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Recap: Rigidity Percolation in Spring Networks:  Maxwell criterion

Consider a lattice of N nodes in d dimensions, z coordination number, and 
bond occupation probability p 

# of degrees of freedom =𝑁𝑑

# constraints =
𝑁
2
	𝑧	𝑝

Maxwell criterion: Balance # constraints 
and #  degrees of freedom  

pc = 2d/z,   zc= 2d Isostatic coordination  

J. C. Maxwell, Philos. Mag., 1864

𝑝 > 	𝑝! , 𝑧 > 𝑧! Condition for rigidity



Recap: EMT for central force (spring) networks 
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α αm
Feng, Thorpe, Garboczi, PRB 1985



Extra displacement due to replaced bond
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𝛼!"" =
𝛼#
𝛼∗ − 𝛼# + 𝛼

𝑓 = 𝛿!"(𝛼" − 𝛼) 

𝛿! =
𝛿!"(𝛼" − 𝛼)
𝛼"
𝛼∗ − 𝛼" + 𝛼

𝛿! =
𝑓

𝛼"
𝛼∗ − 𝛼" + 𝛼

Recap: EMT for central force (spring) networks 
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)
𝛼" − 𝛼′

𝛼"
𝑎∗ − 𝛼" + 𝛼′

∗ 𝑃 𝛼$ 	𝑑𝛼′ = 0

𝛼"
𝛼
=
𝑝 − 𝑎∗

1 − 𝑎∗
	

Where 𝑃 𝛼% = 𝑝𝛿 𝛼% − 𝛼 + 1 − 𝑝 𝛿(𝛼%)

Replace bonds with spring constant 𝛼& by 𝛼	(probability p) and by 0 (probability (1-p)).

When averaged over the entire system, the fluctuations 𝛿' should go to 0. 

Recap: EMT for central force (spring) networks 



What is 𝑎∗?
• Geometric constant relating geometry of lattice to rigidity
• Evaluated in terms of Dynamical Matrix
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Recap: EMT for central force (spring) networks 



Dynamical Matrix
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Expand the total energy about  structural equilibrium coordinates

At equilibrium the O(1) term is 0. 
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Formal Theory of Lattice Dynamics

Based on expansion of total energy about structural equilibrium co-ordinates

E = E0 +
@E

@u
.u +

1
2!

@2E

@u2 .u2 +
1
3!

@3E

@u3 u
3 + ...

At equilibrium the forces F↵, = � @E

@u
are all zero so 1st term vanishes.

E = E0 +
1
2

X
u↵,,a.�

,0

↵,↵0 .u0,↵0,a + ...

where u↵,,a is the displacement of atom  in unit cell a in Cartesian direction ↵.

In the Harmonic Approximation the 3rd and higher order terms are assumed to
be negligible

�,0

↵,↵0 (a) is the matrix of force constants

�,0

↵,↵0 (a) =
@2E

@u↵,@u0,↵0
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1
2
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u↵,,a.�

,0

↵,↵0 .u0,↵0,a + ...

where u↵,,a is the displacement of atom  in unit cell a in Cartesian direction ↵.

In the Harmonic Approximation the 3rd and higher order terms are assumed to
be negligible

�,0

↵,↵0 (a) is the matrix of force constants

�,0

↵,↵0 (a) =
@2E

@u↵,@u0,↵0

where uα,κ,a is the displacement of atom κ in unit cell a in Cartesian direction α 



Dynamical Matrix

8

Expand the total energy about  structural equilibrium coordinates

At equilibrium the O(1) term is 0. 

Phonons
and Lattice
Dynamics

Peter Byrne

Motivation

Lattice
Dynamics
of Crystals

Ab initio
Lattice
Dynamics

Break

Lattice
Dynamics
in CASTEP

Phonon
Examples

Quantities
from
Phonons

19/59

Formal Theory of Lattice Dynamics

Based on expansion of total energy about structural equilibrium co-ordinates

E = E0 +
@E

@u
.u +

1
2!

