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e Physical systems made of many copies of a repeat unit, each of which uses a

local learning rule to collectively optimize a global cost function defining a task
to be “computed” physically. Eg “Contrastive Local Learning Networks”

Analog in-memory training for analog in-memory analog computing for control, metamaterials with

complex functionality, Al,...
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ﬁ Response of Networks to Stimuli

“forward” problem for electrical resistors, fluidic pipes, mechanical springs,... . il’lplltS
e Fixed boundary conditions: Apply voltage, pressure, * outputs
: . KOTFNIART oo
current, force, displacements, etc. to designated .'“’:‘. >.'Q'IQQ;:‘;..g
“ ” b ..“.A“l. "’.A‘I" ". 1
input” nodes or edges, and let the network W .‘(v' v’-..o‘.;,o‘
T DS
equilibrate. What happens? X }é‘.“;(,';.‘té\
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— The unfixed physical degrees of freedom will relax and #"'A\' }‘A‘“‘,;QI""«:&
stop evolving once Kirchhoff’s laws or force balance is \‘"A 34

satisfied (and power or elastic energy is minimized)

— The final behavior of designated “output” nodes or edges |

depends on the BCs as well as the conductances /
stiffnesses of all the edges

e Theory: the outputs are predicted by solving a global
optimization problem (hard, if elements are nonlinear)

e Expt: the outputs are computed physically — quickly & for free
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ﬁ This 1s an analog physical computer...
e ..if the output values represent the answer to * inputs

some desired computational problem (big IF!) _ - ouputs
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— A “physical neural network (PNN)”

XIRX

— Example tasks / functions: Y AR
e Outputs are at {V;} when inputs are at {V;} (“allostery”) S‘ "A&}J““‘o ‘\?’.
¥, WL VA
e Qutputs are a desired linear combo of inputs 4 A‘\ :C“"v"“l"i ',“‘
A
e Matrix multiplication 2 ,:i.'”:"’" :
¢ Classification: e.g inputs are grayscale pixel data and outputs _ ‘?‘V'AQA%'{‘.
indicate whether the image is a dog/cat/etc or which squiggles S ':'.A‘i?"i‘.g:
represent which letters or numbers Y NBCY ‘)1.1! ‘.‘.“'

— How to train?




@ Learning degrees of freedom

¢ The conductances / stiffnesses of the edges (i.e. * inputs
the “learning degrees of freedom”) must be __ "t
chosen according to the desired functionality. O TASLL

e How can the network learn these parameters?
This is a harder global optimization problem.
— Theoretically:

e Directly solve inverse problem {outputs} == {desired values} ???
¢ Do gradient descent on (actual — desired)2???

Seems like machine learning, with analogous issues of over-
parameterization, rugged landscape with many local minima,...

— Experimentally:

e Mimic theory, or do something else?

Take an extended detour through prior approaches...

W Artificial /Digital Neural Networks

e Each node is weighted sum of nodes in prior layer (set to O if negative). Weights
are the “learning parameters / learning degrees of freedom”

e g ClaSSiﬁcatiOIl . Input layer Hidden layers Output layer

N\

\V %

Output 1 (1 for dog, 0 for cat)

Output 2 (1 for cat, 0 for dog)

Use gradient descent to minimize a cost function that penalizes mistakes wrt training data
(e.g. by backpropagation and GPUs)

e The adjustment of each “neuron” depends on all other neurons in the layer (i.e. needs global info)

* Memory & computer power are needed, and both grow rapidly with network size
AlphaGo: 12 layers of (19x19)x17 nodes; hardware 64 GPU + 19 CPU + 4 TPU cost $25M
ChatGPT: 96 layers with 12,288 hidden layer dimensions and 175 billion learning parameters
(human brain: 86 billion neurons and 100-1000 trillion synapses)




Hybrid Physical Neural Networks

e E.g. crossbar array of memristors, trained by backprop on computer model

nature communications a Memristive cells b Memristive crossbar arrays

forin-memory computing

v,
Review article https://doi.org/10.1038/541467-024-45670-9 ~
R ! :

