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• Physical systems made of many copies of a repeat unit, each of which uses a 
local learning rule to collectively optimize a global cost function defining a task 
to be “computed” physically.  Eg “Contrastive Local Learning Networks”

Analog in-memory training for analog in-memory analog computing for control, metamaterials with 
complex functionality, AI,…

• Boulder School 2024
Lecture 1: learning systems and rules
Lecture 2: electronic realizations
Lecture 3: mechanical realizations

Autonomous Learning Metamaterials
Douglas J. Durian <djdurian@physics.upenn.edu>

University of Pennsylvania, Philadelphia PA
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“forward” problem for electrical resistors, fluidic pipes, mechanical springs,…

• Fixed boundary conditions: Apply voltage, pressure, 
current, force, displacements, etc. to designated 
“input” nodes or edges, and let the network 
equilibrate.  What happens?
– The unfixed physical degrees of freedom will relax and 

stop evolving once Kirchhoff’s laws or force balance is 
satisfied (and power or elastic energy is minimized)

– The final behavior of designated “output” nodes or edges 
depends on the BCs as well as the conductances / 
stiffnesses of all the edges
• Theory: the outputs are predicted by solving a global 

optimization problem (hard, if elements are nonlinear)
• Expt: the outputs are computed physically – quickly & for free

Response of Networks to Stimuli

freedom) according to Eq. (4) with a learning rate of
α ¼ 5 × 10−4. Figure 2(b) shows the change of conduct-
ance of each edge at the first iteration of learning, with blue
(red) signifying positive (negative) conductance changes.

This process constitutes one step of the training process; at
the end of each step, we compute the error function C
[Fig. 2(d)]. The difference between the obtained targets and
the desired ones decreases exponentially by many orders of
magnitude during the training process, reaching machine
precision. This result demonstrates the success of the
coupled learning approach. We see that the magnitude of

the change in the conductance vector, jΔkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jΔk2j
q

,

calculated for each step of the training process, also
decreases exponentially during training [blue dashed line
in Fig. 2(d)]. This result shows that the learning process is
adaptive—it slows down as it approaches good solutions.
The final trained network is displayed in Fig. 2(c), with
edge thicknesses indicating conductance. The pipes of the
trained network have changed considerably compared to
the initial one shown in Fig. 2(a), with some pipes
effectively removed (with conductances near zero).
The results of applying the training protocol to networks

of different sizes, for different initial networks and choices
of the source and target nodes and their pressure values, are
shown in Figs. 2(e) and 2(f), where errors are rescaled by
the initial error for each network. Our learning algorithm is
generally able to train the networks to exhibit the desired
responses, successfully decreasing the initial error by
orders of magnitude. We find that networks of different
size converge on good solutions at different rates, with the
error at a particular chosen time t ¼ 103 scaling roughly as
a power law CðN; tÞ ∼ Nq (with power q in the range
1–2). We note that networks of different sizes may not be
equivalent, as training may depend on idiosyncratic details,
such as particular distances between sources and targets, or
other geometrical features. We leave detailed exploration of
the effects of network size and source-target geometry to
future study.
It is noteworthy that flow networks are linear, so that the

mapping between the sources to targets is always linear
pT ¼ AðkÞPS (A is a MS ×MT matrix that depends on the
conductance values). Networks which contain hundreds of
edges have many more conductance values than compo-
nents of A so that there are far more degrees of freedom
than constraints. While this argument suggests our flow
networks are overparametrized and should always succeed
in learning, we stress that not all linear transformations are
possible; pressure values everywhere in the network are
weighted averages of their neighbors (due to Kirchhoff’s
law). More importantly, the linear transformation is
limited because all conductance values must be non-
negative (see Appendix D). As a result, flow networks
cannot implement any desired linear mapping between the
inputs and outputs, and nonzero errors are expected for
certain tasks after training. It was previously shown that
the likelihood of flow networks to successfully learn a set
of tasks depends on network size [6], even when trained
with gradient descent. Therefore, we expect that training
larger networks for a given task is more likely to succeed

FIG. 2. Training flow networks with coupled learning. (a) An
untrained disordered flow network with uniform conductance at
all pipes ki ¼ 1, as indicated by uniform thicknesses of the green
edges. The ten red and blue nodes correspond to the source and
target nodes with dot sizes indicating the magnitudes of the
source pressures fPSg and desired target pressures fPTg. (b) In
each step, conductance values are modified using Eq. (4),
according to the difference in flow between the free and clamped
states. This process is applied iteratively. (c) After training, the
network conductance values, indicated by the thicknesses of the
green edges, are considerably changed compared to the initial
network shown in (a). (d) During training of a network (N ¼ 512
nodes), the pressure values of the target nodes approach the
desired values, as indicated by the exponentially shrinking error
(black solid line). The desired target values fPTg are reached
when the error is small; the modification of the conductance in
each time step, Δk (blue dashed line), vanishes exponentially as
well. (e) We train multiple networks of different sizes
N ¼ 64–2048, and find that all can be trained successfully with
coupled learning. Error bars indicate the variation with initial
network and choice of sources and targets. In all cases, errors
decay exponentially, yet larger networks converge slower.
(f) Picking a certain time t ¼ 103, we find that the error scales
up with system size as a soft power between 1 and 2.
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• …if the output values represent the answer to 
some desired computational problem (big IF!)
– A “physical neural network (PNN)”

– Example tasks / functions:
• Outputs are at {Vj} when inputs are at {Vi}   (“allostery”)
• Outputs are a desired linear combo of inputs
• Matrix multiplication
• Classification: e.g inputs are grayscale pixel data and outputs 

indicate whether the image is a dog/cat/etc or which squiggles 
represent which letters or numbers

– How to train?

This is an analog physical computer…

freedom) according to Eq. (4) with a learning rate of
α ¼ 5 × 10−4. Figure 2(b) shows the change of conduct-
ance of each edge at the first iteration of learning, with blue
(red) signifying positive (negative) conductance changes.

This process constitutes one step of the training process; at
the end of each step, we compute the error function C
[Fig. 2(d)]. The difference between the obtained targets and
the desired ones decreases exponentially by many orders of
magnitude during the training process, reaching machine
precision. This result demonstrates the success of the
coupled learning approach. We see that the magnitude of

the change in the conductance vector, jΔkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jΔk2j
q

,

calculated for each step of the training process, also
decreases exponentially during training [blue dashed line
in Fig. 2(d)]. This result shows that the learning process is
adaptive—it slows down as it approaches good solutions.
The final trained network is displayed in Fig. 2(c), with
edge thicknesses indicating conductance. The pipes of the
trained network have changed considerably compared to
the initial one shown in Fig. 2(a), with some pipes
effectively removed (with conductances near zero).
The results of applying the training protocol to networks

of different sizes, for different initial networks and choices
of the source and target nodes and their pressure values, are
shown in Figs. 2(e) and 2(f), where errors are rescaled by
the initial error for each network. Our learning algorithm is
generally able to train the networks to exhibit the desired
responses, successfully decreasing the initial error by
orders of magnitude. We find that networks of different
size converge on good solutions at different rates, with the
error at a particular chosen time t ¼ 103 scaling roughly as
a power law CðN; tÞ ∼ Nq (with power q in the range
1–2). We note that networks of different sizes may not be
equivalent, as training may depend on idiosyncratic details,
such as particular distances between sources and targets, or
other geometrical features. We leave detailed exploration of
the effects of network size and source-target geometry to
future study.
It is noteworthy that flow networks are linear, so that the

mapping between the sources to targets is always linear
pT ¼ AðkÞPS (A is a MS ×MT matrix that depends on the
conductance values). Networks which contain hundreds of
edges have many more conductance values than compo-
nents of A so that there are far more degrees of freedom
than constraints. While this argument suggests our flow
networks are overparametrized and should always succeed
in learning, we stress that not all linear transformations are
possible; pressure values everywhere in the network are
weighted averages of their neighbors (due to Kirchhoff’s
law). More importantly, the linear transformation is
limited because all conductance values must be non-
negative (see Appendix D). As a result, flow networks
cannot implement any desired linear mapping between the
inputs and outputs, and nonzero errors are expected for
certain tasks after training. It was previously shown that
the likelihood of flow networks to successfully learn a set
of tasks depends on network size [6], even when trained
with gradient descent. Therefore, we expect that training
larger networks for a given task is more likely to succeed

FIG. 2. Training flow networks with coupled learning. (a) An
untrained disordered flow network with uniform conductance at
all pipes ki ¼ 1, as indicated by uniform thicknesses of the green
edges. The ten red and blue nodes correspond to the source and
target nodes with dot sizes indicating the magnitudes of the
source pressures fPSg and desired target pressures fPTg. (b) In
each step, conductance values are modified using Eq. (4),
according to the difference in flow between the free and clamped
states. This process is applied iteratively. (c) After training, the
network conductance values, indicated by the thicknesses of the
green edges, are considerably changed compared to the initial
network shown in (a). (d) During training of a network (N ¼ 512
nodes), the pressure values of the target nodes approach the
desired values, as indicated by the exponentially shrinking error
(black solid line). The desired target values fPTg are reached
when the error is small; the modification of the conductance in
each time step, Δk (blue dashed line), vanishes exponentially as
well. (e) We train multiple networks of different sizes
N ¼ 64–2048, and find that all can be trained successfully with
coupled learning. Error bars indicate the variation with initial
network and choice of sources and targets. In all cases, errors
decay exponentially, yet larger networks converge slower.
(f) Picking a certain time t ¼ 103, we find that the error scales
up with system size as a soft power between 1 and 2.
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3

• The conductances / stiffnesses of the edges (i.e. 
the “learning degrees of freedom”) must be 
chosen according to the desired functionality.

• How can the network learn these parameters?  
This is a harder global optimization problem.
– Theoretically:

• Directly solve inverse problem {outputs} == {desired values} ???
• Do gradient descent on (actual – desired)2 ???

Seems like machine learning, with analogous issues of over-
parameterization, rugged landscape with many local minima,…

– Experimentally:
• Mimic theory, or do something else?

Learning degrees of freedom

freedom) according to Eq. (4) with a learning rate of
α ¼ 5 × 10−4. Figure 2(b) shows the change of conduct-
ance of each edge at the first iteration of learning, with blue
(red) signifying positive (negative) conductance changes.

