@ Autonomous Learning Metamaterials
Douglas J. Durian <djdurian@physics.upenn.edu>
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e Physical systems made of many copies of a repeat unit, each of which uses a
local learning rule to collectively optimize a global cost function defining a task

to be “computed” physically. Eg “Contrastive Local Learning Networks”
Analog in-memory training for analog in-memory analog computing for control, metamaterials with

complex functionality, Al,...

e Boulder School 2024
Lecture 1: learning systems and rules
CLecture 2: electronic realizations )

Lecture 3: mechanical realizations
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@ Contrastive Local Learning Networks

e Can we build edges where all the conductances independently self-adjust using
the local coupled learning rule so that output voltages evolve to the desired

function of input voltages? R E oRY
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Example tasks/functions: ' A A LTS
(1) Outputs are at {V;} when inputs are at {V;} o ‘$=Q '4!‘
(2) Outputs are a desired linear combo of inputs { \ (S £) <
(3) Classification: e.g inputs are grayscale pixel data and

outputs indicate whether the image is a dog or a cat
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Bottom-up learning of complex

Junctionality using local rules in a -~ ’ "5.!‘ .‘.
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@ Bottom-up/self-assembly of structure

e Nature has built complex structures without a blueprint or oversight for eons
e Soft/living matter scientists/engineers have done this for decades

Biological

peptoids

polymers

Block copolymers

Inorganlc [Wyss Institute, 2016]




e Only prior examples are networks found in nature, and they use local rules

Eg vascular network in brain: conductivities self-adjust to redirect blood flow where needed

Eg neural network in brain: connections & conductances self-adjust to learn

neural network neuron

e ,/ & . it or;ifbierminal
dendrites

Despite being slow and noisy, brains are far more capable and energy-efficient than
artificial neural networks, which are trained top-down using external CPU and memory.

%S Coupled Learning Rule - recap

e Traditional loss function = (desired response — free response)? {>0}

e must be squared to guarantee it’s positive, for minimization by gradient descent

e New contrast function = dissipation rate difference, Pclamped — Pfiee {>()}

e positive due to optimization of energy functional over physical degrees of freedom for given BCs

Evolve the edge conductances to drive contrast function to zero:

kj x _% |:7)clamped . Pfree:|
aj This rule is LOCAL &
=~k {Z(kai)d“mped =) (VPk:)! m} designed to be

% %

implemented in the lab

_ [(ij)clamped _ (‘/j2)free):|

[Stern, Hexner, Rocks, Liu, Phys Rev X 2021]




Physical Implementation:

e Digital variable resistors are readily available, eg:

— Click up/down by voltage pulse to proper pin R=6Rx{1,23,..0r128)

— If resistance rather than conductance is the learning degree of freedom, then the coupled
learning rule follows from clamped-free difference of sum of P = IV = V?/R as

: 0 VJ% Vﬁv yn
R = —y — L= (2 —p2
: ya&-( Ri R, Rl?( e~ Vi)

— Easy enough to buy and connect into a network with chosen architecture

e But how to compare voltage drops of resistor i in free and clamped states and
update R; without memory or central processor?
— My answer: build identical twins...

%S Twin Network Trick

e Build repeat units (edges) consisting of two variable resistors kept at same
resistances, with circuitry to change their value in unison on clock signal
e Connect the edges together in some chosen architecture, giving twin networks

¢ One runs free BCs, the other runs clamped BCs

e Circuitry performs an approximate coupled learning rule /one self-adjusting}

Free Network Clamped Network Variable- R edge:
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Edge circuitry

e On clock signal, compare voltages and move resistance up or down one OR unit

approximate implementation of the coupled learning rule

SINGLE EDGE
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Warm-Up with a Voltage Divider

e Toy 2-edge network with continuum of known of solutions (R,/Rg = V,/V,—1)
{over-parameterized per ML practice: more learning degrees of freedom (2) than constraints (1)}
e Target output voltage is switched every 100 steps (from 3.75V to 2.5V to 1V to 2.5V)
e Training to target is achieved in O(50) steps

[Dillavou, Stern, Liu, Durian (Phys. Rev. Applied 2022)]
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[Dillavou, Stern, Liu, Durian (Phys. Rev. Applied 2022)]

W It Contrastive Local Learning Network

¢ A 9-node electrical network of 16 identically-constructed repeat units (edges)
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W Bio- and math-inspired tasks

