Mechanical Transitions in Cells and Tissues: Day 2

Moumita (Mo) Das, School of Physics and Astronomy, Rochester Institute of Technology

Boulder School 2001: Nonequilibrium Statistical Physics: Glasses, transport & friction, biological systems, and turbulence

July 2-27, 2001

Scientific Coordinators:

<u>E. Bodenschatz</u> (Cornell) <u>M. C. Marchetti</u> (Syracuse) <u>A. A. Middleton</u> (Syracuse)

Trajectory

UCLA

Harvard University

Boulder School 2024: Self-Organizing Matter: From Inanimate to the Animate

July 1-26, 2024 Scientific Coordinators

Shiladitya Banerjee (Carnegie Mellon) Andela Saric (IST Austria) Eric R. Dufresne (Cornell) Margaret L. Gardel (Chicago)

Recap: Rigidity Percolation in Spring Networks: Maxwell, Philos. Mag., 1864

Consider a lattice of N nodes in d dimensions, z coordination number, and bond occupation probability p

of degrees of freedom =Nd

constraints =
$$\frac{N}{2} z p$$

Maxwell criterion: Balance # constraints and # degrees of freedom

$$p_c = 2d/z, \quad z_c = 2d$$

Isostatic coordination

 $p > p_c, z > z_c$ Condition for rigidity

Recap: EMT for central force (spring) networks

Feng, Thorpe, Garboczi, PRB 1985

Recap: EMT for central force (spring) networks

Extra displacement due to replaced bond

$$\delta_u = \frac{f}{\frac{\alpha_m}{\alpha^*} - \alpha_m + \alpha}$$

$$f = \delta_{um}(\alpha_m - \alpha)$$

$$\delta_{u} = \frac{\delta_{um}(\alpha_{m} - \alpha)}{\frac{\alpha_{m}}{\alpha^{*}} - \alpha_{m} + \alpha}$$

Recap: EMT for central force (spring) networks

Replace bonds with spring constant α_m by α (probability p) and by 0 (probability (1-p)).

When averaged over the entire system, the fluctuations δ_u should go to 0.

$$\int \frac{\alpha_m - \alpha'}{\frac{\alpha_m}{a^*} - \alpha_m + \alpha'} * P(\alpha') \, d\alpha' = 0$$

Where
$$P(\alpha') = p\delta(\alpha' - \alpha) + (1 - p)\delta(\alpha')$$

$$\frac{\alpha_m}{\alpha} = \frac{p - a^*}{1 - a^*}$$

Recap: EMT for central force (spring) networks What is a^* ?

- Geometric constant relating geometry of lattice to rigidity
- Evaluated in terms of Dynamical Matrix

$$a^* = \frac{1}{3} \sum_{q} Tr \left[\boldsymbol{D} \ (q) \cdot \boldsymbol{D}^{-1}(q) \right]$$

Dynamical Matrix

Expand the total energy about structural equilibrium coordinates

$$E = E_0 + \frac{\partial E}{\partial u} \cdot u + \frac{1}{2!} \frac{\partial^2 E}{\partial u^2} \cdot u^2 + \frac{1}{3!} \frac{\partial^3 E}{\partial u^3} u^3 + \dots$$

At equilibrium the O(1) term is 0.

$$E = E_0 + \frac{1}{2} \sum \boldsymbol{u}_{\alpha,\kappa,a} \boldsymbol{\Phi}_{\alpha,\alpha'}^{\kappa,\kappa'} \boldsymbol{u}_{\kappa',\alpha',a} + \dots$$

where $\boldsymbol{u}_{\alpha,\kappa,a}$ is the displacement of atom κ in unit cell *a* in Cartesian direction α

Dynamical Matrix

Expand the total energy about structural equilibrium coordinates

$$E = E_0 + \frac{\partial E}{\partial u} \cdot u + \frac{1}{2!} \frac{\partial^2 E}{\partial u^2} \cdot u^2 + \frac{1}{3!} \frac{\partial^3 E}{\partial u^3} u^3 + \dots$$

At equilibrium the O(1) term is 0.