This process constitutes one step of the training process; at
the end of each step, we compute the error function C
[Fig. 2(d)]. The difference between the obtained targets and
the desired ones decreases exponentially by many orders of
magnitude during the training process, reaching machine
precision. This result demonstrates the success of the
coupled learning approach. We see that the magnitude of
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calculated for each step of the training process, also
decreases exponentially during training [blue dashed line
in Fig. 2(d)]. This result shows that the learning process is
adaptive—it slows down as it approaches good solutions.
The final trained network is displayed in Fig. 2(c), with
edge thicknesses indicating conductance. The pipes of the
trained network have changed considerably compared to
the initial one shown in Fig. 2(a), with some pipes
effectively removed (with conductances near zero).
The results of applying the training protocol to networks

of different sizes, for different initial networks and choices
of the source and target nodes and their pressure values, are
shown in Figs. 2(e) and 2(f), where errors are rescaled by
the initial error for each network. Our learning algorithm is
generally able to train the networks to exhibit the desired
responses, successfully decreasing the initial error by
orders of magnitude. We find that networks of different
size converge on good solutions at different rates, with the
error at a particular chosen time t ¼ 103 scaling roughly as
a power law CðN; tÞ ∼ Nq (with power q in the range
1–2). We note that networks of different sizes may not be
equivalent, as training may depend on idiosyncratic details,
such as particular distances between sources and targets, or
other geometrical features. We leave detailed exploration of
the effects of network size and source-target geometry to
future study.
It is noteworthy that flow networks are linear, so that the

mapping between the sources to targets is always linear
pT ¼ AðkÞPS (A is a MS ×MT matrix that depends on the
conductance values). Networks which contain hundreds of
edges have many more conductance values than compo-
nents of A so that there are far more degrees of freedom
than constraints. While this argument suggests our flow
networks are overparametrized and should always succeed
in learning, we stress that not all linear transformations are
possible; pressure values everywhere in the network are
weighted averages of their neighbors (due to Kirchhoff’s
law). More importantly, the linear transformation is
limited because all conductance values must be non-
negative (see Appendix D). As a result, flow networks
cannot implement any desired linear mapping between the
inputs and outputs, and nonzero errors are expected for
certain tasks after training. It was previously shown that
the likelihood of flow networks to successfully learn a set
of tasks depends on network size [6], even when trained
with gradient descent. Therefore, we expect that training
larger networks for a given task is more likely to succeed

FIG. 2. Training flow networks with coupled learning. (a) An
untrained disordered flow network with uniform conductance at
all pipes ki ¼ 1, as indicated by uniform thicknesses of the green
edges. The ten red and blue nodes correspond to the source and
target nodes with dot sizes indicating the magnitudes of the
source pressures fPSg and desired target pressures fPTg. (b) In
each step, conductance values are modified using Eq. (4),
according to the difference in flow between the free and clamped
states. This process is applied iteratively. (c) After training, the
network conductance values, indicated by the thicknesses of the
green edges, are considerably changed compared to the initial
network shown in (a). (d) During training of a network (N ¼ 512
nodes), the pressure values of the target nodes approach the
desired values, as indicated by the exponentially shrinking error
(black solid line). The desired target values fPTg are reached
when the error is small; the modification of the conductance in
each time step, Δk (blue dashed line), vanishes exponentially as
well. (e) We train multiple networks of different sizes
N ¼ 64–2048, and find that all can be trained successfully with
coupled learning. Error bars indicate the variation with initial
network and choice of sources and targets. In all cases, errors
decay exponentially, yet larger networks converge slower.
(f) Picking a certain time t ¼ 103, we find that the error scales
up with system size as a soft power between 1 and 2.

SUPERVISED LEARNING IN PHYSICAL NETWORKS: FROM … PHYS. REV. X 11, 021045 (2021)

021045-5

• inputs
• outputs

Take an extended detour through prior approaches…
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Artificial/Digital Neural Networks
• Each node is weighted sum of nodes in prior layer (set to 0 if negative).  Weights 

are the “learning parameters / learning degrees of freedom”

Use gradient descent to minimize a cost function that penalizes mistakes wrt training data
(e.g. by backpropagation and GPUs)

• The adjustment of each “neuron” depends on all other neurons in the layer (i.e. needs global info)
• Memory & computer power are needed, and both grow rapidly with network size

AlphaGo: 12 layers of (19x19)x17 nodes; hardware 64 GPU + 19 CPU + 4 TPU cost $25M
ChatGPT: 96 layers with 12,288 hidden layer dimensions and 175 billion learning parameters
(human brain: 86 billion neurons and 100-1000 trillion synapses)

Output 1  (1 for dog, 0 for cat)

Output 2  (1 for cat, 0 for dog)
 

e.g. classification:
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• E.g. crossbar array of memristors, trained by backprop on computer model

Hybrid Physical Neural Networks

Review article https://doi.org/10.1038/s41467-024-45670-9

Hardware implementation of memristor-
based artificial neural networks

Fernando Aguirre1,2, Abu Sebastian 3, Manuel Le Gallo 3, Wenhao Song4,
TongWang4, J. JoshuaYang 4,Wei Lu5,Meng-FanChang 6,Daniele Ielmini 7,
Yuchao Yang 8, Adnan Mehonic 9, Anthony Kenyon 9, Marco A. Villena 1,
Juan B. Roldán 10, Yuting Wu5, Hung-Hsi Hsu6, Nagarajan Raghavan11,
Jordi Suñé 2, Enrique Miranda2, Ahmed Eltawil 12, Gianluca Setti12,
Kamilya Smagulova12, Khaled N. Salama 12, Olga Krestinskaya 12,
Xiaobing Yan 13, Kah-Wee Ang14, Samarth Jain14, Sifan Li14, Osamah Alharbi 1,
Sebastian Pazos 1 & Mario Lanza 1

Artificial Intelligence (AI) is currently experiencing a bloom driven by deep
learning (DL) techniques, which rely on networks of connected simple com-
puting units operating in parallel. The low communicationbandwidth between
memory and processing units in conventional von Neumann machines does
not support the requirements of emerging applications that rely extensively
on large sets of data. More recent computing paradigms, such as high paral-
lelization andnear-memory computing, help alleviate thedata communication
bottleneck to some extent, but paradigm- shifting concepts are required.
Memristors, a novel beyond-complementary metal-oxide-semiconductor
(CMOS) technology, are a promising choice for memory devices due to their
unique intrinsic device-level properties, enabling both storing and computing
with a small, massively-parallel footprint at low power. Theoretically, this
directly translates to a major boost in energy efficiency and computational
throughput, but various practical challenges remain. In thisworkwe review the
latest efforts for achieving hardware-based memristive artificial neural net-
works (ANNs), describing with detail the working principia of each block and
the different design alternatives with their own advantages and disadvantages,
as well as the tools required for accurate estimation of performance metrics.
Ultimately, we aim to provide a comprehensive protocol of the materials and
methods involved in memristive neural networks to those aiming to start
working in this field and the experts looking for a holistic approach.

The development of sophisticated artificial neural networks (ANNs)
has become one of the highest priorities of technological companies
and governments of wealthy countries, as they can boost the fabrica-
tion of artificial intelligence (AI) systems that generate economic and
social benefits inmultiple fields (e.g., logistics, commerce, health care,

national security, etc.)1. ANNs are able to compute and store the huge
amount of electronic data produced (either by humans or machines),
and to execute complex operations with them. Examples of electronic
products that containANNswithwhichwe interact inour daily lives are
those that identify biometric patterns (e.g., face, fingerprint) for access
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2T2R40,41 (Fig. 2a), have been proposed to attain enhanced control over 
memristive devices. These cell designs incorporate more transistors to 
achieve finer control over the memristive devices, mitigating the effect 
of device non-idealities on output currents and facilitating precise 
tuning of memristive devices. However, the integration of additional 
transistors comes at the cost of increased area and higher power con-
sumption. For stackability, network connectivity and higher density, 
passive two-terminal devices that rely on nonlinear current–voltage 
behaviour have been engineered as selector devices within memristive 

cells to address the sneak path issue42–44. However, the practical applica-
tions of these selector devices in large-scale arrays are limited owing to 
the demanding requirements, such as high endurance, high selectivity 
(on/off state conductance ratio), high nonlinearity and fast switching 
speed, for the selector device properties.

Achieving multibit weight values for VMM within a single cell 
is another challenge associated with the memory cell design. One 
approach involves engineering a single memristive device for multiple 
distinguishable conductance levels. The state-of-the-art (SOTA) mem-
ristive devices allow for up to 2,048 conductance levels, equivalent to 
representing 11 bits of digital data18. However, these advanced capabili-
ties have yet to be fully harnessed in array-level in-memory computing 
applications because of an increased power budget for peripherals to 
satisfy high-precision processing and precise programming. In most 
edge accelerations, memristive devices integrated into chips exhibit 
16–64 conductance states32,45,46, corresponding to four-bit to six-bit 
weight precisions, which are sufficient to achieve software-level per-
formance. For applications that require 8-bit precision or higher (for 
example, scientific computing), alternative approaches on the circuit 
level are needed to achieve software-equivalent accuracy. For example, 
multiple binary cells can be used as one synapse to achieve multibit 
weight values for VMM28,47–49. The multicell per synapse approach 
was extended to memristive devices with multiple conductance lev-
els, achieving software-level bit precision. However, this result was 
obtained at the expense of area and energy consumption30,31.

Crossbar arrays for matrix operations
Two-dimensional memristive crossbar arrays, in which one layer of 
memristive devices is arranged in a 2D mesh structure, serve as basic 
structures for analogue VMM (Fig. 2b). From the integration perspec-
tive, research efforts have been focused on developing advanced fab-
rication techniques for memristive crossbar arrays to achieve a higher 
packing density15,50. One approach involves integrating memristive 
devices at lower metal layers to achieve high-density crossbar arrays 
for computing applications51. In parallel, researchers have explored 
various hardware acceleration schemas on 2D crossbar arrays with 
different memristive devices, such as neural network algorithms 
on ferroelectric memristive arrays52, hyperdimensional computing 

a   Memristive cells

g   3D stack with other layers

b   Memristive crossbar arrays
         for in-memory computing

3D memristive crossbar arrays stacked by
2D crossbar arrays

c   3D array stacked by identical
       2D arrays with direct
       connections

d   3D array with customized metal
       interconnections

1R 1S1R 1T1R

2T1R 2T2R nTnR

Vin

Iout

Memristive
cell

Staircase electrodes in
row banks

Individual row bank

200 nm 300 nm

e f

Sensor layer

Other
processing
layers

Sensory
peripherals 

Analogue
communication
network

Analogue
in-memory
computing
layer

Fig. 2 | The designs of memristive cells and crossbar arrays for analogue 
matrix operations. a, Different memristive cell designs that are integrated into 
the cross points of the crossbar array structure in part b. The designs include  
one memristor (1R), one selector and one memristor (1S1R), one transistor and one 
memristor (1T1R), two transistors and one memristor (2T1R), multiple transistors 
and multiple memristors (nTnR), and so forth. b, Generic 2D memristive crossbar 
arrays for in-memory computing with input voltages Vin and output current Iout. 
The memristive cell in each cross point could be one of the designs in part a.  
c, Three-dimensional memristive crossbar arrays stacked by identical 
2D crossbar arrays with direct connections. d, Three-dimensional memristive 
crossbar arrays with customized metal interconnections for highly parallel 
matrix operations. e, Scanning electron micrograph image of the 3D stack of 
memristive crossbar arrays shown in part c. f, Scanning electron micrograph 
image of the 3D memristive circuit shown in part d. g, Memristive crossbar arrays 
stacked in 3D with a sensor layer and other processing layers to process analogue 
input signals and transfer data in the analogue domain, facilitated by sensory 
peripherals and analogue communication networks. Panels d and f are reprinted 
from ref. 73, Springer Nature Limited. Panel e is reprinted from ref. 34, CC BY 4.0  
(https://creativecommons.org/licenses/by/4.0/).
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Memristor-based hardware 
accelerators for artificial intelligence
Yi Huang    1, Takashi Ando    2, Abu Sebastian    3, Meng-Fan Chang    4, J. Joshua Yang    5 & Qiangfei Xia    1 