Hardware implementation of memristor-

. . "
i
based artificial neural networks ) N
1 cell Va
2TR 2TR nTiR
Received: 8 June 2023 Fernando Aguirre?, Abu Sebastian @, Manuel Le Gallo ®?, Wenhao Song®,
nocopted 1rebraay 2oz Tong Wang?, J. Joshua Yang @ %, Wei Lu®, Meng-Fan Chang ® , Daniele lelmini ®”7,
Accepted: 1 February 2024 Yuchao Yang ®°, Adnan Mehonic ®°, Anthony Kenyon®°, Marco A. Villena®', isti
Publis : 04 March 2024 Juan B. Roldén @, Yuting Wu®, Hung-Hsi Hsu®, Nagarajan Raghavan", 2D crossbar arrays
e —— Jordi Sufié ®2, Enrique Miranda?, Ahmed Eltawil® 2, Gianluca Setti?, € 3Darray stacked by identical @ 3D array with customized metal
[ check for updates Kamilya Smagulova'?, Khaled N. Salama®'2, Olga Krestinskaya® ™2, 2D arrays with direct interconnections
Xiaobing Yan@'?, Kah-Wee Ang', Samarth Jain', Sifan Li', Osamah Alharbi ®", connections

Sebastian Pazos®"' & Mario Lanza®'

nature reviews electrical engineering https://doi.org/101038/544287-024-00037-6

Review article [® Check for updates

Memristor-based hardware _
accelerators for artificial intelligence

YiHuang @', Takashi Ando®?, Abu Sebastian ®°, Meng-Fan Chang®*, J. Joshua Yang ®° & Qiangfei Xia®"'

¢ |Input/output encoded in wave; trained by backprop on computer model

Deep physical neural networks trained with backpropagation

Logan G. Wright &, Tatsuhiro Onodera &, Martin M. Stein, Tianyu Wang, Darren T. Schachter, Zoey Hu & Peter L. McMahon &

Nature 601, 549-555 (2022) | Cite this article

c Physical neural networks
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@ All-Physical Neural Networks

small systems trained physically with in-situ backpropagation?

Research Article Vol. 9, No. 3 / March 2021 / Photonics Research  B71 |

O s}

PHOTONICS Research @

Backpropagation through nonlinear units for Optlca / (theory)
the all-optical training of neural networks

Training of photonic neural networks through
in situ backpropagation and gradient measurement

Tvier W. Huakes,' MomcHIL Minkow? Yu SHI,Z AND SHANHUI FAN®*
Research Article Vol.9,No.7 / Jiy 2022/ Optica__803_|

Xianxin Guo,"**>T © Tromas D. BARReTT,”®T ©® Zniming M. Wang,"” anp A. I. Lvovsky>*®

OPTICA
Hybrid training of optical neural networks ar (iV> 5 R TI (theory)
JAMES SpALL,"' ® XIANXIN Guo,"?%! ® anp A. |. Lvovsky':24 :

Computer Science > Machine Learning

[Submitted on 23 Apr 2024]

NANOPHOTONICS  Science 380, 398-404 (2023) Training all-mechanical neural networks for task
Experimentally realized in situ backpropagation for learning through in situ backpropagation
deep learning in photonic neural networks Shuaifeng Li, Xiaoming Mao

Sunil Pai**t, Zhanghao Sun’, Tyler W. Hughes®f, Taewon Park’, Ben Bartlett*t, lan A. D. Williamson's,
Momchil Minkov'f, Maziyar Milanizadeh®, Nathnael Abebe'#, Francesco Morichetti®, Andrea Melloni®,
Shanhui Fan’, Olav Solgaard’, David A. B. Miller*

%S Physical Neural Networks

These approaches promise great speed and energy efficiency for inference

But they are hard to scale up large enough to compete with big ANNs

— training by backprop requires global information (to update one neuron requires
information about weights of all other neurons in the layer)
“top down” by external agent with vast memory and computational power

— reality gap between actual device and computer model used for training

— need to externally read/write each edge, writing is often imperfectly done

Any lessons to be learned from real neural networks?
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@ The human brain

¢ 86 billion neurons and 100-1000 trillion synapses (very highly connected)

analog & digital; slow and noisy compared to modern digital electronics

— learning changes the conductances and connections

— this is done by local rules (Hebbian: if fire together the wire together)

. . Synapse
“bottom up” with no external memory or computation or global knowledge b
neural network neuron Presynaptic > » .