“Allostery”

e Train for three desired outputs to be 3V
when three inputs are at 0V, 1V, 5V

{training data = test data}

e Linear Regression

e Train for two desired outputs to be a
linear combination of two inputs

ViP = 0.15V{ +0.20V
VP = 0.25V{ +0.10V4

10
T 4n0
NZ 10-1
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{training data: 400 inputs/outputs; test data: 20 inputs/outputs}
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@ Classification of 3 Species of Iris

e Dataset: 4 measurements x 50 flowers x 3 species

{10 of each species for training + 40 of each species for testing}

e Five input nodes: these four measurement plus one ground
e Three target nodes: L, norm of outputs from <input> for each species

{reset target every epoch = 30 training steps}
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@ Flexible and retrainable

¢ One task after another, with different input/output node selections:
(a) [C.)assfcaton [ﬁostery [Regresson
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@ Variation: Asynchronous Learning

e Resistors in our original network adjust simultaneously, on clock signal

Unlike neurons in brain

e Train by updating only a fraction & of edges, randomly chosen, each clock cycle:
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[Wycoft, Dillavou, Stern, Liu, Durian (J Chem Phys 2022)]
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@ Variation: Out-of-Equilibrium Learning

e Currents in original network equilibrate much faster than resistances change

This isn’t always true in the brain (short term synaptic plasticity, fast behavior changes, macroscopic remodeling)

- simulation C 1o experiment
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[Stern, Dillavou, Miskin, Durian, Liu, (Phys Rev Res 2022)]
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W Variation: Power optimization

e Coupled learning with regularization (small € biases toward low-power solns):
. d
k. oc ——=— Pclamped _ Pfree + EPfree
o= [( )+ epiree]

tradeoff: as power goes down, error goes up
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[Stern, Dillavou, Jayaraman, Durian, Liu (APL Machine Learning 2024)]

17

@ Important feature: Robust to damage

* Computers are fragile

N> 10" T T
3 ORES <) o<
. S 10°F
e Brains are robust 5
810' 1
gw'zr
210'5‘[
2 10*

Training Steps
e So are our networks!

e Easily retrained, like the brain, even after massive damage
e Often/usually totally unaffected

e Hence manufacturable at scale, by contrast with other neuromorphic hardware

18



{implements actual coupled learning rule}
O Output
B

L Label
r Twin Edge
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e 2nd gen, made with transistors (gate voltage G is learning degree-of-freedom)

32- edge 16 node network
(with or without periodic BCs)

[Dillavou, Beyer, Liu, Miskin, Durian (PNAS 2024)]
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Implements &; oc — [(V]?)Cl“mped - (Vf)f“"e)}

Charge Capacitor Measure and Amplify Combine Measurements
VE— V2 =
= - Ve
VoRoCo P

a=05(Vz + Vp)

a+55Ve+ Vi)

e Run current to gate capacitor in proportion to (Vg2 —

Edge Circuitry

Multiply

W—Z=AXAY/Vg
= (V2= VIV,
Vo~ 033V

Vg=10V

XjW
L ® 3

y

I= (W= 2)/Ry = (V2= VAI(VyRy)
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@ IV Characteristics

e Linear at high conductivity (high gate voltage), nonlinear at low conductivity:

Nonlinear = more functionality?
e.g it can learn XOR?

OR XOR

e NB: XOR is a hard task!
— As computation: outputs are not a linear combination of inputs

— As classification: cannot draw a through input space to separate the TRUE=1 from FALSE=0 labels
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@ Aside on XOR

e Minsky & Papert (1969) proved that perceptrons (two-layer feedforward ANNs)
cannot solve the XOR problem. This was the first of many failures that began an
“Al winter” lasting 30+ years.

— The trick is to add “depth” in terms of hidden layers between inputs and outputs

— Source of nonlinearity is “activation function” such as {Heaviside, sigmoid, tanh, RelLU,...}
acting on weighted sums, e.g. hl = 6(x1 W1 + x2 W2)

— Minimum ANN for XOR is 2x2x1, although this isn’t overparameterized enough to easily
find weights by gradient descent

Input Layer | Output Layer

ww '\ h1 \\ W“
O k e
NS TN
\‘, y/ output
'y 1
- o .
(e
T h2
NZ
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@ Further aside...

e Overparameterization is generally needed for gradient descent to avoid getting
stuck in local minima

e Regularization is needed to prevent overfitting

¢ Double-descent phenomenon [Rocks & Mehta (Phys. Rev. Res. 2022)]