Abstract

Satisfying the rapid evolution of artificial intelligence (AI) algorithms 
requires exponential growth in computing resources, which, in turn, 
presents huge challenges for deploying AI models on hardware. 
Memristor-based hardware accelerators provide a promising 
solution to the energy efficiency and latency issues in large AI model 
deployments. The non-volatility of memristive devices facilitates in-
memory computing, in which computing occurs within memory cells 
where data are stored. This approach eliminates the constant data 
shuttling between the processing and memory units found in the von 
Neumann architecture, resulting in substantial time and energy savings. 
The recent surge of research and development in this field indicates 
a pivotal transition of memristor technology from proof-of-concept 
demonstrations to commercial products that accelerate AI models 
across various applications. In this Review, we survey the latest progress 
in memristive crossbar arrays, peripheral circuits, architectures, 
hardware–software co-designs and system implementations for 
memristor-based hardware accelerators. We discuss how these research 
efforts bridge the gap between memristive devices and energy-efficient 
accelerators for AI. Finally, we summarize the key remaining issues and 
propose potential pathways to future hardware accelerators with low 
latency and high energy efficiency, emphasizing the technology scale-up 
and commercialization for large-scale AI applications.

Sections

Introduction

Memristive cells and crossbar 
arrays

Fully integrated hardware 
accelerators

Hardware–software  
co-optimization

Outlook

1Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA. 2IBM 
Thomas J. Watson Research Center, Yorktown Heights, NY, USA. 3IBM Research Europe, Rüschlikon, Switzerland. 
4National Tsing Hua University, Hsinchu, Taiwan, Republic of China. 5Ming Hsieh Department of Electrical and 
Computer Engineering, University of Southern California, Los Angeles, CA, USA.  e-mail: qxia@umass.edu
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• Input/output encoded in wave; trained by backprop on computer model

Hybrid Physical Neural Networks

550 | Nature | Vol 601 | 27 January 2022

Article

PNNs are particularly well motivated for DNN-like calculations, much 
more so than for digital logic or even other forms of analogue com-
putation. As expected from their robust processing of natural data, 
DNNs and physical processes share numerous structural similarities, 
such as hierarchy, approximate symmetries, noise, redundancy and 
nonlinearity36. As physical systems evolve, they perform transforma-
tions that are effectively equivalent to approximations, variants and/
or combinations of the mathematical operations commonly used in 
DNNs, such as convolutions, nonlinearities and matrix-vector multipli-
cations. Thus, using sequences of controlled physical transformations 
(Fig. 1c), we can realize trainable, hierarchical physical computations, 
that is, deep PNNs (Fig. 1d).

Although the paradigm of constructing computers by directly 
training physical transformations has ancestry in evolved com-
puting materials18, it is today emerging in various fields, including 
optics14,15,17,20, spintronic nano-oscillators10,37, nanoelectronic devices13,19 
and small-scale quantum computers38. A closely related trend is physi-
cal reservoir computing (PRC)21,22, in which the transformations of 
an untrained physical ‘reservoir’ are linearly combined by a trainable 
output layer. Although PRC harnesses generic physical processes for 
computation, it is unable to realize DNN-like hierarchical computations. 
In contrast, approaches that train the physical transformations13–19 

themselves can, in principle, overcome this limitation. To train physical 
transformations experimentally, researchers have frequently relied 
on gradient-free learning algorithms10,18–20. Gradient-based learning 
algorithms, such as the backpropagation algorithm, are considered 
essential for the efficient training and good generalization of large-scale 
DNNs39. Thus, proposals to realize gradient-based training in physical 
hardware have appeared40–47. These inspiring proposals nonetheless 
make assumptions that exclude many physical systems, such as linear-
ity, dissipation-free evolution or that the system be well described by 
gradient dynamics. The most general proposals13–16 overcome such 
constraints by performing training in silico, that is, learning wholly 
within numerical simulations. Although the universality of in silico 
training is empowering, simulations of nonlinear physical systems are 
rarely accurate enough for models trained in silico to transfer accurately 
to real devices.

Here we demonstrate a universal framework using backpropaga-
tion to directly train arbitrary physical systems to execute DNNs, that 
is, PNNs. Our approach is enabled by a hybrid in situ–in silico algo-
rithm, called physics-aware training (PAT). PAT allows us to execute 
the backpropagation algorithm efficiently and accurately on any 
sequence of physical input–output transformations. We demonstrate 
the universality of this approach by experimentally performing image 
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Fig. 1 | Introduction to PNNs. a, Artificial neural networks contain operational 
units (layers): typically, trainable matrix-vector multiplications followed by 
element-wise nonlinear activation functions. b, DNNs use a sequence of layers 
and can be trained to implement multi-step (hierarchical) transformations  
on input data. c, When physical systems evolve, they perform, in effect, 
computations. We partition their controllable properties into input data  
and control parameters. Changing parameters alters the transformation 
performed on data. We consider three examples. In a mechanical (electronic) 
system, input data and parameters are encoded into time-dependent forces 
(voltages) applied to a metal plate (nonlinear circuit). The controlled 

multimode oscillations (transient voltages) are then measured by a microphone 
(oscilloscope). In a nonlinear optical system, pulses pass through a χ (2)  
crystal, producing nonlinearly mixed outputs. Input data and parameters  
are encoded in the input pulses’ spectra, and outputs are obtained from the 
frequency-doubled pulses’ spectra. d, Like DNNs constructed from sequences 
of trainable nonlinear mathematical functions, we construct deep PNNs with 
sequences of trainable physical transformations. In PNNs, each physical layer 
implements a controllable physical function, which does need to be 
mathematically isomorphic to a conventional DNN layer.
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Recently, integrated optics has gained interest as a hardware platform for implementing machine learning algorithms.
Of particular interest are artificial neural networks, since matrix-vector multiplications, which are used heavily in
artificial neural networks, can be done efficiently in photonic circuits. The training of an artificial neural network
is a crucial step in its application. However, currently on the integrated photonics platform there is no efficient pro-
tocol for the training of these networks. In this work, we introduce a method that enables highly efficient, in situ
training of a photonic neural network. We use adjoint variable methods to derive the photonic analogue of the back-
propagation algorithm, which is the standard method for computing gradients of conventional neural networks. We
further show how these gradients may be obtained exactly by performing intensity measurements within the device. As
an application, we demonstrate the training of a numerically simulated photonic artificial neural network. Beyond the
training of photonic machine learning implementations, our method may also be of broad interest to experimental
sensitivity analysis of photonic systems and the optimization of reconfigurable optics platforms. © 2018 Optical
Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (130.3120) Integrated optics devices; (200.4860) Optical vector-matrix systems; (200.4260) Neural networks.
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1. INTRODUCTION

Artificial neural networks (ANNs), and machine learning in gen-
eral, are becoming ubiquitous for an impressively large number of
applications [1]. This has brought ANNs into the focus of re-
search in not only computer science, but also electrical engineer-
ing, with hardware specifically suited to perform neural network
operations actively being developed. There are significant efforts
in constructing ANN architectures using various electronic solid-
state platforms [2,3], but ever since the conception of ANNs, a
hardware implementation using optical signals has also been con-
sidered [4,5]. In this domain, some of the recent work has been
devoted to photonic spike processing [6,7] and photonic reservoir
computing [8,9], as well as to devising universal, chip-integrated
photonic platforms that can implement any arbitrary ANN
[10,11]. Photonic implementations benefit from the fact that,
due to the non-interacting nature of photons, linear operations—
such as the repeated matrix multiplications found in every neural
network algorithm—can be performed in parallel, and at a lower
energy cost, when using light as opposed to electrons.

A key requirement for the utility of any ANN platform is the
ability to train the network using algorithms such as error back-
propagation [12]. Such training typically demands significant
computational time and resources, and it is generally desirable
for error backpropagation to be implemented on the same

platform. This is indeed possible for the technologies of
Refs. [2,13,14] and has also been demonstrated, e.g., in memris-
tive devices [3,15]. In optics, as early as three decades ago, an
adaptive platform that could approximately implement the back-
propagation algorithm experimentally was proposed [16,17].
However, this algorithm requires a number of complex optical
operations that are difficult to implement, particularly in inte-
grated optics platforms. Thus, the current implementation of a
photonic neural network using integrated optics has been trained
using a model of the system simulated on a regular computer [11].
This is inefficient for two reasons. First, this strategy depends en-
tirely on the accuracy of the model representation of the physical
system. Second, unless one is interested in deploying a large num-
ber of identical, fixed copies of the ANN, any advantage in speed
or energy associated with using the photonic circuit is lost if the
training must be done on a regular computer. Alternatively, train-
ing using a brute force, in situ computation of the gradient of the
objective function has been proposed [11]. However, this strategy
involves sequentially perturbing each individual parameter of the
circuit, which is highly inefficient for large systems.

In this work, we propose a procedure to compute the gradient
of the cost function of a photonic ANN by use of only in situ
intensity measurements. Our procedure works by physically
implementing the adjoint variable method (AVM), a technique
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Experimentally realized in situ backpropagation for
deep learning in photonic neural networks
Sunil Pai1*†, Zhanghao Sun1, Tyler W. Hughes2‡, Taewon Park1, Ben Bartlett2†, Ian A. D. Williamson1§,
Momchil Minkov1‡, Maziyar Milanizadeh3, Nathnael Abebe1#, Francesco Morichetti3, Andrea Melloni3,
Shanhui Fan1, Olav Solgaard1, David A. B. Miller1

Integrated photonic neural networks provide a promising platform for energy-efficient, high-throughput
machine learning with extensive scientific and commercial applications. Photonic neural networks efficiently
transform optically encoded inputs using Mach-Zehnder interferometer mesh networks interleaved with
nonlinearities. We experimentally trained a three-layer, four-port silicon photonic neural network with
programmable phase shifters and optical power monitoring to solve classification tasks using “in situ
backpropagation,” a photonic analog of the most popular method to train conventional neural networks. We
measured backpropagated gradients for phase-shifter voltages by interfering forward- and backward-
propagating light and simulated in situ backpropagation for 64-port photonic neural networks trained onMNIST
image recognition given errors. All experiments performed comparably to digital simulations (>94% test
accuracy), and energy scaling analysis indicated a route to scalable machine learning.