- -

$$E = E_0 + \frac{1}{2} \sum \boldsymbol{u}_{\alpha,\kappa,a} \boldsymbol{\Phi}_{\alpha,\alpha'}^{\kappa,\kappa'} \boldsymbol{u}_{\kappa',\alpha',a} + \dots$$

In the Harmonic Approximation O(3) and higher order terms are negligible

Dynamical Matrix

$$E = E_0 + \frac{1}{2} \sum \boldsymbol{u}_{\alpha,\kappa,a} \boldsymbol{\Phi}_{\alpha,\alpha'}^{\kappa,\kappa'} \boldsymbol{u}_{\kappa',\alpha',a}$$

The matrix of force constants

$$\Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(a) = \frac{\partial^2 E}{\partial \boldsymbol{u}_{\alpha,\kappa} \partial \boldsymbol{u}_{\kappa',\alpha'}}$$
$$= -\frac{\partial F_{\boldsymbol{u}_{\alpha,\kappa,a}}}{\partial \boldsymbol{u}_{\kappa',\alpha',a}}$$

The dynamical matrix is the Fourier transform of this force constant matrix

Dynamical Matrix

$$E = E_0 + \frac{1}{2} \sum \boldsymbol{u}_{\alpha,\kappa,a} \boldsymbol{\Phi}_{\alpha,\alpha'}^{\kappa,\kappa'} \boldsymbol{u}_{\kappa',\alpha',a}$$

The matrix of *force constants*

$$\Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(a) = \frac{\partial^2 E}{\partial u_{\alpha,\kappa} \partial u_{\kappa',\alpha'}}$$
$$= -\frac{\partial F_{u_{\alpha,\kappa,a}}}{\partial u_{\kappa',\alpha',a}}$$

The dynamical matrix is the Fourier transform of this force constant matrix

To obtain vibrational modes, solve

$$D^{\kappa,\kappa'}_{\alpha,\alpha'}(\boldsymbol{q})\varepsilon_{m\alpha,\kappa\boldsymbol{q}}=\omega^2_{m,\boldsymbol{q}}\varepsilon_{m\alpha,\kappa\boldsymbol{q}}$$

where
$$\boldsymbol{u}_{\alpha,\kappa} = \boldsymbol{\varepsilon}_{m\alpha,\kappa} \boldsymbol{q} \boldsymbol{e}^{i\boldsymbol{q}\cdot\boldsymbol{R}_{\alpha,\kappa}-\omega t}$$
 10

Dynamical Matrix for a Triangular Lattice

For a spring network on a triangular lattice

$$a^* = \frac{1}{3} \sum_{q} Tr \left[\boldsymbol{D}_s(q) \cdot \boldsymbol{D}^{-1}(q) \right] = \frac{2}{3}$$
$$\frac{\alpha_m}{\alpha} = \begin{cases} \frac{p-a^*}{1-a^*} & \text{if } p > a^* \\ 0 & \text{if } p \le a^* \end{cases}$$

$$p_c = \frac{2}{3}$$
 is our rigidity percolation threshold!

Phase Transition in Tissue Mechanics during Morphogenesis

Petridou, Corominas-Murtra, Heisenberg, Hannezo Cell 2021

An Example of Anisotropic Spring Network

of degrees of freedom =Nd

of constraints = (1/2) ($z_x N p_x + z_y N p_y$)

See: T. Zhang, J.M. Schwarz, MD, PRE 2014

An Example of Anisotropic Spring Network

of degrees of freedom =Nd

of constraints = (1/2) ($z_x N p_x + z_y N p_y$)

d=2,
$$z_x = 2$$
, $z_y = 4$

$$\frac{p_x}{2} + p_y = 1$$

Check EMT gives you the same relationship See: T. Zhang, J.M. Schwarz, MD, PRE 2014

Rigidity Percolation in Semiflexible Networks

Study using effective medium theory or energy minimization

Rigidity Percolation in Semiflexible Networks

Distribution of stretching and bending constants

•
$$P(\alpha') = p\delta(\alpha' - \alpha) + (1 - p)\delta(\alpha')$$

•
$$P(\kappa') = p^2 \delta(\kappa' - \kappa) + (1 - p^2) \delta(\kappa')$$

Rigidity Percolation in a semiflexible networks on triangular lattice: Dynamical Matrix

$$\boldsymbol{D}_{s}(q) = \alpha_{m} \sum_{\langle ij \rangle} \left[1 - e^{-i\boldsymbol{q}_{\cdot} \boldsymbol{\hat{r}}_{ij}} \right] \boldsymbol{\hat{r}}_{ij} \boldsymbol{\hat{r}}_{ij}$$

$$\boldsymbol{D}_{b}(q) = \kappa_{m} R^{-2} \sum_{\langle ij \rangle} \left[4 (1 - \cos(\boldsymbol{q} \cdot \boldsymbol{\hat{r}}_{ij})) - (1 - \cos(2\boldsymbol{q} \cdot \boldsymbol{\hat{r}}_{ij})) \right] (\boldsymbol{I} - \boldsymbol{\hat{r}}_{ij} \boldsymbol{\hat{r}}_{ij})$$