— Optimization of the learning circuits will involve analogous phenomena...
— Expect interesting/complex behavior in the dynamics of learning...
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@ Network architecture & programmaing

e Square lattice with 32 edges, 16 nodes

¢ Periodic boundary conditions (&)

Fixed {I=0.11V, [,=0.33V} E

Variable inputs {I;, I,}
Differential output O = O,-0O. I Iy

-

'

24
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@ XOR can be learned:

e Takes a while to “figure out” how to take advantage of edge nonlinearities

A 0 — 0.15 sec 0.15 — 1 sec 1 5sec
Fixed {I1=0.11V, 1,=0.33V} ooo mEulln ooo
Variable inputs {I;, I,} O o0
Differential output O = O,-O. g -S-p-g-e- -G8
ooon oo oo oo
| =0V §L=I _— — —
I=1Io L=Lo L-0V 0 G (V/s) 10 A5 G(Vs) 15 05 G(V/s) 05

12 =0V L=0V L= L() B Input I Input I Input I Input I

Table 1. XOR Training Data / Truth Table

Tnput I;

-0.03L, -0.02L || 0.20L, 0.14L, 0.51Lo 0.18L, -0.1L, n
0.1L,

-0.15L° -O.2Lo OLO -0.15L° 0.43L° 0.22L0 H
Here Ip = 0.45 V, and Lo = —0.087 V 0

NB: simpler / lower-order
modes are learned first

[Dillavou, Beyer, Liu, Miskin, Durian (PNAS 2024)]
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@ Nonlinear regression & learning dynamacs

Same architecture and input/output choices

e Learns in order of complexity: first the mean, then the slope, then the curvature

Ao.3 o O/O BA -
= ° 34
= 107 %
— W o
S 0.25 - &
3
Q % é
= ] A
2 02 8 =
= ‘g o 10% =
o O Train Data O fg
0.15 e [nitial ] 2 52 /\ g
e (.04 3 =
o — ().4s = “
0.1 4s 1 .
i o |,
0 01 02 03 04 10 10 102 10" 10° 10" 10

Input I; (V) Training Time (s)

[Dillavou, Beyer, Liu, Miskin, Durian (PNAS 2024)]
26

13



e Training data: dots

-.-.-.-
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O o]

Class 1 Unsure Class 2

[Dillavou, Beyer, Liu, Miskin, Durian (PNAS 2024)]

e 2 analoginputs (/,, I,); 2 fixed voltages (+,-); 1 analog output (O =0,-0)

e Classification: background color (decision boundary in black, O = 0 volts)

Square network with PBCs

thickness = conductivity
color = Aconductivity
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1. Breadboarding of analog / 2"d generation (done)

2. Printed circuit boards with 2"d generation analog circuitry

— A few boards have been received and tested

e Continuous Edge
‘ ‘ @ Coupled Learning Network
=)

» ;c-gcc % PGQI}

PCB Version 1 May 2023

'"dg“""}uosF
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4 (e i PR e Altman Miskin
| B = |@ FreeB o A : n; ;

G Lo L

GND2  2q pi4 ProductOutput Ghp3 | = (2
Z 8 =0 @

& Tarunyaa Sivakumar

3. Make 0(200)-edge networks
4. If all is well, microfabricate O(107)-edge networks on chips...
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&l A new hardware compute platform?

e Qur dreams:

— massively scalable:
e 10° edges per chip, all updating in parallel
e cf 1012 parameters in large-language models

— fast and energy efficient:
e 10718 J/parameter

e cf most efficient Qualcomm Al chip: 1012 J/parameter
e cfgen.2 on breadboards: 1011 J/parameter

e Eventually disrupt current artificial neural network paradigm for Al?

e Or at least find niche applications where the energy cost must be minimized, or
the task be must adapted to changing conditions?

e eg edge computing in sensors,...
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@ Mechanical networks?

e Low Re fluidic networks are isomorphic to linear resistor networks

- VoItage <> pressure, current <= current, conductance < conductance

e Tune in to Lecture 3 for contrastive local learning spring networks

— harder for theory/simulation than electronics
e Voltage and current are scalars, but force and displacement are vectors
¢ Force balance is a nonlinear problem even with linear/Hookean springs
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@ For me, this harkens back to jamming

o Network of contacts and forces in

| DID 1995+...
& Boulder School 2002
<

* An active mechanical system from my lab:
Note the convergent flow towards center

Anthony Chieco

10pts if you figure out what this is
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