N
eural networks (NNs) are ubiquitous com-
puting models loosely inspired by the
structure of a biological brain. Such mod-
els are trained on input data to implement
complex signal processing or “inference”

(1, 2), powering various modern technologies
ranging from language translation to self-
driving cars. The required energy for training
and inference to power these technologies has
recently been estimated to double every 5 to
6 months (3), and thus necessitates an energy-
efficient hardware implementation for NNs.
To address this problem, programmable

photonic neural networks (PNNs) have been
proposed as a promising, scalable, and mass-
manufacturable integrated photonic hard-
ware solution (4). A popular implementation
of PNNs consists of silicon photonic meshes,
N ! N networks of Mach-Zehnder interfer-
ometers (MZIs) and programmable phase
shifters (5–7), which optically accelerate the
most expensive operation in a PNN: unitary
matrix-vector multiplication (MVM). The MVM
y ¼ Ux is implemented by simply sending
an input mode vector x (optical phases and
modes in N input waveguides) through the
network implementingU to yield output modes
y (4, 6, 8). This fundamental mathematical op-
eration, based on optical scattering theory,
additionally enables various analog signal pro-
cessing applications beyond machine learning
(4, 9) such as telecommunications (8), quantum
computing (10, 11), and sensing (12).

Recently, “hybrid” PNNs, which interleave
programmable photonic linear optical elements
(e.g., meshes) and digital nonlinear activation
functions (9, 13), have proven to be a low-
latency and energy-efficient solution for NN
inference in circuit sizes of up toN ¼ 64(14).
Compared to current fully analog PNNs with
electro-optic (EO) nonlinear activations (15, 16),
hybrid PNNs get around the critical problem
of photonic loss and offermore versatility than
multilayer PNNs for between-layer logical oper-
ations that donot favor optics. Such featuresmay
be present in a number of state-of-the-art ma-
chine learning architectures such as recurrent
neural networks (17) and transformers (18, 19).
When fully optimized, the energy efficiency of
PNNinferencehasbeenestimated tobeup to two
orders of magnitude higher than that of state-
of-the-art digital electronic application-specific
integrated circuits (ASICs) in artificial intelli-
gence (AI) (20). However, despite the success in
PNN-based inference, efficient on-chip training
of PNNs has not been demonstrated owing to
substantially higher experimental complexity
compared to the inference procedure.
In this study, we experimentally demon-

strated a photonic implementation of back-
propagation, the most widely used method
of training NNs (1, 2). [A minimal bulk optical
demonstration has been previously explored
(21).] Backpropagation is generally performed
by propagating error signals backward through
the NNs to determine programmable parame-
ter gradients via the chain rule. In our multi-
layer PNN device, we performed in situ training
on a foundry-manufactured silicon photonic in-
tegrated circuit by sending light-encoded errors
backward through the PNN and measuring
optical interference with the original forward-
going “inference” signal (22). Once trained,
our chip achieved an accuracy similar to that
of digital simulations, adding new capabilities

beyond existing inference or in silico learning
demonstrations (4, 23, 24). We further de-
signed and experimentally validated an analog
(electro-optic) phase-shifter update protocol, a
key improvement over past proposals requiring
more energy-intensive “digital subtraction” (22).
Finally, we systematically analyzed energy and
latency advantages of in situ backpropagation
and its scalability to larger (64! 64) PNN sys-
tems. Our findings ultimately pave the way for
energy-efficient optoelectronic training of neu-
ral networks and optical systems more broadly.

Photonic neural networks

Webuilt a hybrid PNNbyalternating sequences
of analog programmable unitary MVM op-
erations U ‘ð Þ!h→ ‘ð Þ" [implemented on a custom-
designed silicon photonic triangular mesh (6)]
and digital nonlinear transformations f ‘ð Þ [im-
plemented using autodifferentiation software
(25–27)] where layer‘ ≤ L (total ofL layers). The
PNN was parameterized by programmable
phase shifts h→∈ ½0; 2pÞD , where D represents
number of PNN phase shifters. Mathemati-
cally, the following “inference” functionsequence
transformed input x ¼ x 1ð Þ, proceeding in a
“feedforward”manner to the output z^ :¼ x Lþ1ð Þ

(Fig. 1, A to D):

y ‘ð Þ ¼ U ‘ð Þx ‘ð Þ ð1Þ

x ‘þ1ð Þ ¼ f ‘ð Þ y ‘ð Þ
# $

ð2Þ

The “cost function” is defined as L x; zð Þ ¼
c z^ xð Þ; z
! "

, where c represents the error be-
tween z^ and ground truth label z. Backprop-
agation updates parameters h→ that are on
D-dimensional gradient @L=@h→ evaluated for
“training example” x; zð Þ (or averaged over a
batch of examples).
Each MZI was parametrized by thermo-optic

phase shifters that locally heat the waveguides
using current sourced from a separate control
driver board (Fig. 2, A and B). Phase shifts were
placed at the input (f, voltageVf) and internal
(q, voltage Vq) arms of all MZIs to control the
propagation pattern of infrared C band (1530 to
1565 nm) light, enabling arbitrary unitarymatrix
multiplication.We embedded an arbitrary4! 4
unitary matrix multiply in a 6! 6 triangular
network of MZIs. This configuration incorpo-
rated two 1! 5 photonic meshes on either end
of the 4! 4 “matrix unit” capable of sending
any input vector x and measuring any output
vector y from Eqs. 1 and 2. These “generator”
and “analyzer” optical input/output (I/O) cir-
cuits (Figs. 1E and 2B and fig. S5) require cal-
ibrated voltagemappingsq Vqð Þ; f Vf

! "
to control

optical phase (4, 28, 29) (fig. S2).

Backpropagation demonstration

Our core result (Fig. 1E) was experimental re-
alization of backpropagation on a photonic
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6 months (3), and thus necessitates an energy-
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ware solution (4). A popular implementation
of PNNs consists of silicon photonic meshes,
N ! N networks of Mach-Zehnder interfer-
ometers (MZIs) and programmable phase
shifters (5–7), which optically accelerate the
most expensive operation in a PNN: unitary
matrix-vector multiplication (MVM). The MVM
y ¼ Ux is implemented by simply sending
an input mode vector x (optical phases and
modes in N input waveguides) through the
network implementingU to yield output modes
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propagation, the most widely used method
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demonstration has been previously explored
(21).] Backpropagation is generally performed
by propagating error signals backward through
the NNs to determine programmable parame-
ter gradients via the chain rule. In our multi-
layer PNN device, we performed in situ training
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backward through the PNN and measuring
optical interference with the original forward-
going “inference” signal (22). Once trained,
our chip achieved an accuracy similar to that
of digital simulations, adding new capabilities
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(electro-optic) phase-shifter update protocol, a
key improvement over past proposals requiring
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tems. Our findings ultimately pave the way for
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ral networks and optical systems more broadly.
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and digital nonlinear transformations f ‘ð Þ [im-
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Optical neural networks are emerging as a promising type of machine learning hardware capable of energy-efficient,
parallel computation. Today’s optical neural networks are mainly developed to perform optical inference after in silico
training on digital simulators. However, various physical imperfections that cannot be accurately modeled may lead to
the notorious “reality gap” between the digital simulator and the physical system. To address this challenge, we demon-
strate hybrid training of optical neural networks where the weight matrix is trained with neuron activation functions
computed optically via forward propagation through the network. We examine the efficacy of hybrid training with three
different networks: an optical linear classifier, a hybrid opto-electronic network, and a complex-valued optical network.
We perform a study comparative to in silico training, and our results show that hybrid training is robust against different
kinds of static noise. Our platform-agnostic hybrid training scheme can be applied to a wide variety of optical neural
networks, and this work paves the way towards advanced all-optical training in machine intelligence.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work
mustmaintain attribution to the author(s) and the published article’s title, journal citation, andDOI.
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1. INTRODUCTION

Machine learning powered by artificial neural networks has
reshaped the landscape in many different areas over the last decade.
This machine learning revolution is fueled by the immense parallel
computing power of electronic hardware such as graphics- and
tensor- processing units. However, the rapid growth of computa-
tional demand in this field has outpaced Moore’s law, and today’s
machine learning applications are associated with high energy cost
and terrible carbon footprint [1]. We are in dire need of novel com-
puting systems capable of fast and energy-efficient computation to
drive the future development of machine learning.

Optics provides a promising analog computing platform, and
optical neural networks (ONNs) have recently been the focus of
intense research and commercial interest. Due to the superposi-
tion and coherence properties of light, neurons in ONNs can be
naturally connected via interference [2–4] or diffraction [5–7]
in different settings, while the neuron activation function can be
physically implemented with a large variety of nonlinear optical
effects [3,8,9]. Together these resources have enabled the optical
realization of various neural network architectures, including
fully connected [2,5–7], convolutional [10–12], and recurrent
[3,4,13,14]. Today’s advanced optical technologies have already
allowed ONNs to reach a computational speed of ten trillion
operations per second [10], comparable to that of their electronic
counterparts; the energy consumption can be on a scale of, or even
less than, one photon per operation [15], orders of magnitude
lower than that of digital computation.

Current ONNs are primarily developed to perform inference
tasks in machine learning [16,17], and they are usually trained on a
digital computer. During this in silico training, one has to simulate
the physical system digitally, then apply the standard “backprop-
agation” algorithm [18], which involves repeated forward and
backward propagation of information inside the network. The
update of the weight matrices is computed from the combined
data obtained in these two processes. Because any physical sys-
tem exhibits certain experimental imperfections that are hard
to accurately model, ONNs trained in this way usually perform
worse than expected [6,9,19]. To narrow this reality gap, one can
incorporate simulated noise into the in silico training [7]. However
this approach is suboptimal because it does not incorporate the
specific pattern of imperfections that is present in a given ONN.
Another approach is to apply platform-specific error correction
algorithms [20–24] or iterative optimization algorithms [25] to
reduce experimental imperfections, but running these algorithms
can be time and resource demanding.

Our group recently proposed a method for obtaining the train-
ing signal directly from the optical fields propagating through the
network in both directions [26]. This method not only allows faster
training, but also helps close the reality gap, as the actual physics of
the system, including its imperfections, is built into the training.

