• Currents in original network equilibrate much faster than resistances change

This isn’t always true in the brain (short term synaptic plasticity, fast behavior changes, macroscopic remodeling)

• We can train faster than network can equilibrate, without much accuracy loss:

[Stern, Dillavou, Miskin, Durian, Liu, (Phys Rev Res 2022)]
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FIG. 1. Nonequilibrium learning in a physical learning net-
work. (a) A single edge (in both free and clamped networks) with
parallel 2.2 µF capacitors highlighted with arrows. (b) Network
structure with inputs and outputs for the allosteric task used in (c)–
(f). (c) Typical nonequilibrium (instantaneous) mean-squared-error
(MSE) traces, divided by initial error value, for an allosteric task as a
function of training steps and (d) real laboratory time. Colors indicate
the scaled learning rate R, and dotted line shows error threshold for
(f). (e) Nonequilibrium MSE for networks trained for 3 × 103 steps
as a function of R. Error bars indicate first and third quartiles. Shapes
indicate capacitor values used, with hollow points corresponding to
the traces shown in (c) and (d). (f) Average training times τ when
the system achieves a nonequilibrium MSE below a threshold of
MSE(τ ) = 10−3MSE(0). Dotted lines are power laws of −1 and
−1/2, respectively.

capacitors increases the time required to reach steady current
in the network, but in other respects the experiment is almost
[27] as described in Ref. [14]. The network is initialized by
imposing the inputs and allowing the free network to reach
equilibrium. The clamped boundary condition is applied by
imposing both the desired input and output values and the
clamped network is allowed to reach equilibrium as well. The
training process then commences as in Ref. [14], but with a
pause 1/γℓ prior to each update of the clamped voltages as
they are adjusted toward the desired target values (see [28] for
more information).

The system’s physical relaxation time changes during
training as the edge resistances evolve. Regardless of these
changes, the relaxation time is proportional to the in-line
capacitance F added across every resistor. In each experiment
c takes one of four values, 2.2, 22, 220, or 2200 µF . We
estimate a typical physical relaxation rate using resistance
R0 ≡ 10 K$ (each resistor starts at 50 K$ and can be varied

through the range 781 $ to 100 K$). Thus, the two rates in
the system are the learning rate γℓ and the physical relax-
ation rate γp = (R0c)−1 so that the scaled relaxation rate, or
ratio of the rate of learning to that of physical relaxation, is
R = R0cγℓ.

We train the network to learn a two-target, two-source
allosteric task [Fig. 1(b)], varying the capacitance F and
learning rate γℓ to adjust R. We define the instantaneous
nonequilibrium error as the mean-squared difference be-
tween the free-state outputs and the desired outputs C(t ) ≡∑

T [VT − vF
T (t )]2, normalized by its initial value, as measured

in real time so that the output voltages reflect the network’s
current nonequilibrium state. In the quasistatic regime, the
scaled learning rate is low, R ≪ 1, and the system learns
the task, as shown by the typical mean-squared-error (MSE)
curves in red in Figs. 1(c) and 1(d), which eventually hover at
the noise floor. In this regime, changing the ratio of relaxation
rates, R, does not affect the number of training steps required
to learn the task τ [see collapse of the two reddest curves in
(Fig. 1(c)] but changes the real time required to learn [see the
same two curves in Fig. 1(d)]. As R increases, the system’s
behavior becomes qualitatively different, at first taking more
training steps to reach low error, and then entering into a
regime with perpetual oscillations (R ! 1), as seen best in the
blue curve in Fig. 1(d). These oscillations widen the distribu-
tion of errors observed, as shown in Fig. 1(e), and increase
the number of training steps required for the system to fall be-
low an arbitrary normalized nonequilibrium error threshold of
C(τ ) = 10−3C(0) for 10 training steps (this 10-step require-
ment yields more consistent results by eliminating the effect
of “lucky” experimental runs in the fast-learning regime, in
which the system flies through a very low-error state but fails
to maintain it). In Fig. 1(f) we see two regimes: for R ≪ 1, the
scaled learning time is well described by τ ∼ R−1, while for
R ≫ 1, the dimensionless learning time scales approximately
as τ ∼ R−1/2.