neuron “~ ? :
y el Postsynaptic

# ¢

. / /" ( ‘i-\((}\‘\\ neuron
RO
PN

P ) % Yonn ‘terminal
& myelin sheath fibre

dendrites

11

@ Real vs Artificial Neural Networks

e One is far more capable and energy-efficient than the other

Input layer Hidden layers Output layer
hy h, h,
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* Top down gradient descent on cost * Bottom up learning using local rules
function needing global network details and local information
* Relatively narrow range of tasks * Controls thoughts, memory, senses,
* Mostly feed forward motor skills, regulation...
* Fragile wrt damage * Very recurrent / highly connected
* Costs a lot of energy * Robust to damage
» 200kJ per ChatGPT query * Relatively energy efficient
» 10,000kJ per image generation » 20 W = 1700kJ/day
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W Spiking Neural Networks

e Hardware that mimics networks of real neurons (neuromorphic computing)

Neuromorphics chips with O(10%) neurons can now be microfabricated, eg:

566 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 2, FEBRUARY 2008 :&\/ \
A 128x128 120 dB 15 ps Latency Asynchronous
Temporal Contrast Vision Sensor

Patrick Lichtsteiner, Member, IEEE, Christoph Posch, Member, IEEE, and Tobi Delbruck, Senior Member, IEEE

ARTICLE M) Check for updates
An electronic neuromorphic system for real-time
detection of high frequency oscillations (HFO) in
intracranial EEG

Mohammadali Sharifshazileh'??, Karla Burelo® "2, Johannes Sarnthein® 2* & Giacomo Indiveri® '™

Difficult to scale up truly large networks

13
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With all this context, let’s jump into the main topic...
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Contrastive Local Learning Networks

e Return to recurrent physical networks of * inputs
conductors, pipes, springs,... * outputs
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e Develop local learning rules based on contrast of

behavior to different boundary conditions
e “free” where output node values are measured

D

AN
L S

b
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|/

e “clamped” where training data is imposed on output nodes

Learning should emerge from the bottom up, rather than
be imposed from the top down. Being recurrent and
bottom-up should bring some brain-like advantages

* Bottom-up learning of complex functionality using local rules
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W Equilibrium Propagation (2017)

e For voltage inputs, inject current into outputs in small proportion to error

Limit of small nudge: becomes exact gradient decent on (actual-desired)? loss function
Limit of full nudge: referred to as “contrastive Hebbian learning”

i Framework for Framework for
“frontlers ORIGINAL RESEARC‘I; . o A .
in Computational Neuroscience doi: 103 4 Backpropagation Equilibrium Propagation
Objective Function Objective Function
J(0,v) = C(6,v, fy(v)) J(6,v) := C (8, v,35,)

!

Learned
Parameter

Equilibrium Propagation: Bridging ‘ ‘ ‘

Prediction Learned Prediction

the Gap between Energy-Based | |Parameter] | 5=,

R 5=fi(v) -
Models and Backpropagation LA == o ‘)’f 4
S WV, 8
Benjamin Scellier * and Yoshua Bengio *
Data V
Backprop Equilibrium Prop Contrastive Hebbian Learning

First Phase Forward Pass Free Phase Free Phase (or Negative Phase)
Second Phase Backward Pass Weakly Clamped Phase Clamped Phase (or Positive Phase)
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@ Coupled Learning (2021)

e A scheme to adjust conductances based on behavior under free versus clamped
boundary conditions (Stern, Hexner, Rocks, Liu, Phys Rev X 2021):

| Free P Clamped _~ % Menachem
apply apply | < 1 “Nachi” Stern
inputs | inputs apply
eave clamping . .
outputs voltage Learning Degrees of Freedom:
free to outputs conductances k; of each edge

| | Physical Degrees of Freedom:
current or pressure/voltage
across each edge (“‘computed”
for free, thanks to physics)

Nudge each output node closer to desired value
(according to the training data):

VClamped = VFree + 77(VDesired - VFree)

Pop quiz (the crux!): Which circuit has higher dissipation rate, P, free or clamped?