In this work, we demonstrate the first step towards this vision.
In our training scheme, the forward linear computation and back-
ward propagation of information are implemented with optics and
electronics, respectively. The portion of the training signal that is
acquired from forward propagation is then obtained through direct

2334-2536/22/070803-09 Journal © 2022Optica PublishingGroup

Backpropagation through nonlinear units for
the all-optical training of neural networks
XIANXIN GUO,1,2,3,5,† THOMAS D. BARRETT,2,6,† ZHIMING M. WANG,1,7 AND A. I. LVOVSKY2,4,8

1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
2Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK
3Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
4Russian Quantum Center, Skolkovo 143025, Moscow, Russia
5e-mail: xianxin.guo@physics.ox.ac.uk
6e-mail: thomas.barrett@physics.ox.ac.uk
7e-mail: zhmwang@uestc.edu.cn
8e-mail: alex.lvovsky@physics.ox.ac.uk

Received 8 October 2020; revised 9 January 2021; accepted 11 January 2021; posted 12 January 2021 (Doc. ID 411104); published 1 March 2021

We propose a practical scheme for end-to-end optical backpropagation in neural networks. Using saturable
absorption for the nonlinear units, we find that the backward-propagating gradients required to train the
network can be approximated in a surprisingly simple pump-probe scheme that requires only simple passive
optical elements. Simulations show that, with readily obtainable optical depths, our approach can achieve equiv-
alent performance to state-of-the-art computational networks on image classification benchmarks, even in deep
networks with multiple sequential gradient approximation. With backpropagation through nonlinear units
being an outstanding challenge to the field, this work provides a feasible path toward truly all-optical neural
networks. © 2021 Chinese Laser Press
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1. INTRODUCTION

Machine learning (ML) is changing the way in which we ap-
proach complex tasks, with applications ranging from natural
language processing [1] and image recognition [2] to artificial
intelligence [3] and fundamental science [4,5]. At the heart
(or “brain”) of this revolution are artificial neural networks
(ANNs), which are universal function approximators [6,7]
capable, in principle, of representing an arbitrary mapping
of inputs to outputs. Remarkably, their function only requires
two basic operations: matrix multiplication to communicate in-
formation between layers, and some nonlinear transformation
of individual neuron states (activation function). The former
accounts for most of the computational cost associated with
ML. This operation can, however, be readily implemented
by leveraging the coherence and superposition properties of lin-
ear optics [8]. Optics is therefore an attractive platform for real-
izing the next generation of neural networks, promising faster
computation with low power consumption [9–13].

Proposals for optical neural networks (ONNs) have been
around for over 30 years [14,15] and have been realized in both
free-space [16–18] and integrated [9,10] settings. However, the
true power of neural networks is not only that they can approxi-
mate arbitrary functions, but also that they can “learn” that
approximation. The training of neural networks is, almost

universally, achieved by the backpropagation algorithm [19].
Implementing this algorithm optically is challenging because
it requires the response of the network’s nonlinear elements
to be different for light propagating forward or backward.
Confronted with these challenges, existing ONNs are actually
trained with, or heavily aided by, digital computers
[9,16,18,20]. As a result, the great advantages offered by optics
remain largely unexploited. Developing an all-optically trained
ONN to leverage these advantages remains an unsolved prob-
lem. Here, we address this challenge and present a practical
training method capable of backpropagating the error signal
through nonlinear neurons in a single optical pass.

The backpropagation algorithm aims to minimize a loss
function that quantifies the divergence of the network’s current
performance from the ideal, via gradient descent [19]. To do so,
the following steps are repeated until convergence: (1) forward
propagation of information through the network; (2) evaluation
of the loss function gradients with respect to the network
parameters at the output layer; (3) backpropagation of these
gradients to all previous layers; (4) parameter updates in the
direction that maximally reduces the loss function. Forward
propagation [step (1)] requires the aforementioned matrix
multiplication, which maps information between layers, and
a suitable nonlinear activation function, which is applied

Research Article Vol. 9, No. 3 / March 2021 / Photonics Research B71

2327-9125/21/030B71-10 Journal © 2021 Chinese Laser Press

(theory)
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• These approaches promise great speed and energy efficiency for inference

• But they are hard to scale up large enough to compete with big ANNs
– training by backprop requires global information (to update one neuron requires 

information about weights of all other neurons in the layer)
“top down” by external agent with vast memory and computational power

– reality gap between actual device and computer model used for training
– need to externally read/write each edge, writing is often imperfectly done

Physical Neural Networks

Any lessons to be learned from real neural networks?

10



6

• 86 billion neurons and 100-1000 trillion synapses (very highly connected)
analog & digital; slow and noisy compared to modern digital electronics

– learning changes the conductances and connections
– this is done by local rules (Hebbian: if fire together the wire together)

“bottom up” with no external memory or computation or global knowledge

The human brain 

11

• One is far more capable and energy-efficient than the other

Real vs Artificial Neural Networks

 

• Top down gradient descent on cost 
function needing global network details

• Relatively narrow range of tasks
• Mostly feed forward 
• Fragile wrt damage
• Costs a lot of energy

Ø 200kJ per ChatGPT query
Ø 10,000kJ per image generation

• Bottom up learning using local rules 
and local information

• Controls thoughts, memory, senses, 
motor skills, regulation…

• Very recurrent / highly connected
• Robust to damage
• Relatively energy efficient

Ø 20 W = 1700kJ/day

12
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• Hardware that mimics networks of real neurons (neuromorphic computing)

Neuromorphics chips with O(104) neurons can now be microfabricated, eg:

Spiking Neural Networks

ARTICLE

An electronic neuromorphic system for real-time
detection of high frequency oscillations (HFO) in
intracranial EEG
Mohammadali Sharifshazileh1,2,3, Karla Burelo 1,2,3, Johannes Sarnthein 2✉ & Giacomo Indiveri 1✉

The analysis of biomedical signals for clinical studies and therapeutic applications can benefit

from embedded devices that can process these signals locally and in real-time. An example is

the analysis of intracranial EEG (iEEG) from epilepsy patients for the detection of High

Frequency Oscillations (HFO), which are a biomarker for epileptogenic brain tissue. Mixed-

signal neuromorphic circuits offer the possibility of building compact and low-power neural

network processing systems that can analyze data on-line in real-time. Here we present a

neuromorphic system that combines a neural recording headstage with a spiking neural

network (SNN) processing core on the same die for processing iEEG, and show how it can

reliably detect HFO, thereby achieving state-of-the-art accuracy, sensitivity, and specificity.

This is a first feasibility study towards identifying relevant features in iEEG in real-time using

mixed-signal neuromorphic computing technologies.

https://doi.org/10.1038/s41467-021-23342-2 OPEN

1 Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland. 2 Department of Neurosurgery, University Hospital Zurich, University
of Zurich, Zurich, Switzerland. 3These authors contributed equally: Mohammadali Sharifshazileh, Karla Burelo. ✉email: johannes.sarnthein@usz.ch;
giacomo@ini.uzh.ch

NATURE COMMUNICATIONS | ��������(2021)�12:3095� | https://doi.org/10.1038/s41467-021-23342-2 |www.nature.com/naturecommunications 1
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Difficult to scale up truly large networks
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               With all this context, let’s jump into the main topic…

14
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• Return to recurrent physical networks of 
conductors, pipes, springs,…

• Develop local learning rules based on contrast of 
behavior to different boundary conditions

• “free” where output node values are measured
• “clamped” where training data is imposed on output nodes

Learning should emerge from the bottom up, rather than 
be imposed from the top down.  Being recurrent and 
bottom-up should bring some brain-like advantages

Contrastive Local Learning Networks

freedom) according to Eq. (4) with a learning rate of
α ¼ 5 × 10−4. Figure 2(b) shows the change of conduct-
ance of each edge at the first iteration of learning, with blue
(red) signifying positive (negative) conductance changes.

This process constitutes one step of the training process; at
the end of each step, we compute the error function C
[Fig. 2(d)]. The difference between the obtained targets and
the desired ones decreases exponentially by many orders of
magnitude during the training process, reaching machine
precision. This result demonstrates the success of the
coupled learning approach. We see that the magnitude of

the change in the conductance vector, jΔkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jΔk2j
q

,

calculated for each step of the training process, also
decreases exponentially during training [blue dashed line
in Fig. 2(d)]. This result shows that the learning process is
adaptive—it slows down as it approaches good solutions.
The final trained network is displayed in Fig. 2(c), with
edge thicknesses indicating conductance. The pipes of the
trained network have changed considerably compared to
the initial one shown in Fig. 2(a), with some pipes
effectively removed (with conductances near zero).
The results of applying the training protocol to networks

of different sizes, for different initial networks and choices
of the source and target nodes and their pressure values, are
shown in Figs. 2(e) and 2(f), where errors are rescaled by
the initial error for each network. Our learning algorithm is
generally able to train the networks to exhibit the desired
responses, successfully decreasing the initial error by
orders of magnitude. We find that networks of different
size converge on good solutions at different rates, with the
error at a particular chosen time t ¼ 103 scaling roughly as
a power law CðN; tÞ ∼ Nq (with power q in the range
1–2). We note that networks of different sizes may not be
equivalent, as training may depend on idiosyncratic details,
such as particular distances between sources and targets, or
other geometrical features. We leave detailed exploration of
the effects of network size and source-target geometry to
future study.
It is noteworthy that flow networks are linear, so that the

mapping between the sources to targets is always linear
pT ¼ AðkÞPS (A is a MS ×MT matrix that depends on the
conductance values). Networks which contain hundreds of
edges have many more conductance values than compo-
nents of A so that there are far more degrees of freedom
than constraints. While this argument suggests our flow
networks are overparametrized and should always succeed
in learning, we stress that not all linear transformations are
possible; pressure values everywhere in the network are
weighted averages of their neighbors (due to Kirchhoff’s
law). More importantly, the linear transformation is
limited because all conductance values must be non-
negative (see Appendix D). As a result, flow networks
cannot implement any desired linear mapping between the
inputs and outputs, and nonzero errors are expected for
certain tasks after training. It was previously shown that
the likelihood of flow networks to successfully learn a set
of tasks depends on network size [6], even when trained
with gradient descent. Therefore, we expect that training
larger networks for a given task is more likely to succeed

FIG. 2. Training flow networks with coupled learning. (a) An
untrained disordered flow network with uniform conductance at
all pipes ki ¼ 1, as indicated by uniform thicknesses of the green
edges. The ten red and blue nodes correspond to the source and
target nodes with dot sizes indicating the magnitudes of the
source pressures fPSg and desired target pressures fPTg. (b) In
each step, conductance values are modified using Eq. (4),
according to the difference in flow between the free and clamped
states. This process is applied iteratively. (c) After training, the
network conductance values, indicated by the thicknesses of the
green edges, are considerably changed compared to the initial
network shown in (a). (d) During training of a network (N ¼ 512
nodes), the pressure values of the target nodes approach the
desired values, as indicated by the exponentially shrinking error
(black solid line). The desired target values fPTg are reached
when the error is small; the modification of the conductance in
each time step, Δk (blue dashed line), vanishes exponentially as
well. (e) We train multiple networks of different sizes
N ¼ 64–2048, and find that all can be trained successfully with
coupled learning. Error bars indicate the variation with initial
network and choice of sources and targets. In all cases, errors
decay exponentially, yet larger networks converge slower.
(f) Picking a certain time t ¼ 103, we find that the error scales
up with system size as a soft power between 1 and 2.