Simulation results. To test the generality of these results,
we turn to numerical simulations on a larger network with
N = 64 nodes and Ne = 143 edges and use nonequilibrium
coupled learning [Eq. (3)] to train a different allosteric task,
involving MS = 5 source nodes, with applied voltages sam-
pled from a normal distribution VS ∼ N (0, 1), and MT =
3 target nodes with desired voltages sampled from VT ∼
N (0, 0.22). We assess the success of learning with the equi-
librium mean-squared-error (MSE) function C∗ ≡

∑
T (VT −

v∗F
T )2, normalized by its initial value, and calculated as learn-

ing degrees of freedom are evolving. Note that this cost
function is in equilibrium (once the physical degrees of free-
dom reach steady state), compared to the experimentally
computed nonequilibrium cost function C (for simulations of
the nonequilibrium cost function, see [28]).

Despite important differences to the experiment, the simu-
lations capture all of the major features of the experiment (see
[28] for details). In Fig. 2(a), error values C∗ during training
are shown for different values of the scaled learning rate R.
Here, we set the timescale so that a unit time corresponds to
one training step. In the quasistatic regime where the phys-
ical dynamics are rapid compared to the learning dynamics,
R ≪ 1, the number of required training steps is independent
of R but the real training time speeds up linearly with R
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• Coupled learning with regularization (small 𝜖 biases toward low-power solns):

 ̇𝑘! ∝ −
"
"#!

𝑃$%&'()* − 𝑃+,)) + 𝜖𝑃+,))

tradeoff: as power goes down, error goes up

Variation: Power optimization

7

than training steps. Because of unavoidable noise in the
experiment, ⌘ ! 0 is unobtainable; as the clamped state
approaches the free state their di↵erence becomes more
and more di�cult to measure. We therefore use a finite
value ⌘ = 0.22 for these experiments, with an e↵ective
learning rate of ↵ = 1

47µs . Experiments lasted 20 seconds
each, and the network’s resistances had completely set-
tled at the end of each run. The network’s structure is
a 4x4 square lattice of edges (inset in Fig. 3c) with peri-
odic boundary conditions, and edges are initialized with
uniform conductance in the approximate middle of their
range at the start of each experiment.

The network was trained for 150 two-source, two-target
allostery tasks, wherein the sources were held at the low
and high end of the allowable range (0 and approximately
0.45V , respectively), with the two desired target outputs
at either 20 and 80% or at 10 and 90% of this range,
respectively. Across these experiments, � was varied to 7
values ranging 0�0.055. In all cases the network was able
to lower the error, as shown for typical error vs training
time curves in Fig. 3a. For these tasks, the network also
consistently lowered the power of its free state, as shown
for the complementary power curves over training time
in Fig. 3b. Consistent with theoretical predictions, error
and power increased and decreased (respectively) with
increasing �, with their trade-o↵ shown in Fig. 3c. White
diamonds correspond to the mean error and free power
of all experiments performed with the same value of �.

To compare this trade-o↵ seen in the experiment, we
simulated N = 64 node resistor networks as done earlier.
To match the noisy conditions of experimental learning,
we added a Gaussian white noise term to Eq. 8 with scale
� = 5 · 10�4, which resulted in an error floor L ⇠ 10�5,
similarly to the experiments. The results for error and
free power with � in the range 10�6

�10�2, averaged over
50 realizations of the network and tasks, are shown in
Fig. 3d and qualitatively show the same error-free power
trade-o↵.