@2E

@u2 .u2 +
1
3!

@3E

@u3 u
3 + ...

At equilibrium the forces F↵, = � @E

@u
are all zero so 1st term vanishes.

E = E0 +
1
2

X
u↵,,a.�

,0

↵,↵0 .u0,↵0,a + ...

where u↵,,a is the displacement of atom  in unit cell a in Cartesian direction ↵.

In the Harmonic Approximation the 3rd and higher order terms are assumed to
be negligible

�,0

↵,↵0 (a) is the matrix of force constants

�,0

↵,↵0 (a) =
@2E

@u↵,@u0,↵0

Phonons
and Lattice
Dynamics

Peter Byrne

Motivation

Lattice
Dynamics
of Crystals

Ab initio
Lattice
Dynamics

Break

Lattice
Dynamics
in CASTEP

Phonon
Examples

Quantities
from
Phonons

19/59

Formal Theory of Lattice Dynamics
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where u↵,,a is the displacement of atom  in unit cell a in Cartesian direction ↵.
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be negligible
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↵,↵0 (a) is the matrix of force constants

�,0
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In the Harmonic Approximation O(3) and higher order terms are negligible 
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The Force Constant Matrix (FCM)

This matrix represents all the effective
3d spring constants between atoms

�,0

↵,↵0(a) =
@2

E

@u↵,@u0,↵0

= �
@Fu↵,,a

@u0,↵0,a

Alternative view is change on force on
atoms due to displacing an atom

Rc

The dynamical matrix is the Fourier transform of this force constant matrix
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The dynamical matrix is the Fourier transform of this force constant matrix
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The Dynamical Matrix (DM)

Solution in 1d can be reused with a few modifications for 3d:

u↵, = "m↵,qe
iq.R↵,�!t

Taking the derivative of the total energy equation to get the force, F and substituting
this trial solution, we have

D
,0

↵,↵0 (q)"m↵,q = !2
m,q"m↵,q

where

D
,0

↵,↵0 (q) =
1

p
MM0

C
,0

↵,↵0 (q) =
1

p
MM0

X

a

�,0

↵,↵0 (a)e
�iq.Ra

κ

κ'

q=a*/8

The dynamical matrix D
,0

↵,↵0 (q) is
the Fourier transform of the force
constant matrix.
The solutions of the eigenvalue
equation correspond to vibrational
modes
Mode frequency is square root of
corresponding eigenvalue !m,q .
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Alternative view is change on force on
atoms due to displacing an atom

Rc

To obtain vibrational modes, solve 
Phonons

and Lattice
Dynamics

Peter Byrne

Motivation

Lattice
Dynamics
of Crystals

Ab initio
Lattice
Dynamics

Break

Lattice
Dynamics
in CASTEP

Phonon
Examples

Quantities
from
Phonons

21/59

The Dynamical Matrix (DM)

Solution in 1d can be reused with a few modifications for 3d:

u↵, = "m↵,qe
iq.R↵,�!t

Taking the derivative of the total energy equation to get the force, F and substituting
this trial solution, we have

D
,0

↵,↵0 (q)"m↵,q = !2
m,q"m↵,q

where

D
,0

↵,↵0 (q) =
1

p
MM0

C
,0

↵,↵0 (q) =
1

p
MM0

X

a

�,0

↵,↵0 (a)e
�iq.Ra

κ

κ'

q=a*/8

The dynamical matrix D
,0

↵,↵0 (q) is
the Fourier transform of the force
constant matrix.
The solutions of the eigenvalue
equation correspond to vibrational
modes
Mode frequency is square root of
corresponding eigenvalue !m,q .

where



Dynamical Matrix for a Triangular Lattice
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Unit Cell

𝛼m



For a spring network on a triangular 
lattice
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=
2
3

𝑝(	 =
*
+   is our rigidity percolation threshold!