SUPERVISED LEARNING IN PHYSICAL NETWORKS: FROM … PHYS. REV. X 11, 021045 (2021)

021045-5

• inputs
• outputs

Bottom-up learning of  complex functionality using local rules 
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• For voltage inputs, inject current into outputs in small proportion to error
Limit of small nudge: becomes exact gradient decent on (actual-desired)2 loss function
Limit of full nudge: referred to as “contrastive Hebbian learning”

Equilibrium Propagation (2017)
Scellier and Bengio Equilibrium Propagation

of F3. From this perspective, F contains all the information about
the model and can be seen as the central object of the framework.
For instance, the cost C represents the marginal variation of the
total energy F due to a change of β .

As a comparison, in the traditional framework for Deep
Learning, a model is represented by a (differentiable)
computational graph in which each node is defined as a
function of its parents. The set of functions that define the nodes
fully specifies the model. The last node of the computational
graph represents the cost to be optimized, while the other nodes
represent the state of the layers of the network, as well as other
intermediate computations.

In the framework for machine learning proposed here (the
framework suited for Equilibrium Propagation), the analog of the
set of functions that define the nodes in the computational graph
is the total energy function F.

3.5. Backpropagation vs. Equilibrium
Propagation
In the traditional framework for Deep Learning (Figure 2, left),
each node in the computational graph is an explicit differentiable
function of its parents. The state of the network ŝ = fθ (v) and
the objective function J(θ , v) = C

(
θ , v, fθ (v)

)
are computed

analytically, as functions of θ and v, in the forward pass.
The Backpropagation algorithm (a.k.a automatic differentiation)
enables to compute the error derivatives analytically too, in the
backward pass. Therefore, the state of the network ŝ = fθ (v)
(forward pass) and the gradient of the objective function ∂J

∂θ (θ , v)

(backward pass) can be computed efficiently and exactly4.
In the framework for machine learning that we propose here

(Figure 2, right), the free fixed point ŝ = s0θ ,v is an implicit

function of θ and v, characterized by ∂E
∂s (θ , v, s

0
θ ,v) = 0. The

free fixed point is computed numerically, in the free phase

(first phase). Similarly the nudged fixed point s
β
θ ,v is an implicit

function of θ , v, and β , and is computed numerically in the
nudged phase (second phase). Equilibrium Propagation estimates
(for the particular value of β chosen in the second phase)
the gradient of the objective function ∂J

∂θ (θ , v) based on these
two fixed points. The requirement for numerical optimization
in the first and second phases make computations inefficient
and approximate. The experiments in Section 5 will show that
the free phase is fairly long when performed with a discrete-
time computer simulation. However, we expect that the full
potential of the proposed framework could be exploited on
analog hardware (instead of digital hardware), as suggested by
Hertz et al. (1997).

4. RELATED WORK

In Section 2.3, we have discussed the relationship between
Equilibrium Propagation and Backpropagation. In the weakly
clamped phase, the change of the influence parameter β creates a

3The proof presented in Appendix A will show that E, C, and F need not satisfy
Equation (20) but only Equation (26).
4Here, we are not considering numerical stability issues due to the encoding of real
numbers with finite precision.

FIGURE 2 | Comparison between the traditional framework for Deep

Learning and our framework. Left. In the traditional framework, the state of

the network fθ (v) and the objective function J(θ , v) are explicit functions of θ

and v and are computed analytically. The gradient of the objective function is

also computed analytically thanks to the Backpropagation algorithm (a.k.a

automatic differentiation). Right. In our framework, the free fixed point s0θ ,v is

an implicit function of θ and v and is computed numerically. The nudged fixed

point s
β
θ ,v and the gradient of the objective function are also computed

numerically, following our learning algorithm: Equilibrium Propagation.

perturbation at the output layer which propagates backwards in
the hidden layers. The error derivatives and the gradient of the
objective function are encoded by this perturbation.

In this section, we discuss the connection between our
work and other algorihms, starting with Contrastive Hebbian
Learning. Equilibrium Propagation offers a new perspective
on the relationship between Backpropagation in feedforward
nets and Contrastive Hebbian Learning in Hopfield nets and
Boltzmann machines (Table 1).

4.1. Link to Contrastive Hebbian Learning
Despite the similarity between our learning rule and the
Contrastive Hebbian Learning rule (CHL) for the continuous
Hopfield model, there are important differences.

First, recall that our learning rule is:

$Wij ∝ lim
β→0

1

β

(
ρ

(
u

β
i

)
ρ

(
u

β
j

)
− ρ

(
u0i

)
ρ

(
u0j

))
, (27)

where u0 is the free fixed point and uβ is theweakly clamped fixed
point. The Contrastive Hebbian Learning rule is:

$Wij ∝ ρ
(
u∞i

)
ρ

(
u∞j

)
− ρ

(
u0i

)
ρ

(
u0j

)
, (28)

where u∞ is the fully clamped fixed point (i.e., fixed point with
fully clamped outputs). We choose the notation u∞ for the fully
clamped fixed point because it corresponds to β → +∞ with
the notations of our model. Indeed Equation (9) shows that in the
limit β → +∞, the output unit yi moves infinitely fast toward
yi, so yi is immediately clamped to yi and is no longer sensitive
to the “internal force” (Equation 8). Another way to see it is by
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Equilibrium Propagation: Bridging
the Gap between Energy-Based
Models and Backpropagation
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We introduce Equilibrium Propagation, a learning framework for energy-based models.

It involves only one kind of neural computation, performed in both the first phase (when

the prediction is made) and the second phase of training (after the target or prediction

error is revealed). Although this algorithm computes the gradient of an objective function

just like Backpropagation, it does not need a special computation or circuit for the

second phase, where errors are implicitly propagated. Equilibrium Propagation shares

similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving

the theoretical issues of both algorithms: our algorithm computes the gradient of a

well-defined objective function. Because the objective function is defined in terms of

local perturbations, the second phase of Equilibrium Propagation corresponds to only

nudging the prediction (fixed point or stationary distribution) toward a configuration

that reduces prediction error. In the case of a recurrent multi-layer supervised network,

the output units are slightly nudged toward their target in the second phase, and the

perturbation introduced at the output layer propagates backward in the hidden layers.

We show that the signal “back-propagated” during this second phase corresponds to

the propagation of error derivatives and encodes the gradient of the objective function,

when the synaptic update corresponds to a standard form of spike-timing dependent

plasticity. This workmakes it more plausible that amechanism similar to Backpropagation

could be implemented by brains, since leaky integrator neural computation performs both

inference and error back-propagation in our model. The only local difference between the

two phases is whether synaptic changes are allowed or not. We also show experimentally

that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be

trained by Equilibrium Propagation on the permutation-invariant MNIST task.

Keywords: artificial neural network, backpropagation algorithm, biologically plausible learning rule, contrastive

hebbian learning, deep learning, fixed point, Hopfield networks, spike-timing dependent plasticity

1. INTRODUCTION

The Backpropagation algorithm to train neural networks is considered to be biologically
implausible. Among other reasons, one major reason is that Backpropagation requires a special
computational circuit and a special kind of computation in the second phase of training. Here,
we introduce a new learning framework called Equilibrium Propagation, which requires only
one computational circuit and one type of computation for both phases of training. Just like

Scellier and Bengio Equilibrium Propagation

TABLE 1 | Correspondence of the phases for different learning algorithms: Back-propagation, Equilibrium Propagation (our algorithm), Contrastive

Hebbian Learning (and Boltzmann Machine Learning) and Almeida-Pineida’s Recurrent Back-Propagation.

Backprop Equilibrium Prop Contrastive Hebbian Learning Almeida-Pineida

First Phase Forward Pass Free Phase Free Phase (or Negative Phase) Free Phase

Second Phase Backward Pass Weakly Clamped Phase Clamped Phase (or Positive Phase) Recurrent Backprop

considering Equation (3): as β → +∞, the only value of y that
gives finite energy is d.

The objective functions that these two algorithms optimize
also differ. Recalling the form of the Hopfield energy (Equation 1)
and the cost function (Equation 2), Equilibrium Propagation
computes the gradient of:

J =
1

2

∥∥y0 − d
∥∥2 , (29)

where y0 is the output state at the free phase fixed point u0, while
CHL computes the gradient of:

JCHL = E
(
u∞

)
− E

(
u0

)
. (30)

The objective function for CHL has theoretical problems: it may
take negative values if the clamped phase and free phase stabilize
in different modes of the energy function, in which case the
weight update is inconsistent and learning usually deteriorates, as
pointed out by Movellan (1990). Our objective function does not
suffer from this problem, because it is defined in terms of local
perturbations, and the implicit function theorem guarantees that
the weakly clamped fixed point will be close to the free fixed point
(thus in the same mode of the energy function).

We can also reformulate the learning rules and objective
functions of these algorithms using the notations of the general
setting (Section 3). For Equilibrium Propagation we have:

"θ ∝ − lim
β→0

1

β

(
∂F

∂θ

(
θ , v,β , s

β
θ ,v

)
−

∂F

∂θ

(
θ , v, 0, s0θ ,v

))

and

J(θ , v) =
∂F

∂β

(
θ , v, 0, s0θ ,v

)
. (31)

As for Contrastive Hebbian Learning, one has

"θ ∝ −

(
∂F

∂θ

(
θ , v,∞, s∞θ ,v

)
−

∂F

∂θ

(
θ , v, 0, s0θ ,v

))

and

JCHL(θ , v) = F(θ , v,∞, s∞θ ,v)− F(θ , v, 0, s0θ ,v), (32)

where β = 0 and β = ∞ are the values of β corresponding to
free and (fully) clamped outputs, respectively.

Our learning algorithm is also more flexible because we are
free to choose the cost function C (as well as the energy funtion
E), whereas the contrastive function that CHL optimizes is fully
determined by the energy function E.

4.2. Link to Boltzmann Machine Learning
Again, the log-likelihood that the Boltzmann machine optimizes
is determined by the Hopfield energy E, whereas we have the
freedom to choose the cost function in the framework for
Equilibrium Propagation.