IV. PRACTICAL POWER MINIMIZATION

In the previous section we showed how adding an ex-
plicit power minimization term in the contrast function
leads to a new local learning rule that attempts to min-
imize both the error and free state power at the same
time, leading to a trade-o↵ between them. Here we use
this realization to design a practical control scheme to
dynamically modify the power minimization amplitude �
during learning, so as to get tolerable error values while
learning power-e�cient solutions (non-zero error values
are often unavoidable when it is known that the inputs
are noisy, See appendix C). We will show how such a con-
trol scheme can yield superior power-e�cient solutions
compared to just using good parameter initialization (as
in Section II) and naive error minimization learning.

What is this paragraph trying to say? I’m not
sure it’s necessary? Assume we initialize the con-

FIG. 3. Experimental results for power optimization show a
trade-o↵ between error and power. a) An experimental net-
work of adaptive nonlinear resistors can physically learn to
adopt desired function. This network learns to perform al-
lostery tasks, gradually minimizing the error down to a finite
error floor. Error dynamics are shown for di↵erent values of
the power minimization amplitude �. b) As experiments are
run with increasing power minimization (�), the learning pro-
cess finds solutions with increasing error but improved power
e�ciency. c) Overall, we experimentally observe an error-
power trade-o↵ in this experimental learning machine. Inset
shows a photograph of the experiment. d) This trade-o↵ be-
tween power e�ciency and error is recapitulated in simulated
learning resistor networks.

ductances of a resistor network at their minimal value
(maximum resistance). This initialization leads to a free
state V

F (kmin) with the lowest possible power dissipa-
tion P

F

min. This state corresponds to the minimum power
found by the power minimization dynamics with � � 1,
which selects the learning degrees of freedom resulting in
the lowest power PF

min.
As seen in Fig. 2, reducing the amplitude � from infin-

ity toward zero monotonically decreases the error while
increasing the solution free power. Suppose we are able
to measure the instantaneous error L during learning and
target a specific tolerance L̃. Then, if the instantaneous
error is larger than the target, we may decrease � to
promote error minimization, while if the error is smaller
than the tolerance, we can increase � to emphasize power
minimization. We propose to implement the following �

dynamical control scheme during training with the learn-
ing rule of Eq. 8:

�̇ = ⇢
�1

h⇣
L̃

L

⌘p

� 1
i
�, (17)

with ⇢ setting the update timescale of � and the param-

[Stern, Dillavou, Jayaraman, Durian, Liu (APL Machine Learning 2024)]
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What is this paragraph trying to say? I’m not
sure it’s necessary? Assume we initialize the con-

FIG. 3. Experimental results for power optimization show a
trade-o↵ between error and power. a) An experimental net-
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ductances of a resistor network at their minimal value
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state V
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min. This state corresponds to the minimum power
found by the power minimization dynamics with � � 1,
which selects the learning degrees of freedom resulting in
the lowest power PF
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ity toward zero monotonically decreases the error while
increasing the solution free power. Suppose we are able
to measure the instantaneous error L during learning and
target a specific tolerance L̃. Then, if the instantaneous
error is larger than the target, we may decrease � to
promote error minimization, while if the error is smaller
than the tolerance, we can increase � to emphasize power
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ing rule of Eq. 8:
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�1
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L
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� 1
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with ⇢ setting the update timescale of � and the param-
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Important feature: Robust to damage
• Computers are fragile

• Brains are robust

• So are our networks!
• Easily retrained, like the brain, even after massive damage
• Often/usually totally unaffected
• Hence manufacturable at scale, by contrast with other neuromorphic hardware

Training Steps

18
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• 2nd gen. made with transistors (gate voltage G is learning degree-of-freedom)
{implements actual coupled learning rule}

Continuously-variable conductances

[Dillavou, Beyer,  Liu, Miskin, Durian (PNAS 2024)]
Sam

Dillavou
Benjamin

Beyer
Marc

Miskin

32-edge 16-node network
(with or without periodic BCs)
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• Run current to gate capacitor in proportion to (VF
2 – VC

2)
Implements 
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• Linear at high conductivity (high gate voltage), nonlinear at low conductivity:

• NB: XOR is a hard task!
– As computation: outputs are not a linear combination of inputs
– As classification: cannot draw a through input space to separate the TRUE=1 from FALSE=0 labels