Phase Transition in Tissue Mechanics during 
Morphogenesis

Petridou, Corominas-Murtra, Heisenberg, Hannezo Cell 2021



See: T. Zhang, J.M. Schwarz, MD, PRE 2014

An Example of Anisotropic Spring Network 2

py py
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FIG. 1: (Color Online) (Color Online) Schematic figure show-
ing the randomly diluted anisotropic spring network with cor-
responding occupation probabilities px and py.

by removing bonds along the x direction with probability
1−px, where 0 < px < 1, and bonds with a y component
with probability 1− py, where 0 < py < 1. There are no
spatial correlations between these cutting points in either
case. This generates a disordered network with a broad
distribution of spring lengths in either direction. When
two springs intersect, there exists a cross-link preventing
the two springs from sliding with respect to one another,
but they can rotate freely without any energy cost.

We study the mechanical response of this disordered
network under an externally applied strain in the linear
response regime. For simplicity we set the rest length of
the springs to unity. Let rij be the unit vector along the
spring ij and uij = ui − uj be the deformation of this
spring. For small deformations, the deformation energy
can be written as follows:

E =
α

2

∑

〈ij〉

px,ij (uα,ij .rα,ij)
2 +

γ

2

∑

〈ij〉

py,ij (uγ,ij .rγ,ij)
2 ,(1)

where px,ij (py,ij) is the probability that the ij bond in
the x (y) direction is occupied as shown in Fig.1 and
a is the lattice spacing and is set to 1. The deforma-
tion energy corresponds to the cost of extension or com-
pression of the springs. Although the model allows for
anisotropy in disorder as well as in constitutive elasticity
of the springs, we have set the bare elastic constant of
both types of springs to have the same value (α = γ = 1
in arbitrary units). We investigate the shear and bulk
moduli of this disordered network as a function of the
direction dependent occupation probability of springs in
response to suitable strains imposed on the boundaries.

III. METHODS AND ANALYSIS

A. Constraint counting argument and the rigidity
threshold

We start with a constraint counting argument due to
Maxwell [6, 19, 20], a very powerful and simple way to
estimate at what occupation probability the phase tran-
sition takes place. Consider a d dimensional system with
N particles or points, and hence Nd degrees of free-
dom. The number of zero-frequency modes (φNd), where
0 < φ ≤ 1, is equal to the number of degrees of freedom
(Nd) minus the number of constraints, which in this case
is (12zxNpx+

1
2zyNpy), where zx is the number of nearest-

neighbor points in the x direction and zy is the number of
nearest-neighbor points in the y direction. Here, zx = 2
and zy = 4. Hence, the fraction of zero-frequency modes
is

φ = 1− (
1

2
px + py).

So the transition takes place when φ goes to zero or

px
2

+ py = 1.

In Fig. 2, we show the rigidity phase diagram of the dis-
ordered network, as a function of the occupation proba-
bility px and py of springs in the x and 60◦ and 120◦ to the
x direction, respectively. We also show the network struc-
ture for three representative points in the rigid phase of
the phase diagram: px = 1, py = 1, px = 0.75, py = 0.90,
and px = 0, py = 1. In what follows we investigate how
the mechanical response of the system changes as the
network is progressively diluted, finally reaching the tran-
sition threshold. To accomplish this objective, we have
used an effective medium theory and an energy minimiza-
tion approach, which we describe below.

B. Effective Medium Theory

We study the mechanical response of this disordered
network for small deformations using an effective medium
theory [2, 6–8, 22]. The aim of the theory is to con-
struct an effective medium or ordered network that has
the same mechanical response as the depleted network
under consideration. The effective filament stretching
elastic constants are determined by requiring that strain
fluctuations produced in the original, ordered network by
randomly cutting filaments have zero average.
We first illustrate how the effective medium elastic con-

stant can be calculated for the simple case where we ap-
ply a uniform strain on an isotropic central force network,
so that all bonds are equally stretched by an amount δ%m
with effective medium spring constant αm. Let us now
replace a spring between two points, say, i and j by dif-
ferent one with spring constant α. It would lead to addi-
tional extension or compression of this spring, which we
calculate as follows [6, 7].