Answer: P is greater in the clamped state (thanks to physics)

17

@ Coupled Learning Rule

e Traditional loss/cost function = (desired response — free response)? {>0}

e must be squared to guarantee it’s positive, for minimization by gradient descent

e New contrast function = dissipation rate difference, Pclamped — Pfiee {>()}

¢ positive due to optimization of energy functional over physical degrees of freedom for given BCs

Evolve the edge conductances to drive contrast function to zero:

] 0 clamped free
kj; o ok, [77 P

_ 0 {Z V2Rt 3 (V2k) fm} This rule is LOCAL
8kj v v {squaring [Pclamped __ Dfree
gives global prefactor}

% %

_ [(ij)clamped _ (‘/j2)f7“ee):|

[Stern, Hexner, Rocks, Liu, Phys Rev X 2021]
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e Meant to be implemented in the lab

Coupled Learning Rule

— The voltage drops in under free/clamped conditions depend on conductances
— Experiments don’t take the gradient in 2" line holding voltage drops constant

— This issue to be addressed in Andrea’s lecture and in homework problem

3 0 clamped free
kj o ok, [P P

Z (V2E,) fm} This rule is LOCAL
v {squaring Pclamped __ Pfree
gives global prefactor}

(2

_ 9 27. yclamped
= g5, | S0k

_ [(Vj2)clamped _ (‘/jQ)free):|

[Stern, Hexner, Rocks, Liu, Phys Rev X 2021]
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Coupled Learning, More Generally

e Conjugate physical variables aka physical degrees of freedom {p;, q;} on/across/through each edge i,
connected by learning degrees of freedom {L;;, L;,, ... }. E.g. {Avoltage, current} and {resistance, resistor
geometry}; {Apressure, current} and {conductivity, channel geometry}; {force, deformation} and {spring
constant, rest length, strut geometry}; {Avoltage, charge} and {capacitance, plate geometry}; ...

e Energy functional u;(p;, q;, Li1, L3, ... ) for each edge, e.g. power for current & fluid flow networks and
energy for capacitor & elastic networks. Total energy or power U = Y, u; summed over all edges.

e Clamp: nudge designated output edges j from free-state values {p;} toward target values {p;r} by
pjc = npjr + (1 —n)pjf or ditto for q tasks.

Solve several networks and compare gradient descent vs local learning rules. Findings:

local approximation

o(uj—u;

gradient descent ((L(;‘_Lf)) p taSkS
dL; _ ya(Uc_Uf) ~ —ym Lo Jp
dat OL; = o(u;-—u;

N/ (%) q tasks
empirical L; q

* Cost function C = U, — Uy has form C = n?f ({L;}; inputs; task) as major n dependence (exactly near learning)
* Empirical factor of 1 is needed for local rule to approximate gradient descent

» Llocal approximation to global gradient descent becomes exact for near learning

20
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W Penalty function terminology

¢ Distinguish different global penalty functions to be minimized (driven to zero):
Loss/Cost £ = Y (desired output — free output)? is traditional / most important
Contrast C = U, — Uy {clamped minus free energy or power of network, U = Y. u;}is proxy

Learn by gradient descent on learning degrees of freedom: % = —y%
o(uic—;
Local Coupled Learning rule: by o % py iy NG
ocal Coupled Learning rule: approx. —= = yaLi y o, = (6(uic—uif))
— q tasks
dL; q

~ N N o . _dLg|dL]. . . . N
Compare M55 * Meost aNd Nypss * Nyocqr Where 1 = E/ —-| is unit vectorin learning direction

21

@ c.f. Equilibrium Propagation

The difference is in the nudge.
E.g. for voltage in / voltage out tasks:

e Equilibrium propagation: nudge by clamping current « (desired — free voltage)
Ic xn(Vp —Vg) ottt Necscinc P

Equilibrium Propagation: Bridging
the Gap between Energy-Based
Models and Backpropagation

Benjamin Scellier* and Yoshua Bengio "

e Coupled learning: nudge by clamping voltage from free toward desired
VC — VF + r’(VD _ VF) PHYSICAL REVIEW X 11, 021045 (2021)

Supervised Learning in Physical Networks: From Machine Learning to Learning Machines

s 02139, USA

1; published 28 May 2021)
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Related local learning rules

e |Coupled learning:
0

J ok;

clamped _ pfree
[P prree]

¢ Directed aging (generally cannot train to complex desired target outputs)
k.. o — i PClamped [Liu & Nagel; Pashine]
J ok

e Coupled learning with regularization (small € biases toward low-power solns):

d [(Pclamped _ Pfree) + EPfree]

Koo — 0
J ok;
[Stern, Dillavou, Jayaraman, Durian, Liu (APL Machine Learning 2024) — next lecture]
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Other local learning rules

PHYSICAL REVIEW RESEARCH 5, 023024 (2023) Frequency Propagation: Multimechanism Learning
in Nonlinear Physical Networks

Neural Computation 36, 596-620 (2024)

Vidyesh Rao Anisetti®,"" B. Scellier®,> and J. M. Schwarz'-3 VidYeSh Rao Anisetti
vvaniset@syr.edu

Physics Department, Syracuse University, Syracuse, NY 13244 U.S.A.