IV Characteristics

16 nodes, 24 edges

Nonlinear à more functionality?
e.g it can learn XOR?
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• Minsky & Papert (1969) proved that perceptrons (two-layer feedforward ANNs) 
cannot solve the XOR problem.  This was the first of many failures that began an 
“AI winter” lasting 30+ years.
– The trick is to add “depth” in terms of hidden layers between inputs and outputs
– Source of nonlinearity is “activation function” such as {Heaviside, sigmoid, tanh, ReLU,…} 

acting on weighted sums, e.g. h1 = s(x1 W1 + x2 W2)
– Minimum ANN for XOR is 2x2x1, although this isn’t overparameterized enough to easily 

find weights by gradient descent

Aside on XOR

22
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• Overparameterization is generally needed for gradient descent to avoid getting 
stuck in local minima

• Regularization is needed to prevent overfitting

• Double-descent phenomenon [Rocks & Mehta (Phys. Rev. Res. 2022)]

– Optimization of the learning circuits will involve analogous phenomena…
– Expect interesting/complex behavior in the dynamics of learning…

Further aside…

23

• Square lattice with 32 edges, 16 nodes

• Periodic boundary conditions 😊

Network architecture & programming
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• Takes a while to “figure out” how to take advantage of edge nonlinearities

XOR can be learned:

Fixed {I-=0.11V, I+=0.33V}
Variable inputs {I1, I2}
Differential output O = O+-O-

NB: simpler / lower-order 
modes are learned first
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Table 1. XOR Training Data / Truth Table

Here I0 = 0.45 V, and L0 = ≠0.087 V

equilibrating when G̨ are changed. In this and subsequent
examples we report training time as the time spent unfrozen,
ignoring time to freeze the system and to switch datapoints
and equilibrate, if necessary. Including these times would
approximately double training times, and this accounting is
further described in the discussion section.

Results

As the first demonstration with the above circuitry, we train
our system to perform the canonical nonlinearly-separable
function XOR. We choose the input schema shown in Fig. 3A,
with constant inputs I≠ = 0.11 V and I+ = 0.33 V,
two variable inputs I1 and I2, and a di�erential output
scheme O = O+ ≠ O≠. Our four-datapoint training set
is described in table 1. We train our system for ten seconds,
randomly selecting training points at each step. Initially,
the network evolves rapidly, focusing on direct connections
between sources and output(s), including the boxed region in
Fig. 3A between I+ and O+. Learning slows over time until
the network reaches its final state around five seconds, shown
in Fig. 3A, right panel.

During training, the network goes through a variety of
output truth tables before arriving at the desired checker-
board pattern of XOR, as shown in Fig. 3B. To characterize
the learning dynamics that produces this nonlinear result, we
produce an orthonormal basis, n̂jk, where j and k represent
the dependence on I1 and I2 respectively. These vectors have
four elements, one for each training datapoint, and thus only
four vectors [n̂00, n̂01, n̂10, and n̂11] are required to make
a complete basis. Each n̂jk is summarized graphically in
Fig. 3C and detailed in Orthonormal Basis Construction.

To characterize the evolution of the network, we calculate
|Ejk(t)| = |n̂jk · Ę(t)| over time, that is, projecting the error
onto this basis. Note that Ę(t) = Ǫ(t)≠L̨, also with vectors of
length four. In the first stage of training (until approximately
0.15 s), the network primarily corrects the mean E00. Slight
increases to the first order error E01 and E10 are made during
this period, but are later corrected. The lone nonlinear mode
E11 is the last to adjust, accompanying the final steep drop in
error, and the desired checkerboard output table in Figs. 4B,
right side. Note that adjustments to this nonlinear mode
emerged last, despite its larger contribution than the linear
modes E01 and E10.