𝑝, 	≠ 𝑝-

# of degrees of freedom =𝑁𝑑

# of constraints = (1/2) (zx N px + zy N py) 
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a is the lattice spacing and is set to 1. The deforma-
tion energy corresponds to the cost of extension or com-
pression of the springs. Although the model allows for
anisotropy in disorder as well as in constitutive elasticity
of the springs, we have set the bare elastic constant of
both types of springs to have the same value (α = γ = 1
in arbitrary units). We investigate the shear and bulk
moduli of this disordered network as a function of the
direction dependent occupation probability of springs in
response to suitable strains imposed on the boundaries.

III. METHODS AND ANALYSIS

A. Constraint counting argument and the rigidity
threshold

We start with a constraint counting argument due to
Maxwell [6, 19, 20], a very powerful and simple way to
estimate at what occupation probability the phase tran-
sition takes place. Consider a d dimensional system with
N particles or points, and hence Nd degrees of free-
dom. The number of zero-frequency modes (φNd), where
0 < φ ≤ 1, is equal to the number of degrees of freedom
(Nd) minus the number of constraints, which in this case
is (12zxNpx+

1
2zyNpy), where zx is the number of nearest-

neighbor points in the x direction and zy is the number of
nearest-neighbor points in the y direction. Here, zx = 2
and zy = 4. Hence, the fraction of zero-frequency modes
is

φ = 1− (
1
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px + py).

So the transition takes place when φ goes to zero or

px
2

+ py = 1.

In Fig. 2, we show the rigidity phase diagram of the dis-
ordered network, as a function of the occupation proba-
bility px and py of springs in the x and 60◦ and 120◦ to the
x direction, respectively. We also show the network struc-
ture for three representative points in the rigid phase of
the phase diagram: px = 1, py = 1, px = 0.75, py = 0.90,
and px = 0, py = 1. In what follows we investigate how
the mechanical response of the system changes as the
network is progressively diluted, finally reaching the tran-
sition threshold. To accomplish this objective, we have
used an effective medium theory and an energy minimiza-
tion approach, which we describe below.

B. Effective Medium Theory

We study the mechanical response of this disordered
network for small deformations using an effective medium
theory [2, 6–8, 22]. The aim of the theory is to con-
struct an effective medium or ordered network that has
the same mechanical response as the depleted network
under consideration. The effective filament stretching
elastic constants are determined by requiring that strain
fluctuations produced in the original, ordered network by
randomly cutting filaments have zero average.
We first illustrate how the effective medium elastic con-

stant can be calculated for the simple case where we ap-
ply a uniform strain on an isotropic central force network,
so that all bonds are equally stretched by an amount δ%m
with effective medium spring constant αm. Let us now
replace a spring between two points, say, i and j by dif-
ferent one with spring constant α. It would lead to addi-
tional extension or compression of this spring, which we
calculate as follows [6, 7].

𝑝, 	≠ 𝑝-

# of degrees of freedom =𝑁𝑑

# of constraints = (1/2) (zx N px + zy N py) 

d=2, zx = 2, zy =4

"!
#
+ 𝑝$	 =1

Check EMT gives you the same relationship



MD, MacKintosh, Levine, PRL 2007, MD, D Quint, JM Schwarz, PloS One 2012, Broedersz et al Nature Ohys 0211

Rigidity Percolation in Semiflexible Networks

i

j

k

ui

uj

Study using effective medium theory or energy minimization 

Deformation	energy

𝛼



MD, MacKintosh, Levine, PRL 2007, MD, D Quint, JM Schwarz, PloS One 2012, Broedersz et al Nature Ohys 0211

Rigidity Percolation in Semiflexible Networks

Distribution	of	stretching	and	bending	constants

• 𝑃 𝛼! = 𝑝𝛿 𝛼! − 𝛼 + 1 − 𝑝 𝛿 𝛼!