Learning by non-interfering feedback chemical signaling in physical networks

Ananth Kandala
an.kandala@ufl.edu
Department of Physics, University of Florida, Gainesville, FL 32611, LL.S.A.

Benjamin Scellier

PNAS RESEARCH ARTICLE | APPLIED PHYSICAL SCIENCES 2023 Vol. 120 No.27 €2219558120 benjamin.scellier@polytechnique.edu
Department of Mathematics, ETH Ziirich, 8092 Ziirich, Switzerland

Learning to learn by using nonequilibrium training protocols J. M. Schwarz
for adaptable materials jmschw02@syr.edu

a1 a b \ . e » Physics Department, Syracuse University, Syracuse, NY 13244 U.S.A.,
Martin J. Falk®' @), Jiayi Wu®', Ayanna Matthews®, Vedant Sachdeva®, Nidhi Pashine“ @), Margaret L. Gardel*®*'(, Sidney R. Nagel**@, and Indian Creek Farm, Ithaca, N 14850, LLS.A.

and Arvind Murugan®®?
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¢

Reviews on training physical systems

arrinoe Wi Tarrane
Learning Without Neurons Energy-Based Learning Algorithms
in Physical Systems for Analog Computing:
Annu. Rev. Condens. Matter Phys. 2023. 14:417-41 A Comparative Study
Menachem Stern' and Arvind Murugan?

Ivania, Philadelphia, P 1

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Department of Physics and Astronomy, University of P

email: nachis@sas.upenn.edu Benjamin Scellier Maxence Ernoult Jack Kendall Suhas Kumar
2Department of Physics, University of Chicago, Chicago, Illinois; Rain Al Rain Al Rain Al Rain Al
email: amurugan@uchicago.edu benjamin@rain.ai maxence@rain.ai jack@rain.ai suhas@rain.ai

ar <1V > physics > arXiv:2406.03372

Physics > Applied Physics
[Submitted on 5 Jun 2024]

Training of Physical Neural Networks

Ali Momeni, Babak Rahmani, Benjamin Scellier, Logan G. Wright, Peter L. McMahon, Clara C.
Wanjura, Yuhang Li, Anas Skalli, Natalia G. Berloff, Tatsuhiro Onodera, llker Oguz, Francesco
Morichetti, Philipp del Hougne, Manuel Le Gallo, Abu Sebastian, Azalia Mirhoseini, Cheng
Zhang, Danijela Markovi¢, Daniel Brunner, Christophe Moser, Sylvain Gigan, Florian Marquardt,
Aydogan Ozcan, Julie Grollier, Andrea ). Liu, Demetri Psaltis, Andrea Ali, Romain Fleury
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Use of local learning rules

Switch gears from developing rules to using them...

26
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W A classic problem for benchmarking
e Classify handwritten digits: MNIST database of 60,000 training images and
10,000 testing images (28x28 grayscale, )
000 0006Qop0OOOY 0 OO0
[N T I N 2 2 VU B A R |
Ad2AIIF 220212222 AK
3333333353333 3333
H¥ ¢4 449 Yy ¢#5d4 4\ ¥4
558535 S$SS5859s 58554579
b G 6bbeGobbbaceébte ol
T 777771079202 %777
¥ 3 ¥ 8 8P ¥ PTTITE LD
?7199999%949%499499 9
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W Coupled Learning in silico

e Successfully Classify zeros and ones from MNIST (5% test error) '

— Input nodes (red): top 25 principal components of images
— Output nodes (blue, black): larger value indicates digit (0,1 respectively)

Menachem
Stern

U/

< > - \ ~
shading = conductivity h shading = power

[Stern, Hexner, Rocks, Liu, Phys Rev X 2021]
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https://yann.lecun.com/exdb/mnist/

@ Coupled Learning in laboratorium?

Successful in silico demonstration is exciting & impressive, but...

— requires CPU and memory storage both for training and for forward computation by
solution of Kirchhoff’s laws

Really, want laboratory implementation that does not require CPU or memory
storage during training or afterwards for “forward/inference” computation
— In-memory analog training for in-memory analog compute...

— Tremendous scaling advantage for large networks & complex tasks...
e Tune in tomorrow!
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