As discussed in Section 2.3, the second phase of Equilibrium
Propagation (going from the free fixed point to the weakly
clamped fixed point) can be seen as a brief “backpropagation
phase” with weakly clamped target outputs. By contrast, in the
positive phase of the Boltzmann machine, the target is fully
clamped, so the (correct version of the) Boltzmann machine
learning rule requires two separate and independent phases
(Markov chains), making an analogy with backprop less obvious.

Our algorithm is also similar in spirit to the CD algorithm
(Contrastive Divergence) for Boltzmannmachines. In ourmodel,
we start from a free fixed point (which requires a long relaxation
in the free phase) and then we run a short weakly clamped phase.
In the CD algorithm, one starts from a positive equilibrium
sample with the visible units clamped (which requires a long
positive phase Markov chain in the case of a general Boltzmann
machine) and then one runs a short negative phase. But there
is an important difference: our algorithm computes the correct
gradient of our objective function (in the limit β → 0), whereas
the CD algorithm computes a biased estimator of the gradient
of the log-likelihood. The CD1 update rule is provably not the
gradient of any objective function and may cycle indefinitely in
some pathological cases (Sutskever and Tieleman, 2010).

Finally, in the supervised setting presented in Section 2, a
more subtle difference with the Boltzmann machine is that the
“output” state y in our model is best thought of as being part of
the latent state variable s. If we were to make an analogy with the
Boltzmann machine, the visible units of the Boltzmann machine
would be v =

{
x, d

}
, while the hidden units would be s =

{
h, y

}
.

In the Boltzmann machine, the state of the external world is
inferred directly on the visible units (because it is a probabilistic
generative model that maximizes the log-likelyhood of the data),
whereas in our model we make the choice to integrate in s special
latent variables y that aim to match the target d.

4.3. Link to Recurrent Back-Propagation
Directly connected to ourmodel is the work by Pineda (1987) and
Almeida (1987) on recurrent back-propagation. They consider
the same objective function as ours, but formulate the problem
as a constrained optimization problem. In Appendix B, we
derive another proof for the learning rule (Theorem 1) with the
Lagrangian formalism for constrained optimization problems.
The beginning of this proof is in essence the same as the one
proposed by Pineda (1987); Almeida (1987), but there is a major

Frontiers in Computational Neuroscience | www.frontiersin.org 8 May 2017 | Volume 11 | Article 24
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Coupled Learning (2021)
• A scheme to adjust conductances based on behavior under free versus clamped 

boundary conditions (Stern, Hexner, Rocks, Liu, Phys Rev X 2021):

Pop quiz (the crux!):  Which circuit has higher dissipation rate, P, free or clamped?
Answer:  P is greater in the clamped state (thanks to physics)

Learning Degrees of Freedom:
     conductances kj of each edge
Physical Degrees of Freedom:
     current or pressure/voltage
     across each edge (“computed”
     for free, thanks to physics)

Free

leave
outputs

free

apply
inputs

Clamped

apply
clamping
voltage 

to outputs

apply
inputs

Menachem 
“Nachi” Stern

Nudge each output node closer to desired value
(according to the training data):

𝑉!"#$%&' = 𝑉()&& + 𝜂 𝑉*&+,)&' − 𝑉()&&
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Coupled Learning Rule
• Traditional loss/cost function = (desired response  – free response)2   {>0}

• must be squared to guarantee it’s positive, for minimization by gradient descent

• New contrast function = dissipation rate difference, Pclamped  –  Pfree  {>0}
• positive due to optimization of energy functional over physical degrees of freedom for given BCs

Evolve the edge conductances to drive contrast function to zero:
<latexit sha1_base64="FpfLqFv5H0CQraa0SNnvyyxswbA=">AAADB3icjVJNaxsxENVu0jZ1v5zmWAIipiU5xOyakOZSCPTSowuxE7DWi1aedRRLu0LSFsyyt1zyV3rpoaH02r/QW/9Ntc5i4iSFDgge783Mk2aUKMGNDYI/nr+2/ujxk42nrWfPX7x81d58PTR5oRkMWC5yfZZQA4JnMLDcCjhTGqhMBJwms4+1fvoFtOF5dmLnCiJJpxlPOaPWUfGmt00mucWz+AK/w0TpXNkc432SaspKoqi2nIpqierECpOET6cCj0oiqT1nju5X45IJKhVMqv1VOtUATYnGESak5Zw+/L+FKWTM8e4w5uOe03i1t2L1kPxPy6apy74Y9273WTKL0r1lbdzuBN1gEfg+CBvQQU304/ZvN09WSMisa27MKAyUjcr6aUxA1SKFAUXZjE5h5GBGJZioXOyxwm8dM8Fprt3JLF6wtytKKo2Zy8Rl1hM2d7WafEgbFTY9ikqeqcJCxm6M0kJgt+v6U+AJ18CsmDtAmeburpidU7cf675Oyw0hvPvk+2DY64aH3YPPB53jw2YcG+gN2kG7KETv0TH6hPpogJh36X31vnvX/pX/zf/h/7xJ9b2mZguthP/rL6XH8uY=</latexit>
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This rule is LOCAL
{squaring Pclamped – Pfree 
gives global prefactor}

[Stern, Hexner, Rocks, Liu, Phys Rev X 2021]
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Coupled Learning Rule

• Meant to be implemented in the lab
– The voltage drops in under free/clamped conditions depend on conductances
– Experiments don’t take the gradient in 2nd line holding voltage drops constant
– This issue to be addressed in Andrea’s lecture and in homework problem
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[Stern, Hexner, Rocks, Liu, Phys Rev X 2021]
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Coupled Learning, More Generally
• Conjugate physical variables aka physical degrees of freedom 𝑝! , 𝑞!  on/across/through each edge 𝑖, 

connected by learning degrees of freedom 𝐿!", 𝐿!#, … .  E.g. {Dvoltage, current} and {resistance, resistor 
geometry}; {Dpressure, current} and {conductivity, channel geometry}; {force, deformation} and {spring 
constant, rest length, strut geometry}; {Dvoltage, charge} and {capacitance, plate geometry}; …

• Energy functional 𝑢!(𝑝! , 𝑞! , 𝐿!", 𝐿!#, … ) for each edge, e.g. power for current & fluid flow networks and 
energy for capacitor & elastic networks.  Total energy or power 𝑈 = ∑𝑢!  summed over all edges.

• Clamp: nudge designated output edges 𝑗	from free-state values {𝑝$%} toward target values {𝑝$&} by     
𝑝$' = 𝜂𝑝$& + (1 − 𝜂)𝑝$%  or ditto for 𝑞 tasks.

Solve several networks and compare gradient descent vs local learning rules.  Findings:

 '-(
'. = −𝛾

/ 0)10*
/-(

≅ −𝛾𝜂

/ 2()12(*
/-( %

𝑝	tasks

/ 2()12(*
/-( 3

𝑞	tasks

• Cost function 𝐶 = 𝑈! − 𝑈" has form 𝐶 ≅ 𝜂#𝑓 𝐿$ ; inputs; task  as major 𝜂 dependence (exactly near learning)
• Empirical factor of 𝜂 is needed for local rule to approximate gradient descent
• Local approximation to global gradient descent becomes exact for near learning

empirical

local approximation

gradient descent

20



11

Penalty function terminology
• Distinguish different global penalty functions to be minimized (driven to zero):

Loss/Cost  ℒ = ∑ desired	output	 − free	output 4 is traditional / most important
Contrast  𝒞 = 𝑈5 − 𝑈6  {clamped minus free energy or power of network, 𝑈 = ∑𝑢,} is proxy

Learn by gradient descent on learning degrees of freedom:   '-('. = −𝛾 / ℒ	9:	𝒞
/-(

Local Coupled Learning rule: approx.  '-('. = −𝛾 /𝒞
/-(

  by  '-('. ≅ −𝛾𝜂

/ 2()12(*
/-( %

𝑝	tasks

/ 2()12(*
/-( 3

𝑞	tasks
   

Compare 5𝑛+,-- 7 5𝑛',-.  and 5𝑛+,-- 7 5𝑛+,'/+  where 5𝑛 = 801
0.

01
0.

 is unit vector in learning direction
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c.f. Equilibrium Propagation
The difference is in the nudge.
E.g. for voltage in / voltage out tasks:

• Equilibrium propagation: nudge by clamping current ∝ (desired – free voltage)
 𝐼! ∝ 𝜂 𝑉* − 𝑉(

• Coupled learning: nudge by clamping voltage from free toward desired
 𝑉! = 𝑉( + 𝜂 𝑉* − 𝑉(

22
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Related local learning rules
• Coupled learning:

 ̇𝑘9 ∝ −
:
:;2

𝑃<=>?@AB − 𝑃CDAA

• Directed aging (generally cannot train to complex desired target outputs)

 ̇𝑘9 ∝ −
:
:;2

𝑃<=>?@AB

• Coupled learning with regularization (small 𝜖 biases toward low-power solns):

 ̇𝑘9 ∝ −
:
:;2

𝑃<=>?@AB − 𝑃CDAA + 𝜖𝑃CDAA

[Liu & Nagel; Pashine]

[Stern, Dillavou, Jayaraman, Durian, Liu (APL Machine Learning 2024) – next lecture]
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Other local learning rules
ARTICLE Communicated by João Sacramento

Frequency Propagation: Multimechanism Learning
in Nonlinear Physical Networks

Vidyesh Rao Anisetti
vvaniset@syr.edu
Physics Department, Syracuse University, Syracuse, NY 13244 U.S.A.

Ananth Kandala
an.kandala@ufl.edu
Department of Physics, University of Florida, Gainesville, FL 32611, U.S.A.

Benjamin Scellier
benjamin.scellier@polytechnique.edu
Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland

J. M. Schwarz
jmschw02@syr.edu
Physics Department, Syracuse University, Syracuse, NY 13244 U.S.A.,
and Indian Creek Farm, Ithaca, NY 14850, U.S.A.