Next, as a more complex task, we let our network train for
nonlinear regression to the eight datapoints shown as black
circles in Fig. 4A. We impose constant voltages on two nodes
of the network I≠ = 0 V and I+ = 0.45 V, and choose single
nodes for our input I and output O. At time zero, the initial
fit is a line. During training, we cycle through datapoints
in order (a random ordering gives identical results). In the
first 4 s of training the network solves the task, as shown
by sequential improvement of the the blue output curves in
Fig. 4A. This progress follow an interesting pattern: first
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Fig. 3. Learning XOR a) Schematic of the network showing input and output node
locations and average rate of change in G (edge color) for three time spans during
training. Edge widths correspond to average conductance. The boxed region in the
first panel highlights changes associated with altering the average output (reducing
|E00|). b) Network output O plotted as a function of inputs I1 and I2 in a truth-table
format for four points during training. Color corresponds to output value. c) Mean
squared error (black) and error contributions broken down by mode |Ejk| (green)
over time. Error modes are depicted graphically next to lines. Time points indicated
in (b) are denoted by vertical gray bars.

the mean is adjusted by shifting the line, then the slope is
adjusted, and finally the line is bent. That is, the system
learns the modes of the data in order just like for the XOR
task.

To tease this out quantitatively we again construct an
orthonormal basis n̂m, this time with eight elements, like
the training data. We focus only on the first three vectors,
n̂0, n̂1, and n̂2, as we find higher modes negligible for this
task. The construction of these vectors is detailed in SI
under Orthonormal Basis Construction, but their shapes can
be simply summarized as flat, linear, and parabolic when
their elements are plotted corresponding input values of the
training data (e.g. (n̂1)i = A(I1)i + B). As shown in Fig. 4B,
error in this basis |Em| decreases in mode order: constant
E0, then linear E1, then parabolic E2. These changes can be
visually confirmed by noting the output shapes in Fig. 4A,
whose times are plotted as vertical blue bars in Fig. 4B.
After these modes decrease, the mean squared error |Ę(t)|2
plateaus.

We gain further insight by directly inspecting the behavior
of individual edges of the system during training. In the
first 0.04 s of training time, the network primarily decreases
the output mean (E0), accomplished by strengthening the
output’s connection to I+ while weakening its connection to
I≠, as highlighted in the first panel of Fig. 4C. From 0.04 to
0.4 s of training time, the network reduces the linear error
contribution (E1), by increasing the slope of its output. This is

4 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Dillavou et al.
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[Dillavou, Beyer,  Liu, Miskin, Durian (PNAS 2024)]
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Same architecture and input/output choices

• Learns in order of complexity: first the mean, then the slope, then the curvature

Nonlinear regression & learning dynamics
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• 2 analog inputs (I1, I2);  2 fixed voltages (+,-);  1 analog output (O = O+ – O-)
• Training data: dots
• Classification: background color (decision boundary in black, O = 0 volts)

Nonlinear classification & learning dynamics

Square network with PBCs

thickness = conductivity
color = Dconductivity

poster!

[Dillavou, Beyer,  Liu, Miskin, Durian (PNAS 2024)]
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       NB: Example (C) is XOR

More nonlinear classification tasks
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Figure 3: Additional Classification Tasks (A) Linear task. Top: Output maps. Orange and blue
dots are training data of class 1 and 2 respectively, background color is network output O, and black
indicates |O| < 1.4mV. The maps are initial and final inference. Bottom: classification accuracy
(black) and average inference power (green), over training time. (B) and (C) are the same as (A) but
for a closed circular boundary (B) and a task that emulates XOR (C). Note that for (C) the training
datapoints were not randomly chosen but rather 196 datapoints are spaced equally in four lines, as
shown. Variation in initial inference power comes from varation in initial gate voltage G0 values.