 $\boldsymbol{D}(q) = \boldsymbol{D}_s(q) + \boldsymbol{D}_b(q)$

Rigidity Percolation in a semiflexible networks on triangular lattice: Effective Medium stretching and bending constants from EMT

$$\frac{\alpha_m}{\alpha} = \begin{cases} \frac{p-a^*}{1-a^*} & \text{if } p > a^* \\ 0 & \text{if } p \le a^* \end{cases} \qquad a^* = \frac{1}{3} \sum_q Tr\left[\boldsymbol{D}_s(q) \cdot \boldsymbol{D}^{-1}(q)\right] \\ \frac{\kappa_m}{\kappa} = \begin{cases} \frac{p^2-b^*}{1-b^*} & \text{if } p > \sqrt{b^*}, \\ 0 & \text{if } p \le \sqrt{b^*} \end{cases} \qquad b^* = \frac{1}{3} \sum_q Tr\left[\boldsymbol{D}_b(q)\boldsymbol{D}^{-1}(q)\right] \end{cases}$$

Solve self-consistently

Rigidity Percolation in a semiflexible networks on triangular lattice: Effective Medium stretching and bending constants from EMT

$$\frac{\alpha_m}{\alpha} = \begin{cases} \frac{p-a^*}{1-a^*} & \text{if } p > a^* \\ 0 & \text{if } p \le a^* \end{cases} \qquad a^* = \frac{1}{3} \sum_q Tr\left[\boldsymbol{D}_s(q) \cdot \boldsymbol{D}^{-1}(q)\right] \\ \frac{\kappa_m}{\kappa} = \begin{cases} \frac{p^2-b^*}{1-b^*} & \text{if } p > \sqrt{b^*}, \\ 0 & \text{if } p \le \sqrt{b^*} \end{cases} \qquad b^* = \frac{1}{3} \sum_q Tr\left[\boldsymbol{D}_b(q)\boldsymbol{D}^{-1}(q)\right] \end{cases}$$

Also note: $a^* + b^* = \frac{2}{3}$ At the rigidity percolation threshold, p_c : $p_c + p_c^2 = \frac{2}{3}$. $\therefore p_c \approx 0.457$

Rigidity Percolation in flexible and semiflexible networks on triangular lattice: EMT prediction of shear modulus G (G = $(\sqrt{3}/4) \alpha_m$)

Rigidity Percolation in semiflexible networks: what happens when we have angle constraining crosslinks between crossing filaments?

Tseng, Wirtz 2001.

Figure 16–42. Molecular Biology of the Cell, 4th Edition.

Svitkina and Borisy 1999.

Rigidity Percolation in semiflexible networks: what happens when we have angle constraining crosslinks between crossing filaments?

Tseng, Wirtz 2001.

Figure 16–42. Molecular Biology of the Cell, 4th Edition.

Svitkina and Borisy 1999.

Rigidity Percolation in semiflexible networks: what happens when the network has spatial inhomogeneity?

Chang, et al., J. Biomed. Res., 2001

Model: Kagome-lattice based network with structural correlation

•Include randomly chosen bond with acceptance probability $P = (1 - c)^{6-nn}$

- •*c* sets the strength of correlation
- •Larger values of correlation strength yield patchier structures

Increasing correlation yields dense clusters

Increasing

correlation

Increasing fraction of occupied bonds

Threshold for Rigidity Depends varies Nonmonotonically with Correlation

Threshold for Rigidity Depends varies Non-monotonically with Correlation

Computing percolation thresholds

 Fit shear modulus around percolation threshold to power law

•
$$G = k(p - p_c)^{\beta}$$

- p_c denotes the percolation thresholds (depends on c)
- β is a critical exponent found by fitting

p_c exhibits reentrance

Scaling Exponents Decreases Linearly with Rigidity Threshold