• 𝑃 𝜅! = 𝑝"𝛿 𝜅! − 𝜅 + 1 − 𝑝" 𝛿 𝜅!

i

j

k

ui

uj



MD, MacKintosh, Levine, PRL 2007, MD, D Quint, JM Schwarz, PloS One 2012, Broedersz et al Nature Ohys 0211

Rigidity Percolation in a semiflexible networks on triangular lattice:
Dynamical Matrix



MD, MacKintosh, Levine, PRL 2007, MD, D Quint, JM Schwarz, PloS One 2012, Broedersz et al Nature Ohys 0211

Rigidity Percolation in a semiflexible networks on triangular lattice:
Effective Medium stretching and bending constants from EMT

Solve self-consistently



MD, MacKintosh, Levine, PRL 2007, MD, D Quint, JM Schwarz, PloS One 2012, Broedersz et al Nature Ohys 0211

Rigidity Percolation in a semiflexible networks on triangular lattice:
Effective Medium stretching and bending constants from EMT

Also note: 𝑎∗	 +	𝑏∗= *+ 
At the rigidity percolation threshold, 𝑝( :    𝑝( + 𝑝(* =

*
+
.	 ∴ 	 𝑝(	 ≈ 0.457   



MD, MacKintosh, Levine, PRL 2007, MD, D Quint, JM Schwarz, PloS One 2012, Broedersz et al Nature Ohys 0211

Rigidity Percolation in flexible and semiflexible networks on triangular 
lattice: EMT prediction of shear modulus G  (G = ( 3/4) 𝛼!	) 

α=	1,	κ=	0 α=	1,	κ	varied

𝑝(	 ≈ 0.457𝑝(	 ≈ 0.667



Tseng, Wirtz 2001.

F-actin/a-actinin network Filamin Arp 2/3

Svitkina and Borisy 1999.

Rigidity Percolation in semiflexible networks: what happens when we 
have angle constraining crosslinks between crossing filaments?



Rigidity Percolation in semiflexible networks: what happens when we 
have angle constraining crosslinks between crossing filaments?

Bond occupation probability 

Sh
ea

r m
od

ul
us

freely rotating x-links angle constraining xlinks 

Tseng, Wirtz 2001.

F-actin/a-actinin network Filamin Arp 2/3

MD, Quint, and, Schwarz, PLOS One 2012

Svitkina and Borisy 1999.



Chang, et al., J. Biomed. Res., 2001

Rigidity Percolation in semiflexible networks: what happens when the 
network has spatial inhomogeneity?



Model: Kagome-lattice based network with structural correlation

•Include randomly chosen bond with 
acceptance probability 
𝑃 = (1	 − 𝑐)6−𝑛𝑛

•𝑐 sets the strength of correlation

•Larger values of correlation strength 
yield patchier structures

J Michel, ++, MD, Phys Rev R, 2022



Increasing correlation yields dense clusters

Increasing
correlation

Increasing fraction 
of occupied bonds

J Michel, ++, MD, Phys Rev R, 2022



Threshold for Rigidity Depends varies Non-
monotonically with Correlation

Occupied bond fraction

Normalized
Shear

Modulus

J Michel, ++, MD, Phys Rev R, 2022



Threshold for Rigidity Depends varies 
Non-monotonically with Correlation

Occupied bond fraction

Correlation
Strength

J Michel, ++, MD, Phys Rev R, 2022



Computing percolation thresholds
• Fit shear modulus around 

percolation threshold to power 
law

• 𝐺 = 𝑘 𝑝	 −	𝑝( =

• 𝑝! denotes the percolation 
thresholds (depends on c)

• 𝛽 is a critical exponent found 
by fitting

J Michel, ++, MD, Phys Rev R, 2022



𝑝(	 exhibits reentrance

𝐺 = 𝑘 𝑝	 −	𝑝! %

Correlation Strength

Percolation 
threshold

J Michel, ++, MD, Phys Rev R, 2022



Scaling Exponents Decreases Linearly 
with Rigidity Threshold

Percolation 
threshold 

Scaling 
Exponent

J Michel, ++, MD, Phys Rev R, 2022