Table 1: Task Details and Results
Fig ⌘ G0 |L| Tr. Time Epochs Acc. Inference Pwr Inf En pJ /Param

2 0.62 4.6V 0.18V 2.6 sec 12755 96.9% 105±62 µW 210pJ 7
3A 1 2.3V 0.09V 0.44 sec 797 100% 99±48 µW 198pJ 6
3B 0.62 3.5V 0.18V 24 sec 12755 94.3% 91±48 µW 182pJ 6
3C 0.5 2.3V 0.18V 1.4 sec 15944 100% 84±46 µW 167pJ 5

Inference Energy (Inf En) assumes equilibrium power for 2 µsec. Accuracy (Acc) reported for final
training step. All power and energy values are reported using the entire training set, and assume

negligible contributions from non-edge components. There are 32 edges (parameters). Initial gate
voltage values (G0) are uniform.

an inference energy of 210 pJ , or 7pJ per parameter (edge). By the end of training, the network
evolution has massively slowed, as shown in Fig 2D, and the decision boundary hovers and wiggles
around the optimal line due to small scale noise in evaluation.

We perform a similar training protocol for three additional tasks, shown in Fig 3A, B, and C. These
tasks all end their training above 94% accuracy, with a comparable inference energy to the task in Fig
2. Note that the task in 3A is linear, and the task in 3C does not have random but rather prescribed
input values (I1, I2), and is meant to emulate XOR. The variety of these tasks, all with the same
input/output node selection, highlight the flexibility and power-efficiency of our system. Details and
results for all four tasks, including hyper-parameters, training times, and power/energy for inference,
are listed in Table 1.

4 Conclusion

We have demonstrated the efficacy, flexibility, speed, and efficiency of our nonlinear learning meta-
material. Our system trains itself, with each element self-adjusting in response to imposed boundary
conditions (training data). Using one input/output scheme and a variety of hyper-parameters, our
network learned four 2D classification tasks, three of them nonlinear. After training, a single
evaluation of each task consumed of 7 pJ per element (parameter) or less on average. Currently,
the most efficient supercomputer on the Green500 list2 consumes approximately 15pJ per FLOP
(floating point operation)3. Our parameters G and our updates are orders of magnitude less precise
than they would be using simulated networks and floating point numbers, but for tasks requiring only

2https://www.top500.org/lists/green500/2023/06/
365.396 GigaFLOPs/Watt = 65.396 GigaFLOP/Joule ! 15.38 pico-Joule per FLOP

5
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1. Breadboarding of analog / 2nd generation (done)

2. Printed circuit boards with 2nd generation analog circuitry
– A few boards have been received and tested

3. Make O(200)-edge networks
4. If all is well, microfabricate O(107)-edge networks on chips…

Progression to large-scale networks

Marc
Miskin

Lauren
Altman
& Tarunyaa Sivakumar
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• Our dreams:  
– massively scalable:

• 109 edges per chip, all updating in parallel
• cf 1012 parameters in large-language models

   

– fast and energy efficient:
• 10-18 J/parameter
• cf most efficient Qualcomm AI chip: 10-12 J/parameter
• cf gen.2 on breadboards: 10-11 J/parameter

• Eventually disrupt current artificial neural network paradigm for AI?
• Or at least find niche applications where the energy cost must be minimized, or 

the task be must adapted to changing conditions?
• eg edge computing in sensors,…

A new hardware compute platform?

30
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• Low Re fluidic networks are isomorphic to linear resistor networks
– Voltage ⟷ pressure, current ⟷	current, conductance ⟷	conductance

• Tune in to Lecture 3 for contrastive local learning spring networks
– harder for theory/simulation than electronics

• Voltage and current are scalars, but force and displacement are vectors
• Force balance is a nonlinear problem even with linear/Hookean springs

Mechanical networks?