We introduce frequency propagation, a learning algorithm for nonlinear
physical networks. In a resistive electrical circuit with variable resistors,
an activation current is applied at a set of input nodes at one frequency
and an error current is applied at a set of output nodes at another fre-
quency. The voltage response of the circuit to these boundary currents
is the superposition of an activation signal and an error signal whose
coefficients can be read in different frequencies of the frequency domain.
Each conductance is updated proportionally to the product of the two
coefficients. The learning rule is local and proved to perform gradient
descent on a loss function. We argue that frequency propagation is an in-
stance of a multimechanism learning strategy for physical networks, be it
resistive, elastic, or flow networks. Multimechanism learning strategies
incorporate at least two physical quantities, potentially governed by in-
dependent physical mechanisms, to act as activation and error signals in
the training process. Locally available information about these two sig-
nals is then used to update the trainable parameters to perform gradi-
ent descent. We demonstrate how earlier work implementing learning
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Learning by non-interfering feedback chemical signaling in physical networks
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Both non-neural and neural biological systems can learn. So rather than focusing on purely brain-like learning,
efforts are underway to study learning in physical systems. Such efforts include equilibrium propagation (EP)
and coupled learning (CL), which require storage of two different states—the free state and the perturbed state—
during the learning process to retain information about gradients. Here, we propose a learning algorithm rooted
in chemical signaling that does not require storage of two different states. Rather, the output error information
is encoded in a chemical signal that diffuses into the network in a similar way as the activation/feedforward
signal. The steady-state feedback chemical concentration, along with the activation signal, stores the required
gradient information locally. We apply our algorithm using a physical, linear flow network and test it using the
Iris data set with 93% accuracy. We also prove that our algorithm performs gradient descent. Finally, in addition
to comparing our algorithm directly with EP and CL, we address the biological plausibility of the algorithm.

DOI: 10.1103/PhysRevResearch.5.023024

I. INTRODUCTION

What basic ingredients constitute a biological learning
system, such as slime mold or higher-order organisms? Bi-
ological learning systems adapt to the external environment
by tailoring specific responses for given external conditions.
As the system continues to experience external conditions
of a similar kind, it develops functionality to respond to the
stimulus in such a way to increase its chances of survival.
Intriguingly, this functionality is an emergent phenomenon
as a result of interactions between the various components
[1]. For example, when birds come together in a flock, they
increase their chances of survival [2]. This happens not be-
cause of a “supervisor” that commands each bird to fly in a
particular way, but because birds, such as starlings, interact
with a fixed number of neighbors independent of their density
to give rise to emergent functionality [3]. Similarly, in the
presence of rising waters, fire ants cooperate to form floating
rafts consisting of a structural base and freely-moving ants on
top of the base with treadmilling between the two roles [4,5].
Local, ant interaction rules, including an effective repulsive
force between the freely-moving ants and the water repli-
cate the types of observed shapes of rafts [6]. These special
interactions between components, responsible for emergent
functionality in nature, have themselves emerged out of the
long process of evolution.

*vvaniset@syr.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Given the intricacies of biological learning systems, neural
networks are in silico brain-like learning systems, resembling
the visual cortex, in particular [7–10], that can recognize
patterns and solve problems [11,12]. More specifically, neu-
ral networks achieve functionality by modifying weights and
biases to minimise a particular cost function. Of the many
ways to do so, the algorithm of choice in neural networks
with multiple layers (deep learning) is the backpropagation
algorithm [13]. Backpropagation updates the network such
that its weights (and biases) perform gradient descent in the
cost function landscape. The complex nature of the tasks
that neural networks are capable of hints at the possibility
that biological learning systems also achieve functionality by
optimizing cost functions by gradient descent [14]. In other
words, the long process of evolution may have optimised the
“learning algorithm” in such biological systems to update its
components via gradient descent. The success of backprop-
agation has, therefore, encouraged a search for biologically
plausible learning rules analogous to it [14–20]. For complete-
ness, here are properties one should ensure while constructing
such a biologically plausible learning system:

(1) local learning algorithms [21],
(2) the implementation of such algorithms is constrained

by the laws of physics, and
(3) the algorithms minimize a cost function via gradient

descent or stochastic gradient descent.
Indeed, there have been attempts to construct learning al-

gorithms within purely physical systems [22–28]. Here, we
will focus on “equilibrium propagation” [25,29] and “cou-
pled learning”[26]. In these approaches, the error information
corresponding to each component is encoded in terms of dif-
ferences of local physical quantities measured between two
learning phases. At each step of training, the outputs of the
network are nudged towards the target output by applying
additional boundary conditions at the output nodes. Next, the

2643-1564/2023/5(2)/023024(10) 023024-1 Published by the American Physical Society
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Evolution in time-varying environments naturally leads to adaptable biological systems
that can easily switch functionalities. Advances in the synthesis of environmentally
responsive materials therefore open up the possibility of creating a wide range of
synthetic materials which can also be trained for adaptability. We consider high-
dimensional inverse problems for materials where any particular functionality can be
realized by numerous equivalent choices of design parameters. By periodically switching
targets in a given design algorithm, we can teach a material to perform incompatible
functionalities with minimal changes in design parameters. We exhibit this learning
strategy for adaptability in two simulated settings: elastic networks that are designed
to switch deformation modes with minimal bond changes and heteropolymers whose
folding pathway selections are controlled by a minimal set of monomer affinities. The
resulting designs can reveal physical principles, such as nucleation-controlled folding,
that enable such adaptability.

adaptability | materials training | inverse design | disordered materials

Considered as materials, biological systems are striking in their ability to perform many
individually demanding tasks in contexts that can often change over time. This success
can be attributed to “metaproperties” like modularity (1–5), robustness (6), plasticity for
learning (7), and multifunctionality (8–11). While inverse materials design has sought to
optimize specific properties (12–23), less attention has been given to identifying general
design strategies for creating materials with metaproperties.

Here, we show how a biologically inspired design method can target one such
metaproperty, adaptability. By adaptability, we mean the ability to switch between
mutually incompatible functions with minimal changes in design parameters. For
example, consider the Poisson’s ratio of an elastic network, which is a unique number
which characterizes the global deformation of a material in response to small uniaxial
strains. An adaptable elastic network could switch from a negative Poisson’s ratio to a
positive one with minimal network changes, even though a given network can only have
one Poisson’s ratio. In this example, the mutually incompatible functions are the different
Poisson’s ratios, and the design parameters are the stiffnesses of the network bonds. A
truly adaptable material will be as good as a nonadaptable material at any given function
but will require fewer modifications to produce a distinct, incompatible function.

At first glance, the existence of a truly adaptable material seems highly improbable.
However, if the design space of the material is high-dimensional, then we should
generically expect that there are many distinct choices of design parameters with
equivalent performance for a given function (1, 19, 24–28). Our goal is to identify
the much more rare subsets of design solutions which both perform the given function
and are adaptable.

In our approach, we take existing optimization algorithms for a target function and
repeatedly switch the target before optimization is completed for any one function.
The partially adapted design parameters for one function are used as initial conditions
for optimizing the second function. This intuitively requires the solutions identified in
successful periods of training to drift closer to each other in design space with each switch
(Fig. 1).

The underlying logic of this approach is that the sets of design parameters which
survive the oscillating selection process are required to be similar by construction, even if
their yield is lower. The existence of similar design parameter sets then implies that there
are shared design characteristics between the solutions, even though the functions they
perform are incompatible.

Significance

Biological systems are
distinguished by “metaproperties”
such as robustness or
multifunctionality. We show that
the metaproperty of adaptability
naturally emerges when tunable
synthetic materials are trained for
di�erent incompatible functions
in sequence. By switching training
goals, materials localize to special
regions of their high-dimensional
design spaces, where they have
learned to be rapidly adaptive
to a changing environment.
Examining the resulting materials
can reveal physical principles
underlying material adaptability.
This way of training works on top
of existing design methods and
can be applied across a wide
array of materials, real or
simulated. We demonstrate
our method in two di�erent
simulation contexts: disordered
elastic structures and
heteropolymers with tunable
interactions.
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Reviews on training physical systems
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Abstract
Learning is traditionally studied in biological or computational systems.
The power of learning frameworks in solving hard inverse problems pro-
vides an appealing case for the development of physical learning in which
physical systems adopt desirable properties on their own without computa-
tional design. It was recently realized that large classes of physical systems
can physically learn through local learning rules, autonomously adapting
their parameters in response to observed examples of use. We review re-
cent work in the emerging field of physical learning, describing theoretical
and experimental advances in areas ranging frommolecular self-assembly to
flow networks andmechanical materials. Physical learningmachines provide
multiple practical advantages over computer designed ones, in particular
by not requiring an accurate model of the system, and their ability to au-
tonomously adapt to changing needs over time. As theoretical constructs,
physical learning machines afford a novel perspective on how physical
constraints modify abstract learning theory.

417

CO14CH17_Stern ARjats.cls February 17, 2023 10:48

Annual Review of Condensed Matter Physics

Learning Without Neurons
in Physical Systems
Menachem Stern1 and Arvind Murugan2

1Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania;
email: nachis@sas.upenn.edu
2Department of Physics, University of Chicago, Chicago, Illinois;
email: amurugan@uchicago.edu

Annu. Rev. Condens. Matter Phys. 2023. 14:417–41

The Annual Review of Condensed Matter Physics is
online at conmatphys.annualreviews.org

https://doi.org/10.1146/annurev-conmatphys-
040821-113439

Copyright © 2023 by the author(s). This work is
licensed under a Creative Commons Attribution 4.0
International License, which permits unrestricted
use, distribution, and reproduction in any medium,
provided the original author and source are credited.
See credit lines of images or other third-party
material in this article for license information.

Keywords
physical learning, learning theory, inverse design, metamaterials, machine
learning, self-assembly, molecular computing

Abstract
Learning is traditionally studied in biological or computational systems.
The power of learning frameworks in solving hard inverse problems pro-
vides an appealing case for the development of physical learning in which
physical systems adopt desirable properties on their own without computa-
tional design. It was recently realized that large classes of physical systems
can physically learn through local learning rules, autonomously adapting
their parameters in response to observed examples of use. We review re-
cent work in the emerging field of physical learning, describing theoretical
and experimental advances in areas ranging frommolecular self-assembly to
flow networks andmechanical materials. Physical learningmachines provide
multiple practical advantages over computer designed ones, in particular
by not requiring an accurate model of the system, and their ability to au-
tonomously adapt to changing needs over time. As theoretical constructs,
physical learning machines afford a novel perspective on how physical
constraints modify abstract learning theory.

417

25

 Switch gears from developing rules to using them…

Use of local learning rules

26
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• Classify handwritten digits: MNIST database of 60,000 training images and 
10,000 testing images (28x28 grayscale, https://yann.lecun.com/exdb/mnist/ )

A classic problem for benchmarking

27

Coupled Learning in silico
• Successfully Classify zeros and ones from MNIST (5% test error)

– Input nodes (red): top 25 principal components of images
– Output nodes (blue, black): larger value indicates digit (0,1 respectively)

shading = conductivity

[Stern, Hexner, Rocks, Liu, Phys Rev X 2021]

shading = power

28
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Coupled Learning in laboratorium?

• Successful in silico demonstration is exciting & impressive, but…
– requires CPU and memory storage both for training and for forward computation by 

solution of Kirchhoff’s laws

• Really, want laboratory implementation that does not require CPU or memory 
storage during training or afterwards for “forward/inference” computation
– In-memory analog training for in-memory analog compute…
– Tremendous scaling advantage for large networks & complex tasks…

• Tune in tomorrow!
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