31

• Network of contacts and forces in 
particulate systems (grains, bubbles, cells…)

• An active mechanical system from my lab:
Note the convergent flow towards center

For me, this harkens back to jamming

Anthony Chieco

and the spring network, as solid lines between the centers of
pairs of repulsing bubbles. A spring is thus drawn only when
the circles representing two bubbles happen to overlap,
where actual bubbles would distort in shape away from
spherical and hence repel each other. The overlaps are large
enough to be visible in Fig. 2 only for the dry foams. Note
that by contrast with other studies of random spring net-
works, the springs shown in Fig. 2 are all compressed; none
is stretched. Inspection shows that the networks are sparser
for the wetter foams, as expected, since bubbles are then on
average further apart and interact with fewer nearest neigh-
bors. In fact, all bubbles are involved in the network for the
dry foams, but occasional isolated bubbles occur in the wet
foams. In both cases, the networks of compressed springs in
Fig. 2 all percolate not just from top to bottom, as required to
support static shear, but across the entire sample. Another
feature apparent in Fig. 2 is that the networks are more or-
dered for monodisperse foams, since in two dimensions iden-
tical spheres tend to crystallize when packed. The wet mono-
disperse foam is not as highly ordered as the dry since its
bubbles are only barely packed together.
The motion of bubbles that occurs during relaxation fol-

lowing sudden step strain is shown next in Fig. 3, for the
same four foams. Both the magnitude and direction of the
motion are indicated by a small line segment through the
center of each bubble given by (rW i2rW i

e)/gyi times a con-
stant; rW i is the new position of bubble i after stress relax-
ation, rW i

e is its equilibrium position before the step strain was
imposed, and the scaling constant is chosen so that the aver-

age segment size is smaller than the average bubble diam-
eter. According to this scheme, regions within the foam that
undergo affine shear deformation, (xi ,yi)!(xi1gyi ,yi),
such as in the edge bubbles of Fig. 3 or in a periodic network
free of defects, therefore all have horizontal line segments of
equal size. The response of bulk bubbles thus displayed in
Fig. 3 is evidently neither homogeneous nor affine. Never-
theless, large correlated regions in which the motion is
nearly affine exist, inside of which the line segments are all
of comparable size and direction. The trend apparent in Fig.
3 is that these uniformly elastic regions are more prevalent
for drier more monodisperse foams. The motion is least af-
fine for the wet polydisperse foam, where the size and direc-
tion of the line segments are the least spatially correlated and
can, in fact, vary wildly between neighboring bubbles.
The line segments displayed in Fig. 3, depicting how

stress is relaxed following step strain, allow visualization of
the motion that would occur in linear response to oscillatory
strain. If sinusoidal strain is imposed at a frequency v that is
small in comparison with the reciprocal of the longest relax-
ation time, tr , as seen Fig. 1, then viscous forces can be
neglected and the spring forces on each bubble will sum to
zero throughout the entire strain cycle. The motion is hence
quasistatic, and each bubble will move sinusoidally with am-
plitude and direction prescribed by the line segments in Fig.
3. As the oscillation frequency increases, however, the vis-
cous forces will become more important, and the bubble mo-
tion will eventually become affine in the limit v@t r

21.
The line segments in Fig. 3 also support a recent model

for the anomalous viscous dissipation observed in three-
dimensional, random, monodisperse emulsions @14#. There,
an extra Aiv contribution to the complex dynamic shear
modulus, G*~v!, was observed and attributed to a distribu-
tion of ‘‘weak’’ regions in which bubbles can shift their rela-

FIG. 2. Equilibrium bubble configurations for the four systems
examined in Fig. 1. The top two and bottom two have gas fractions
of f51.0 and 0.84, respectively; the left two and right two have
distribution widths of w50.75 and 0.10, respectively. Note that the
top and bottom edge bubbles are fixed to a horizontal plate, while
periodic boundary conditions are imposed to the left and right. A
solid line is drawn between the centers of adjacent bubbles if they
overlap and hence, physically, repel one another by a spring force.
These repulsive spring networks percolate across the system and
give the foam shear rigidity.

FIG. 3. The same configuration of bubbles shown in Fig. 2, now
with lines through the centers that depict the direction and magni-
tude of motion during relaxation after an imposed step strain as
described in the text. This motion becomes increasingly nonaffine
for greater liquid content and polydispersity.

1744 55D. J. DURIAN

DJD 1995+…
& Boulder School 2002

10pts if  you figure out what this is
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